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ABSTRACT

In Virtual Environments (VEs), the system must quickly respond
to user actions and accurately display the result. Current solutions
on the Unity3D game engine often respond too slowly and display
temporarily inaccurate or misleading states, resulting in low user
satisfaction. To alleviate this problem, we develop a reactive pro-
gramming approach that encodes the complex relationships among
Unity3D game components in a dependency graph and then uses
the graph to order the updates of the components without violat-
ing the dependency constraints. This enables more timely updates
and more accurate visualizations, potentially providing users with
a more satisfying experience. We evaluate our approach by com-
paring its performance with native Unity3D and with UniRx, the
Reactive Extensions library for the Unity3D platform.

Index Terms: Software and its engineering—Software notations
and tools—Development frameworks and environments—Object
oriented frameworks; Human-centered computing—Human com-
puter interaction (HCI)—Interaction paradigms—Virtual reality

1 INTRODUCTION

Virtual reality (VR) and augmented reality (AR) applications, col-
lectively referred to as virtual environments (VEs), are reactive in
nature. That is, they engage in ongoing interactions with their en-
vironments [17]. They respond to events, which may correspond
to an interaction with the outside world (e.g. a user’s movement)
or with other components of the application (e.g. changes in the
values of important data attributes).

In a VE, multiple objects interact with one another. When an
event affects an object, there is often a ”ripple effect” where all
objects around the initial object are affected, and then all objects
around those objects, and so on until the effects propagate through
the entire system. It may take several update cycles for the states
of all components to be updated and the system to reach a stable
state. This is often called transitional turbulence. Transitional tur-
bulence can result in inconsistencies in the visible state of the sys-
tem. Sometimes an external observer cannot perceive this incon-
sistent state because the multiple update cycles are completed be-
fore a new frame is rendered. Sometimes an external observer can
perceive this inconsistency when a new frame is rendered before
stability is reached. In this case, the observer (at least temporarily)
perceives the simulation as unreliable and inaccurate.

In this paper, we examine this problem by seeking to remove
the instability corresponding to the transitional turbulence. We do
this by reordering the execution of events so that an entire “ripple
effect” can often be completed within one update cycle. We focus
our attention on applications running on the Unity3D game engine,
which is a popular platform for low-cost VE applications. During
our tests on Unity3D, we found that Unity3D does not provide a
way to control the order of execution. Thus, if two components A
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and B are executed in this order, if B affects A and A updates before
B, then the modification made in A for B will not be made by A
until the next update cycle. The ability to change the execution
order of components and consequently enable in each execution the
correct ordering of the components’ executions in a scene graph is
essential for high accuracy systems. In such systems, simulated
interactions must occur in the same order as the interactions would
in a corresponding real-world situation. If they do not, then the
simulation fails to be realistic. An example would be a chain of
dominoes falling, when the first falls, the second falls only when
the weight of the first domino causes it to fall, and then the third
falls similarly, until the last one falls. If one of the dominoes does
not perform its fall correctly, the entire chain is compromised.

We are far from the first to propose creating reactive program-
ming frameworks for virtual environments. There have been many
solutions to this problem in the past, but most of these utilize spe-
cialized or purpose-built development environments [3,9,11,14,22,
27, 28]. We propose an alternative approach that can be applied to
modern, widely used development environments, such as Unity3D.
Furthermore, we propose designing this approach in such a way as
to be intuitive for developers who are already familiar with these en-
vironments. The approach that we chose utilizes the development
environment’s native object hierarchy to implicitly define reactive
relationships between objects in a virtual environment.

In this research, we apply a reactive programming approach that
exploits the existing object hierarchy of modern game engines such
as Unity3D. As described in Section 3, our approach analyzes the
relationships among the components in the virtual scene and con-
structs a dependency graph. In this graph, there is an edge from
component A to component B if the execution of A somehow affects
the execution of B (e.g. A changes the value of a variable used by
B). Our approach then sorts the graph topologically to determine
an execution order for the components that satisfies the identified
dependencies. This process is repeated whenever there is a change
to the object hierarchy, so the system can respond dynamically to
changes in the scene structure at runtime. Our approach does not
use locks or otherwise modify Unity3D’s event system. Instead, it
defines large-grained events, each of which causes the execution of
the reactive code of all the components involved in a single ripple
of effects resulting from a user action. If B depends on A, then A ex-
ecutes before B. All the reactions in a chain can be completed in a
single update cycle. This approach reduces the behavioral and com-
putational errors without compromising the performance. It does
so by using a non-locking, event-mimicking dependency-based ap-
proach that is easy to incorporate into the development of regular
VE applications with the purpose to create a controlled event sys-
tem inside the original Unity3D event system and reorder reactive
version of Unity3D events using dependencies in order to achieve
better accuracy in the final result.

