
Mapping SPL Feature Models to a Relational Database
Hazim Shatnawi∗

University of Mississippi
Department of Computer and Information Science

University, Mississippi 38677
hhshatna@go.olemiss.edu

H. Conrad Cunningham
University of Mississippi

Department of Computer and Information Science
University, Mississippi 38677

hcc@cs.olemiss.edu

ABSTRACT
Building a software product line (SPL) is a systematic strategy for
reusing software within a family of related systems from some ap-
plication domain. To de�ne an SPL, domain analysts must identify
the common and variable aspects of systems in the family and cap-
ture this information so that it can be used e�ectively to construct
speci�c products. Often analysts record this information using a fea-
ture model expressed visually as a feature diagram. The overall goal
of this project is to enable wider use of SPLs by identifying relevant
concepts, de�ning systematic methods, and developing practical
tools that leverage familiar web programming technologies. This
paper presents a novel approach to speci�cation of feature models:
capture the details using automatically generated user interfaces,
encode the models in a relational database, and then validate the
models and construct speci�c products using SQL.

KEYWORDS
Software product line, feature model, relational database, domain
analysis, domain design, feature selection.
ACM Reference format:
Hazim Shatnawi and H. Conrad Cunningham. 2017. Mapping SPL Feature
Models to a Relational Database. In Proceedings of ACM SouthEast Conference,
Kennesaw, GA, USA, April 2017 (ACMSE‘17), 8 pages.
DOI: 10.475/123_4

1 INTRODUCTION
Four decades ago Parnas observed that “software will inevitably
exist in many versions” [23]. Thus, a “software designer should be
aware that he is not designing a single program but a family of
programs” [24]. He describes a software family as a set “of programs
whose common properties are so extensive that it is advantageous
to study the common properties of the programs before analyzing
individual members” [23]. That is, developers should study the
commonalities of the programs before studying their variabilities.
These ideas underlie contemporary research on software product
lines [26].

A software product line (SPL) in some application domain is a
set of related systems that share common software features but

∗Also with National Center for Computational Hydroscience and Engineering.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACMSE‘17, Kennesaw, GA, USA
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123_4

may vary in how those features are realized. To identify these com-
monalities and variabilities, developers must analyze the domain
to identify the organization’s business goals, the SPL’s scope, the
types of products to be developed, and the features of those prod-
ucts. They often document the details of the feature analysis as a
tree-structured feature model. A parent node represents a decision
in the design of a product. The children of that node represent more
detailed decisions for realizing the parent decision. The constraints
among the nodes determine how valid products can be con�gured
in the SPL.

Feature models are represented in various ways in the litera-
ture. These include the FODA feature diagram [18] and several
extensions [8, 12, 13, 16, 19, 27], special purpose languages [17, 33],
and formal models [4, 31]. However, these have one or more short-
comings: some do not support automated analysis of SPLs or spe-
ci�c product con�gurations; some focus on speci�c programming
languages; and some require the mastery of language, logic, or
algebraic concepts unfamiliar to many programmers.

The overall goal of this project is to enable wider use of SPLs
by identifying relevant concepts, de�ning systematic methods, and
developing practical tools that leverage familiar web programming
technologies. In Section 5, we present a novel approach to speci-
�cation of feature models: encoding them in a relational database
(RDB). An RDB separates the concept of a feature from its actual im-
plementation, which helps developers and clients to understand the
feature model. We leverage the capabilities of the database query
language (SQL) to extract information about features and their re-
lationships to validate the model and construct speci�c products.
The database design also enables our tool to generate a web-based
user interface for product con�guration.

Before we present our approach, let us review relevant aspects
of software product lines, feature models, and relational databases.

2 SOFTWARE PRODUCT LINES
According to the Software Engineering Institute (SEI), an SPL is
a “set of software-intensive systems sharing a common, managed
set of features that satisfy the speci�c need of a particular market
segment or mission and that are developed from a common set of
core assets in a prescribed way” [10]. A feature is a stakeholder-
visible behavior of a software system [18]. Czarnecki and Eisenecke
[12] suggest making a feature visible not only helps the customer
to understand the software, but it also helps domain engineers,
software engineers, and others in the development of the SPL.