In Section 4, we evaluate to what extent our approach improves
the accuracy and predictability of simulations with mathematical
and logical constraints. To do so, we develop an automated test-
ing platform that includes game object hierarchies emulating the
behavior of mathematical expressions. In Section 5, we compare
our solution’s performance to the results achieved by the same so-
lutions built using the default Unity3D event system and also using
UniRx [11], an existing, reactive library for Unity3D. Section 6
summarizes the results of this work. But first, in Section 2.1, we



explore the concepts of reactive programming and virtual environ-
ments.

2 BACKGROUND

2.1 Reactive Programming

Manna [17] defines a reactive program as software that engages in
an ongoing interaction with its environment. Operating systems and
embedded systems are examples of reactive programs that do not
terminate. Reactive programming (RP) focuses on how software
reacts to changes in a system’s state. These changes can be caused
internally, by interactions between the components of the software,
or externally, by an external actor such as the user or even another
software system. The developer must determine the chain of events
caused by a particular change. Throughout the execution of the
application, the program reacts to the changes as defined by the
developer.

A simple example of reactive behavior is the commonly used
spreadsheet. The model underlying most spreadsheets stores the
connections between the cells, so when one cell changes, the other
cells that rely on the first cell’s value to calculate their own results
also update, thus propagating reactions throughout the sheet until
all values are updated. This, of course, is not to say that all RP
is as simple as a spreadsheet. For instance, RP has been applied
to a wide range of theoretical and applied areas including robotics
[8, 12], graphical user-interfaces [4, 7, 13, 25], autonomous drones
and vehicles [1, 5], biological simulations [6], telecommunications
[23], and even arts [19, 20].

Vasiv et al. [26] generalizes programming problems solvable by
RP as problems where the interaction between the program and the
environment can be described as continuous and unpredictable. In
such situations, the user chooses how and when to interact with the
program; the system can only react upon the events afterwards. An
evident example, as shown in Van den Vonder et al. [25], is a highly
interactive application with an assortment of ways that the user can
interact with the software. That is, there are many possible events
that can change data values. This is not dissimilar to how virtual
and augmented reality systems function.

One common way to enable reactiveness is to capture the data
dependencies between the program’s components and execute the
chain of functions necessary to propagate the changes based upon
these dependencies [7, 15]. A similar prototype for Unity3D was
described by Marum et al. [18]. We adopt and extend this approach
by introducing a more robust and comprehensively tested system
with automated tests and a random expression tree builder.

There are many examples of RP frameworks ranging from those
designed to add reactivity to an existing and purpose-built lan-
guages. For instance, Czaplicki and Chong [4], and Blackheath
and Jones [2] focus on the development process of reactive libraries
(Elm and Sodium) from scratch. Blom and Beckhaus [3] examine a
Haskell library for functional reactive game development. Their ap-
proach is based on a RP layer that acts like a middle-man between
the reactive user interface and the non-reactive VE manager.

2.2 Virtual Environments and Game Engines

Though reactive programming for VEs is not a new concept, with
prototypes dating back over a decade, these solutions are often
purpose-built or have a limited scope of reactivity [3, 11, 27]. The
solution proposed here is different from these in that its pattern can
be applied to any game engine, or other development environments,
where components are natively organized into a hierarchy. This en-
ables the programmer to apply reactive behavior to a large array
of inputs, streams, and game objects. Since this method is also
based on the environment’s native hierarchy, the structure of the
reactive relationships can change at runtime without loss of perfor-
mance. As VEs become more shareable between users, this feature
becomes particularly important as users and their associated virtual

objects may enter and leave shared environments arbitrarily, mak-
ing having a set of pre-established relationships among objects less
predictable.

A commonly used game engine is Unity3D. Seligmann [21] de-
scribes it as a video game engine for the development of two- and
three-dimensional games, including support for virtual and aug-
mented reality. Unity3D supports development for a wide variety of
game platforms and provides a C#-based scripting system. Unity3D
uses a hierarchical, component-oriented programming approach to
organize these scripts into an application. Each script forms a com-
ponent that can be attached to one or more objects. Each object can
have several capabilities, giving programmers the ability to easily
attach many functionalities to a particular game object.

Unity3D [24], like many other game engines, seeks to support
cross-platform development and thus restricts itself to a generic set
of features common to most game platforms. This has a number
of consequences, but, for our purposes, it means that there is no
defined order of execution for objects within a game’s hierarchy.

The correct ordering of the internal interactions between compo-
nents in a scene graph is essential for high accuracy systems. In
such systems, simulated interactions must occur in the same order
as the interactions would in a corresponding real-world situation. If
they do not, then the simulation fails to be realistic. For example, in
the real world, a human hand does not penetrate a solid object that
it touches. In a simulated world, if the hand first penetrates a solid
object and then is subsequently repelled, then the simulation is not
realistic. But such a situation can result from an arbitrary order of
execution of the simulated actions.

The only comment that the Unity3D manual [24] has on this
issue is: “By default, the Awake(), OnEnable(), and Update()
functions of different scripts are called in the order the scripts are
loaded (which is arbitrary). However, it is possible to modify this
order using the Script Execution Order settings.”

The Unity3D manual does not describe in what order the
Update() functions are executed in a given group of scripts. This
is an important issue as each component may change the value of
other components and affect the overall reactivity of an environ-
ment. We performed experiments to assess the execution order of
the updates in Unity3D. Each experiment involved a system with
several objects, each of which inserted its unique number into a list
each time it updated. The list was static, so the application con-
tains only one copy of the list accessed by all objects. The update
test involves programming the update function of every object to
add a number (a unique index for every object in the scene) into
the global list. Since the order in which objects and components
are added seems to be the order used to arrange the updates, we
searched for what type of modification to the game tree causes a
modification in the update order. From one test scenario to another,
the only thing that changed was the order in which the game objects
and their components were inserted or modified in the tree.

We performed the following sequence of tests:

1. Create the game objects level by level from the game tree,
inserting them from the root toward the leaves.

2. Alter the creation order from the initial setup by exchanging
the positions of objects from different levels of the tree.

3. Alter the creation order from the initial setup by exchanging
the positions of objects within the same level of the tree.

4. Rearrange the creation order for the whole tree used as the
initial setup but keep components assigned to the same game
objects.

5. Detach some of the components from their original game ob-
jects in the initial setup and reattach them to other game ob-
jects in different levels of the tree.



In all of the tests, Unity3D consistently updated in the same fash-
ion. This order is independent of the hierarchical position of the
game object as the first test appeared to demonstrate, updating in
an order starting from the leaves of the tree and finishing with the
root. The updates are done by going from the newest objects in-
serted or modified to the oldest. Dragging objects around within the
hierarchy has no effect on this order. The only test that produced a
different execution order is the fifth test, where we remove a compo-
nent from the root of the tree and insert it beneath one of the other
components (one of the branch nodes). This change may occur as
a result of a change to the project’s generated metadata. Because
of this change, both the root game object (where the component
is taken from) and the branch game object (where the component
is inserted) move to the beginning of the update order. Also, it is
important to note that such modifications are done when the code
is not running. Any modification during runtime (rearranging ob-
jects, attaching, reattaching or detaching components) has no effect
on the metadata and thus has no effect on the Unity3D execution
order.

Besides our approach, another possible way to handle this would
be make changes directly to the metadata or somehow change
the way Unity3D works. We did not consider these solutions be-
cause they involve deep knowledge of the internal mechanisms of
Unity3D, and both of them may cause undesired, erratic behavior
by the other game objects. Making changes directly to the meta-
data or restricting the execution order inside of the Unity3D would
require a deep level of knowledge of its internal operations that ap-
pears to be beyond the scope of the publicly available documenta-
tion.