SPLs focus on reusing domain knowledge [22]. A domain is an
abstract space in which a set of related systems share common ter-
minology, requirements, and design choices. An organization can
build reusable software assets that capture the detailed knowledge
speci�c to a certain domain area. Consider a company that develops

ACMSE‘17, April 2017, Kennesaw, GA, USA Hazim Shatnawi and H. Conrad Cunningham

Figure 1: SPL development process

software for banks. Instead of developing a unique banking system
for each client, the company can use its general knowledge of bank-
ing systems—the domain—to produce a family of similar systems
that share common core functionalities but that can be customized
for speci�c clients. This family forms a software product line.

Figure 1 shows the development of an SPL consisting of two pro-
cesses: domain engineering and application engineering [1].
Domain engineering is the process of analyzing a domain by study-
ing the stakeholders’ requirements, reviewing existing systems
within the domain, and performing domain analysis. The domain
analysis identi�es the types of products included in the SPL and
identi�es the design choices that are common to the entire domain
and those that vary among the speci�c applications. These design
choices are implemented as software parts that represent the com-
mon and variable features of a product. In addition, the domain
analysis examines customers’ requests and decides whether to in-
tegrate these requests within the product line or just to implement
them as custom features for speci�c requests.

Application engineering is the process of delivering a product
by selecting a valid set of features from the SPL and implementing
new customer requirements that are within the scope of the SPL.

Domain analysis with feature modeling represents the problem
space of a product line. A problem space de�nes a feature as a high-
level abstraction by separating the feature from its implementation
details. This gives the stakeholders a clear description of the product
line features. The solution space represents features as source code
and converts the stakeholders’ selections into concrete products.

3 FEATURE MODELS
A feature model captures all the design choices in one high-level
description [3, 14, 29]. Each feature corresponds to one design
choice. Some features are shared across all products in a product
line (i.e., a commonality). Some only appear in speci�c products
(i.e., a variability). The success of an SPL depends upon e�ective
management of the variabilities. A variability means that the feature
can be con�gured and customized when included in a delivered
product [9].

Root

A

B
C

D

E F G H

requiresexcludes

Figure 2: A feature model for a product line

A feature model documents the product line architecture result-
ing from the domain analysis [18]. In traditional feature models, a
model is depicted as a tree that represents all design choices (i.e.,
features) as nodes and the constraints that one choice imposes on
others by various types of edges between the nodes. Based on the
de�ned relationships among the features in the model, the prod-
uct line can generate a speci�c product by selecting a valid set
of features—a set of features that satis�es all the constraints (i.e.,
rules).

A feature model captures the commonalties and variabilities by
representing the primary relationships among features as a tree.
The root represents the entire product line. An edge between a
parent and a child is a relationship between a high-level design
decision and a detailed design decision needed in its realization.

Kang proposed feature models for use in the Feature-Oriented
Domain Analysis (FODA) method [18]. Other researchers have
extended the feature modeling notation in various ways [12, 13, 16,
19, 27].

In feature models, features are connected by two kinds of rela-
tionships:

• Relationships between parent and child features
• Cross-tree inclusion or exclusion constraints between fea-

tures

We can express a feature model visually as a feature diagram
as shown in Figure 2. Root nodes are called concepts. Each con-
cept represents a domain [2] or a complete product line [6]. The
model structures the other features into a multi-level parent-child
hierarchy.

There are four kinds of parent-child relationships in feature
models: mandatory, optional, alternative, and OR features [4, 12, 18,
27].

Mandatory features are software artifacts that must appear in
all possible con�gurations (generated products) of a product line.
A mandatory feature can be a parent or child feature. If the feature
is mandatory, then it has to be selected in the generated product
whenever its parent is included. A mandatory feature is indicated
by a black circle on top of the node in a feature diagram. In Figure 2,
features A, B, and C are mandatory features.

Mapping SPL Feature Models to a Relational Database ACMSE‘17, April 2017, Kennesaw, GA, USA

Optional features are features that may or may not be selected
in the generated product. The optional feature may be included if
its parent is included. If its parent is optional and not included, then
the feature will not be included. An optional feature is indicated by
a white circle on top of the node in a feature diagram. In Figure 2,
features D, E, F, G, and H are optional features.

Alternative features are group features that mean the following:
if the parent of a set of alternative features is included in the gen-
erated product, then exactly one feature from this set is included.
An alternative feature group is graphically represented in a fea-
ture diagram by an arc or a line that joins the alternative features’
edges, forming a triangular shape. In Figure 2, features E and F are
alternative features.