2.3 UniRx

Reactive Extension for Unity3D (UniRx) is a library for devel-
oping asynchronous and event-based programs using observable
collections and LINQ-style query operators to implement reac-
tive programming in Unity3D. Kawai describes UniRx as “a re-
implementation of the .NET Reactive Extensions” [11].

Malawski [16] argues that UniRx alleviates the side-effects for
asynchronous execution in Unity3D. UniRx represents any data
sequence from Unity3D as an observable sequence. An applica-
tion can subscribe to these observable sequences to receive asyn-
chronous notifications as new data arrives. UniRx was motivated
by the desire to improve web connection support for games and
minimize errors and thus has a somewhat narrow scope. It relies
strongly on the capabilities of the .Net framework. It is important
to note that dependencies in UniRx must be explicitly specified by
the programmer.

3 IMPLEMENTATION

This section describes the implementation of our reactive, depen-
dency graph-based component for game engines. This operates by
capturing the associations between components to establish their
execution order. This implementation was based upon a proof-of-
concept implementation of a dependency graph reactive component
described by Marum et al. [18].

We dynamically reorder the execution of the object hierarchy to
correspond to the current data dependencies among the components.
We seek to schedule the execution of each component so that up-to-
date values of all its data are available and the execution occurs
soon thereafter. We create a dependency graph by analyzing the
system, looking for a relationship between components that would
fit the established criteria of dependency. An update order is then
generated in such a way that it will meet the dependency graph’s
constraints. All future update cycles then start by the checking for
any changes in the hierarchy. The update order is then recomputed
accordingly. Finally, these components are called in the order their
hierarchical dependencies.

Dependency-based reactivity uses a dependency graph to rear-
range those components in a new structure where they are con-
nected to each other. The system uses a non-locking approach that
works around the Unity3D’s default event system by calling the ex-
ecution of the reactive event in each component in an order that
satisfies the dependency graph’s constraints. Our approach has the
following steps:

• Analyze the scene graph to determine the underlying connec-
tions between the components.

• When the application starts, traverse the object hierarchy to
build the dependency graph. Every object in the scene is
copied to the dependency graph, and whenever a connection
exists between two components, an edge is created between
the same components in the dependency graph.

• After the entire dependency graph has been built, topologi-
cally sort the graph.

• On every update cycle, recheck the program structure to de-
termine whether there are any changes in the dependencies
between components. Update the dependency graph accord-
ingly.

• Ensure that the order of execution satisfies the constraints im-
posed by the dependency graph. Execute them accordingly
whenever a change occurs to a reactive item. This continues
the chain of reactions while the changes are propagated from
one node to others until the scene graphs achieves a stable
state where no more changes are propagated.

Algorithm 1 Evaluating the scene and building the dependency
graph.

Q = empty queue;
Tree = All the game objects;
Root = root of the game tree;
Enqueue the root in Q;
while Q is not empty do

comp = Dequeue the next object in Q;
Enqueue in Q each child object of comp;
while for each Component C attached to game object comp do

if C is not in Unity3D or .Net type then
Insert C as a Node in the Graph;
while for each Field or Property P in the Component
C do

if value of P is a component that implements IUp-
datable and P is not null then

Insert P as a Node in the Graph;
if Edge between C and P does not exist and
do not cause a cycle then

Create a Edge in the Graph between
source C and destination P;

end

end

end

end

end
Breadth-First Search to produce a valid update queue

end

The implementation encodes the data dependencies as a directed
acyclic graph (DAG), where the nodes represent the component’s
state and edges between nodes represent direct dependency rela-
tions between components. The DAG is built by analyzing the game



engine’s object hierarchy and extracting the dependencies as it is
shown in Algorithm 1. Each node contains the component object
copied from the scene graph, its parent game object information,
and the component’s type. Each connection is encoded as a directed
edge. The edges are directed, which means they contain a destina-
tion node and a source node. The source is the component that
contains the value used by the other component, and the destination
is the component that depends upon the other—the component that
uses the value from the source node.