OR features are group features that mean the following: if a
parent of a set of OR features is included in the generated product,
then at least one feature from this set is included. A group of three
OR features can result in selecting one, two, or three features. An
OR feature group is graphically represented in a feature diagram by
a black-�lled arc or line that joins the OR features’ edges, forming
a black triangular shape. In Figure 2, features G and H are OR
features.

A cross-tree constraint is represented by dotted edge. In Figure 2,
feature D requires feature H, since the edge is directed to H feature.
In this case, if feature D is selected to be part of the generated
product, then feature H must be selected too, but not vice versa.
Feature C excludes feature F means that, if feature C is selected, then
feature F cannot be selected, and vice versa. The require and exclude
relationships are outside the hierarchical (parent-child) structure
because they can relate two features that are in di�erent branches
of the tree.

The optional, alternative, and OR features are variation points
that represent hierarchical arrangement of features. Feature models
can give domain and software engineers a precise count of the
possible products that can be generated from the product line based
on the requirements imposed by the feature model. These require
the management of variation points based on relationships and
types of features. According to Figure 2:

• A is mandatory and thus it will be included in all products.
The possibility of having it is always 1.

• Feature B is also mandatory and thus it will be included in
all products. Feature B has two children E and F grouped
in an alternative set. In this case we have the option of
selecting parent B with child E or selecting parent B with
child F. Therefore, feature B has two possibilities when
deciding to include it in the product.

• C is mandatory and has an OR group child with two fea-
tures, G and H. There are three possibilities of including
feature C in a product: selecting C with G, selecting C with
H, or selecting C with both G and H.

• Feature D is optional and thus it has two possibilities: either
to select it in the �nal product or just ignore it.

The result is achieved by multiplying the possibilities as follows:

1 possibility for A × 2 possibilities for B ×

3 possibilities for C × 2 possibilities for D
= 12 possible product con�gurations.

A

B C

D E

8
4

2

7

3

12

A B C D E

A 0 8 4 0 0

B 8 0 0 7 0

C 4 0 0 2 12

D 0 7 2 0 3

E 0 0 12 3 0

Figure 3: Adjacency matrix for a graph

A

B C

D E

8
4

2

7

3

12

A B C D E

A 0 8 4 0 0

B 0 0 0 7 0

C 0 0 0 2 12

D 0 0 0 0 0

E 0 0 0 3 0

Node1 Node2 Value

A B 8

A C 4

B D 7

C D 2

C E 12

E D 3

Figure 4: Labeled Digraph, adjacency matrix, RDB table

4 RELATIONAL DATABASES
A database organizes a collection of data. A relational database
organizes a collection of data into tables with rows (called records)
and columns (called �elds or attributes). Tables link to one another
using key �elds. A primary key is a table column or a group of
columns that uniquely identify each row. A foreign key is a table
column or a group of columns that references a primary key in
another table, thus creating a link between the two tables.

Tables in a relational database can be manipulated using SQL,
a language for editing, querying, and updating data in a database.
Database normalization reduces data redundancy and increases the
performance of SQL queries.

To manipulate the feature models in a relational database, we
must store both the parent-child and the cross-tree relationships.
For this purpose, we consider the feature model as a graph and
represent it using an adjacency matrix.

A graph is a set of nodes with edges that link pairs of nodes. If
two nodes are connected by an edge, then the nodes are considered
adjacent. Figure 3 shows the representation of a graph with n
nodes as an n × n adjacency matrix. The nonzero values denote
the presence of an edge between the two nodes.

We represent the parent-child and cross-tree relationships as
directed edges. The matrix is sparse, so all we need to record are
the pairs of adjacent nodes. Thus, we need a table with columns for
the two adjacent features in the feature model and a third column
to describe the relationship between the features. Figure 4 shows
how we can use an adjacency matrix to represent a graph in a
relational database table. Because the graph is directed, only one
row is needed for each pair of features.

ACMSE‘17, April 2017, Kennesaw, GA, USA Hazim Shatnawi and H. Conrad Cunningham

Search Engine

Page Preview

HTML

Image

Page Translation
Document Type

Portuguese

English

Spanish

File

Video

SVG

JPEG

GIF

PDF
MS Office Files

Search Language

excludes

requires

Figure 5: Feature model for a search engine SPL

5 FEATURE MODEL IN A DATABASE
We propose a novel approach that encodes feature models of SPLs
in a relational database. This approach enables automated support
for the creation of feature models and the generation of products
from the models.

We adopt the adjacency matrix approach described in the previ-
ous section to encode feature models in a relational database system
such as MySQL or PostgreSQL.

We use a simpli�ed Search Engine product line [21] to illustrate
our approach. Figure 5 shows a feature diagram that represents
all design choices—expressing the commonalities as mandatory
features and the variabilities as optional, alternative, andOR features.
The diagram also shows cross-tree constraints between features
represented by require and exclude relationships.

The Search Engine product line includes search engines that sup-
port a variety of stakeholder requirements. Each product generated
from the product line will consist of common and variable features
that are composed based on the features selected. The search engine
system provides Page Preview functionality that adds an outline of
the search results as thumbnails next to the webpages links. The
search engine can search for and display HTML, Video, File, and
Image documents. Supported formats for the Image document type
are SVG, JPEG, and GIF. Supported formats for the File document
type are PDF and Microsoft O�ce �les (i.e., Word, Excel, Power-
Point, and Access). The search engine can translate pages from one
language to another. A search can be done in any of three languages:
Portuguese, English, and Spanish.

One possible product from the Search Engine product line is:

{ Search Engine, Page Preview, Document Type,
HTML, Image, JPEG, Video }.

This product does not include optional features File, Search Lan-
guage, and Page Translation. It also does not include GIF and SVG
since only one feature can be selected from the alternative group.
The selection of Page Preview feature excludes the SVG feature from
the product. If Page Preview is selected, then the search engine
cannot support documents of type SVG.

Another possible product from the Search Engine product line is:
{ Search Engine, Document Type, HTML, Image,
SVG, File, PDF, Search Language, English, Spanish,
Page Translation }.

The Search Language feature has a requires relationship with
the Page Translation feature. If the stakeholder decides to have a
Search Engine with Search Language functionality, then the Page
Translation feature must be added to the generated product. Spanish
and English features are selected from a three-features OR group
and PDF is selected from a two-features OR group.

We encode feature diagrams in a relational database using the
adjacency matrix approach by creating three tables: Feature, fea-
turesRelations, and Relationships. We design the tables to be in
third normal form (3NF) [11]. The following subsections explain
the structure and use of these tables in detail.

5.1 Feature Table
The �rst table in our design is the Feature table. Each row rep-
resents a feature in a feature model. The table consists of three
columns as shown in Figure 6. The �rst column is the id �eld,

Mapping SPL Feature Models to a Relational Database ACMSE‘17, April 2017, Kennesaw, GA, USA

Figure 6: Feature table

which is the primary key of the feature table. It uniquely identi�es
each row in the table. We abbreviate the feature’s name to get the
id for the feature.

The second column is the name �eld of the feature. As men-
tioned in Section 2, a feature is a stakeholder-visible behavior of
a system. Therefore, the feature’s name should clearly identify its
functionality for both developers and stakeholders.

The third column is the description �eld, which gives a general
description of the feature.

5.2 Relationships Table
The second table in our design is the Relationships table. This
table de�nes the types of relationships between features. The table
consists of two columns as shown in Figure 7.

As described in Section 4, mandatory features represent the com-
monalities across all products in the product line. OR, alternative,
and optional features are variation points—features that might or
might not be selected in the generated product. Require and exclude
assertions are cross-tree constraints between features. The �rst
column of the Relationships table (id) assigns an identi�er to the
relationship name in the second column (relation).

Figure 7: Relationships table

Figure 8: featuresRelations table

5.3 featuresRelations Table
The third table in our design is the featuresRelations table. This
table de�nes the relationships between features. As shown in Fig-
ure 8, the table consists of three columns: fromFeature, toFeature,
and relationType. This table represents the feature model as a di-
rected graph as described in Section 4.

In the featuresRelations table, a row represents an “edge”. The
edge relates the feature listed in the �rst column (fromFeature) to
another feature listed in the second column (toFeature). The type
of the relationship is listed in the third column (relationType). The
fromFeature and toFeature columns hold feature id keys from
the Feature table. The relationType column holds relation keys
from the Relationships table. Thus, it is not di�cult to construct
the feature diagram for an SPL by examining the featuresRela-
tions table.

In the featuresRelations table, the primary key is a compos-
ite of the fromFeature and toFeature columns. In Figure 8, the

ACMSE‘17, April 2017, Kennesaw, GA, USA Hazim Shatnawi and H. Conrad Cunningham

 Search Engine

Page Translation

Search Language

Portuguese

English

Spanish

requires

Figure 9: Feature model as DAG with labeled edges

fromFeature and toFeature columns together form a primary key
that uniquely identi�es each row in the table.

5.4 Feature Model Syntax and Semantics
Syntactically, a feature model, as represented by a feature diagram,
forms a directed acyclic graph (DAG) with labelled edges. The
node names are features de�ned in the Feature table. The edges
are de�ned in the featuresRelations table. The possible labels on
the edges are de�ned in the Relationships table. As described in
previous sections, most of the edges denote relationships directed
from a parent feature to a child feature in a feature tree. Other edges
represent cross-tree constraints; these cannot constrain ancestor
or descendent features. Our feature model speci�cation process
enforces the DAG syntax and builds valid relational database tables.

The DAG’s edge labels give additional semantics of feature mod-
els encoded in the relational database. Parent-child relationships
include mandatory, optional, alternative, and OR relationships de-
scribed in Section 3. To simplify a model, we restrict a parent to
having one group of alternative and OR children. (If more than one
group is needed, we can introduce an “abstract feature” for each
group and add another level to the model.) Cross-tree constraints
include the require and exclude relationships as described in Sec-
tion 3. The feature model speci�cation process also encodes the
intended semantics as it builds the database tables.

Figure 9 shows part of the feature model from Figure 5. It illus-
trates the feature model as a DAG with labeled edges.

Syntactically, our design treats the exclude relationship as uni-
directional. However, semantically, we treat it as bidirectional. As
shown in Figure 5, if feature Page Preview excludes feature SVG,
then the directed edge points to SVG and one row in the features-
Relations table is enough to represent this relationship. During
product con�guration, if a stakeholder selects SVG �rst, then the
Page Preview feature cannot be selected later, and vice versa.

Currently, our SPL feature models have a single root. As shown
in Figure 8, the featuresRelations table records this root with a
row having the keyword root in the fromFeature column and the
concept node (i.e., top-level feature) in the toFeature column. This
enables an SQL query to identify the root easily.

Our design does not currently support feature models with more
than one root or more than one parent for a child feature. But the

DAG-based approach and the database encoding can be readily
extended to support both.

• Multiple roots could represent a set of product lines from
overlapping domains that share some features.

• Multiple parents could represent a product line with com-
plex interactions among features at the code level.

We leave these extensions for future work.

5.5 Product Con�guration
So far we have primarily considered the upper-left quadrant of
Figure 1—how to represent the problem space during the domain
engineering process. The result is the encoding of feature models
in a relational database using the syntax and semantics described in
the previous section. The feature model also provides the structure
for the domain implementation (upper-right quadrant), which we
plan to address in future work.

Using a feature model, how can we address the lower-left quad-
rant of Figure 1—selecting the product features during the applica-
tion engineering process? That is, how can we build a valid software
product from the speci�cation of an SPL?

A valid product is one that conforms syntactically and semanti-
cally to the SPL’s feature model. The feature model speci�es the
valid combinations of features. It is conveniently encoded in a rela-
tional database. Thus the product con�guration process requires
the system to provide the application engineer with the possible
con�gurations and then to validate the selections made.

Our representation of a feature model is generic. It can repre-
sent a feature model of arbitrary depth. It is not dependent on a
particular language or complex mathematics. It can be used with
any programming or domain-speci�c language. It depends only on
pervasive relational database concepts.

Our research targets development of SPLs where several pro-
gramming languages can be used to build a speci�c product. For
example, consider web applications. The client-side (front-end) lan-
guages execute in a browser on the user’s machine. When the user
loads a web page from a server, the browser executes the page’s
associated HTML, CSS, and JavaScript code locally. The server-side
(back-end) languages run on the server; server-side programs may
generate the client-side page and interact with it during execution.
Popular server-side languages include PHP, JavaScript, ASP.NET,
Perl, and Java.

As a proof of concept, we developed a general, web-based tool
that recursively visits each feature in a feature model, starting
from the root node. It interprets the syntax and semantics of the
feature model and generates a browser-based user interface that
enables the selection of any valid combination of features. The
tool’s current implementation uses PHP, MySQL, SQL, HTML, CSS,
and JavaScript.

The left side of Figure 10 shows an automatically generated
web form listing all choices available in the Search Engine prod-
uct line given in Figure 5. This form shows mandatory features as
preselected checkboxes because they must exist in every con�g-
ured product. The form shows optional features as checkboxes that
enable the stakeholder to include or exclude that feature.

The right side of Figure 10 shows the corresponding speci�cation
for a product that has the chosen features. It shows File, Image, and

Mapping SPL Feature Models to a Relational Database ACMSE‘17, April 2017, Kennesaw, GA, USA

Figure 10: Product con�guration

Search Language as expanded features. When a stakeholder selects
a feature that has children, the system expands the feature’s node to
display the children indented appropriately. It uses checkboxes for
OR features where the stakeholder can select one or more features
from a group. Alternative features are represented by radio buttons,
where the stakeholder can select only one from a group.

The cross-tree relationships require and exclude are not shown in
the structure. In our example, the Search Language feature requires
the Page Translation feature. If a stakeholder selects Search Language
�rst, the system displays a message explaining that this feature
requires the selection of Page Translation. If Page Translation is
selected �rst, then the system does not show a warning because the
relationship is in one direction. The Page Preview feature excludes
the SVG feature. In this case, if the stakeholder selects either one,
the system displays a message specifying this rule and disables the
selection of the other. The system validates the selected choices
when the stakeholder submits the con�guration. The validation is
based on the feature model’s syntax and semantics as encoded in
the database.

We plan a similar browser-based user interface to enable stake-
holders to de�ne feature models and populate the database. To
enable this work and further development of the product con�gu-
ration interface, we are exploring ways to formalize the syntax and
semantics of the feature model and the associated user interfaces.

6 RELATEDWORK
Feature models were initially introduced for use in the FODA
method [18] to document the results of domain analysis. FODA
produces a feature model that identi�es the common and variable
features of a set of related systems in the domain. The original
FODA proposes the mandatory, optional, and alternative relation-
ships. FORM (Feature-Oriented Reuse Method) [19] adds domain
design and implementation phases to FODA. Others extend the
FODA concepts and apply them in various domains [8, 13, 25, 34].

Our approach builds on the FODA concepts and methods. Our
overall goal is to enable wider use of SPLs by developing a set of

concepts, methods, and tools that leverage familiar web program-
ming technologies. As much as possible, our approach seeks to
be general, not tied to a speci�c domain, programming language,
or application framework. We focus on the requirements of web
application development but the tools should be applicable to other
types of software development.

In the literature, there is no standard way to express feature
models and integrate them into SPL development. Di�erent rep-
resentations of feature models have been proposed. Van Deursen
and Klint [33] propose the Feature Description Language (FDL), a
textual language to describe features that can be mapped to UML
diagrams. Benavides et al [5] transform an extended feature model
into a Constraint Satisfaction Problem (CSP) to analyze the model’s
properties. Ge [15] de�nes the Feature Modeling Language (Fea-
tureML) to describe features using XML Schema. A feature model
is an XML page that conforms to the language schema. Rohlik
and Pasetti [28] describe other XML-related work. Thüm et al [32]
introduce FeatureIDE, a framework for feature-oriented software
development that supports several SPL implementation techniques.
Seidl et al. [30] propose Hyper-Feature Models (HFMs) to capture
variabilities in both con�guration (space) and, an often neglected,
aspect, evolution (time) by “explicitly providing feature versions
as con�gurable units for product de�nition.” Several researchers
encode feature models in formal modeling languages such as Alloy
to enable formal analysis and error checking [31]. Günther and
Sunkle [17] embed the feature model as an object structure in Ruby,
elevating features to a �rst-class entity in the language. Ruby’s
re�exive metaprogramming facilities enable the feature model to
be modi�ed and products con�gured at runtime. In a recent paper,
Brisaboa et al [7] describe GISBuilder, a system that focuses on
web-based geographic information systems (GIS) and uses speci�c
web technologies such as AngularJS, Spring, and Hibernate.

We view the previous work through the lens of our goal of en-
abling wider use of SPLs by leveraging familiar web programming
concepts, methods, and technologies. We thus adopted a relational
database to encode feature models, SQL to manipulate the data-
base and validate the feature models, and automatically generated
web forms to gather information from stakeholders and populate
the database. We will continue to adapt and extend the results of
previous research on feature models and SPLs to meet our goal.

7 CONCLUSION AND FUTUREWORK
This paper proposes a novel approach for speci�cation of an SPL by
encoding its feature model in a relational database. The approach
uses database tables to represent the feature model as a directed
acyclic graph. Our design consists of three tables: the Feature
table represents a feature with a unique identi�er, a name, and a
description; the featuresRelations table manages the hierarchical
(mandatory, optional, OR, alternative) and cross-tree (require and
exclude) relationships between features; and the Relationships
table de�nes the possible relationships between features.

As a proof of concept, we developed a web application for prod-
uct con�guration. It recursively visits each feature in the feature
model’s graph and generates a browser-based user interface. The
generated web form represents mandatory features as preselected
checkboxes, optional and OR features as checkboxes, and alternative

ACMSE‘17, April 2017, Kennesaw, GA, USA Hazim Shatnawi and H. Conrad Cunningham

features as radio buttons. When a feature involved in a require or
exclude relationship is selected, the web form displays a message
explaining the e�ect of the constraint and automatically selects or
deselects the other involved feature. The web application uses SQL
to manipulate the database and validate the product con�guration.
The web application thus guides the selection of the features that
conform to the syntax and semantics of the feature model.

In the domain engineering process, we plan to explore how best
to formalize the syntax and semantics of feature models. This work
will guide how we structure the user interface to specify SPLs and
populate the database incrementally. Given our goal of using fa-
miliar web technologies, we plan to investigate use of technologies
such as JavaScript, JSON (JavaScript Object Notation) Schema [20],
and related approaches to specifying and validating feature models.

In the application engineering process, we plan to leverage the
formalized syntax and semantics of feature models to enhance
the product con�guration interface. We also plan to extend the
database design to include information about the implementations
of features. This will support future work on the generation of
products from the code and other artifacts stored in the database.

ACKNOWLEDGMENTS
We thank the anonymous referees for their helpful comments. We
improved the paper in several ways as a result. We also thank our
colleague David Troendle for his valuable assistance in reformat-
ting the �gures for use in the �nal paper. The �rst author thanks
his current employer, the National Center for Computational Hy-
droscience and Engineering, for encouraging him to continue this
research.

REFERENCES
[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines. Springer.
[2] Ebrahim Bagheri, Faezeh Ensan, and Dragan Gasevic. 2012. Decision Support for

the Software Product Line Domain Engineering Lifecycl. Automated Software
Engineering 19, 3 (2012), 335–377.

[3] Don Batory. 2004. The Road to Utopia: A Future for Generative Programming.
In Domain-Speci�c Program Generation. Springer, 1–18.

[4] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
International Conference on Software Product Lines. Springer, 7–20.

[5] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated Rea-
soning on Feature Models. In International Conference on Advanced Information
Systems Engineering. Springer, 491–503.

[6] Yves Bontemps, Patrick Heymans, Pierre-Yves Schobbens, and Jean-Christophe
Trigaux. 2004. Semantics of FODA Feature Diagrams. In Proceedings SPLC 2004
Workshop on Software Variability Management for Product Derivation–Towards
Tool Support. Springer, 48–58.

[7] Nieves R. Brisaboa, Alejandro Cortiñas, Miguel R. Luaces, and Oscar Pedreira.
2016. GISBuilder: A Framework for the Semi-automatic Generation of Web-
based Geographic Information Systems. In Proceedings of the 20th Paci�c Asia
Conference on Information Systems (PACIS 2016).

[8] Johannes Bürdek, Sascha Lity, Malte Lochau, Markus Berens, Ursula Goltz, and
Andy Schürr. 2014. Staged Con�guration of Dynamic Software Product Lines
with Complex Binding Time Constraints. In Proceedings of the Eighth International
Workshop on Variability Modelling of Software-Intensive Systems. ACM, 16.

[9] Lianping Chen, Muhammad Ali Babar, and Nour Ali. 2009. Variability Manage-
ment in Software Product Lines: A Systematic Review. In Proceedings of the 13th

International Software Product Line Conference. Springer, 81–90.
[10] Paul Clements and Linda Northrop. 2002. Software Product Lines. Addison-

Wesley.
[11] Edgar F. Codd. 1981. Data Models in Database Management. ACM SIGMOD

Record 11, 2 (1981), 112–114.
[12] Krzysztof Czarnecki and Ulrich Eisenecker. 1999. Generative Programming:

Methods, Techniques, and Applications. Addison-Wesley, Chapter 8.
[13] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing

Cardinality-based Feature Models and Their Specialization. Software Process:
Improvement and Practice 10, 1 (2005), 7–29.

[14] Stefan Ferber, Jürgen Haag, and Juha Savolainen. 2002. Feature Interaction and
Dependencies: Modeling Features for Reengineering a Legacy Product Line. In
International Conference on Software Product Lines. Springer, 235–256.

[15] Guozheng Ge and E. James Whitehead. 2008. Rhizome: A Feature Modeling and
Generation Platform. In Proceedings of the International Conference on Automated
Software Engineering. IEEE, 375–378.

[16] Martin L Griss, John Favaro, and Massimo d’Alessandro. 1998. Integrating Feature
Modeling with the RSEB. In Proceedings of the Fifth International Conference on
Software Reuse. IEEE, 76–85.

[17] Sebastian Günther and Sagar Sunkle. 2012. rbFeatures: Feature-Oriented Pro-
gramming with Ruby. Science of Computer Programming 77, 3 (2012), 152–173.

[18] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21. Software Engineering Institute, Carnegie
Mellon University.

[19] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. 1998. FORM: A Feature-Oriented Reuse Method with Domain-Speci�c
Reference Architectures. Annals of Software Engineering 5, 1 (1998), 143–168.

[20] Tom Marrs. 2017. JSON at Work. O’Reilly Media.
[21] Marcılio Mendonça. 2009. E�cient Reasoning Techniques for Large Scale Feature

Models. Ph.D. Dissertation. University of Waterloo.
[22] Linda M. Northrop. 2002. SEI’s Software Product Line Tenets. IEEE Software 19,

4 (2002), 32–40.
[23] David Lorge Parnas. 1976. On the Design and Development of Program Families.

IEEE Transactions on Software Engineering 2, 1 (1976), 1–9.
[24] David Lorge Parnas. 1979. Designing Software for Ease of Extension and Con-

traction. IEEE Transactions on Software Engineering 5, 1 (1979), 128–138.
[25] Leonardo Passos, Marko Novakovic, Yingfei Xiong, Thorsten Berger, Krzysztof

Czarnecki, and Andrzej Wąsowski. 2011. A Study of Non-Boolean Constraints
in Variability Models of an Embedded Operating System. In Proceedings of the
15th International Software Product Line Conference, Volume 2. ACM, 2.

[26] Klaus Pohl, Günter Böckle, and Frank J. van Der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[27] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. 2002. Ex-
tending Feature Diagrams with UML Multiplicities. In Proceedings of the 6th
World Conference on Integrated Design and Process Technology (IDPT). SDPS.

[28] O. Rohlik and A. Pasetti. 2005. XFeature Modeling Tool. (2005). http://www.
pnp-software.com/XFeature/

[29] Jean-Claude Royer and Hugo Arboleda. 2013. Model-Driven and Software Product
Line Engineering. Wiley-ISTE.

[30] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. Capturing Variability
in Space and Time with Hyper Feature Models. In Proceedings of the Eighth
International Workshop on Variability Modelling of Software-Intensive Systems.
ACM, 6.

[31] Anjali Sree-Kumar, Elena Planas, and Robert Clarisó. 2016. Analysis of Feature
Models Using Alloy: A Survey. In Proceedings of the 7th International Workshop on
Formal Methods and Analysis in Software Product Line Engineering (FMSPLE’16).
EPTCS, 45–60.

[32] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An Extensible Framework for Feature-
Oriented Software Development. Science of Computer Programming 79 (2014),
70–85.

[33] Arie Van Deursen and Paul Klint. 2002. Domain-Speci�c Language Design
Requires Feature Descriptions. CIT. Journal of Computing and Information
Technology 10, 1 (2002), 1–17.

[34] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. 2001. On the Notion of
Variability in Software Product Lines. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA ’01). IEEE, 45–54.

http://www.pnp-software.com/XFeature/
http://www.pnp-software.com/XFeature/

	Abstract
	1 INTRODUCTION
	2 SOFTWARE PRODUCT LINES
	3 FEATURE MODELS
	4 RELATIONAL DATABASES
	5 FEATURE MODEL IN A DATABASE
	5.1 Feature Table
	5.2 Relationships Table
	5.3 featuresRelations Table
	5.4 Feature Model Syntax and Semantics
	5.5 Product Configuration

	6 RELATED WORK
	7 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