We define dependency as a relation where a component A has
the value of itself or the value one of its properties or fields fully or
partially defined by the value of another component B, the value of
one of B’s property or one of B’s fields. Also, a dependency exists
if the update function of component B alters the value of compo-
nent A itself, one of the A’s properties or one of the A’s fields. In
these cases, the system records an edge going from A to B. We have
established, as a condition for the system to work, that any compo-
nent or value to be changed by an event of the component analyzed
must be explicitly defined as a property or field of this component.
This condition can be relaxed in the future by adding code to verify
which components and values are being modified by an event.

For each new edge, the algorithm makes sure that it does not
create a circular dependency. A circular dependency is a situation
where starting from a particular node the search can reach the same
node by following some chain of dependencies. This would result
in an undesirable infinite loop. In the case where a cycle is detected,
the dependency is omitted by the system but the execution will still
happen as non-reactive.The components’ update order is defined
using a topological sorting through a Breadth-First Search (BFS).
Figure 1 shows the process of building the dependency graph and
the update order from the game tree.

If a component is dependent on several other components, it will
be called as soon as all of the other components are updated. A
component’s updated value will be available to any component that
may need it. When it is the turn for a component to be updated,
the framework checks all its dependencies that must be already up-
dated so the component updates using the latest values. Another
important characteristic is that the current state of the system is
self-contained, which means there are neither dependencies across
states nor across frames. That is a crucial characteristic of the sys-
tem since accuracy and predictability on each update cycle is the
core issue of this work.

The reordering of the execution of each component is done us-
ing a non-locking approach that mimics most of the properties of
Unity3D’s original event system, but works only with the reactive
event present on the reactive components created in the application.
So all the execution of the reactive components works inside the
event of a single component, an atomic execution inside the original
event system. This way we define our system locking the execution
order without causing disturbance on the original execution of the
other components.

Once for every update cycle, the algorithm reanalyzes the graph
using a DFS. This process is described in Algorithm 2. During
this cycle, the framework determines whether any component in
the scene graph has been modified, deleted, or inserted relative to
the current state of the dependency graph. The algorithm reacts
differently in three distinct cases:

New component added to the scene: The algorithm adds the new
component to the graph and determines which components
that it depends upon. The algorithm then recomputes the de-
pendencies for all components that became dependent upon
the new component.

A component modified in the scene: If some of the component’s
properties are changed, the algorithm must update the depen-
dency graph around that component appropriately. The modi-

fied component may now be dependent upon different compo-
nents and different components may now be dependent upon
the modified component.

A component deleted from the scene: All the edges coming
from or going to the deleted component must be deleted from
the dependency graph. The dependencies for all components
that depended upon the deleted component must be recom-
puted.

Algorithm 2 Reanalyze the scene graph in order to perform any
needed updates to the dependency graph.

Q = empty queue;
Tree = All the game objects;
Root = root of the game tree;
Enqueue Root on Q;
while Q is not empty do

Comp = Dequeue the first object in the queue;
C1 = same instance of Comp previously stored in the Graph,
null if none is found;
if C1 is null then

Insert Comp as a Node in the Dependency Graph;
while for each unchecked Field or Property P in Comp do

if value of P is a component that implements IUpdat-
able and P is not null then

Insert P as a Node in the Dependency Graph;
if Edge between C1 and P do not cause a cycle
then

Create a Edge in the Dependency Graph
between Node Comp and Node P;

end

end

end

end
else

Update the value of C1 in the Graph;
while for each unchecked Field or Property P in C1 do

if value of P is a component that implements IUpdat-
able and P is not null then

P1 = object that is equal to P in the Dependency
Graph, null if none is found;
if P1 is null then

Insert P as a Node in the Dependency Graph;
if Edge between C1 and P does not exist or do
not cause a cycle then

Create a Edge in the Dependency Graph
between Node C1 and Node P;

end

end
else

if value of P is null or different from P1 then
Update the value of P in the Graph;

end

end

end

end

end
Breadth-First Search to produce a valid Update Queue;
while for each Component c in the Update Queue do

execute Update Function;

end

end



Figure 1: Building the dependency graph and the execution queue from the scene graph.

One of our goals is to be able to operate with already established
VE systems and technologies such as Unity3D. Thus, to preserve
the proper functioning of the original update mechanism of those
systems, our framework requires that any reactive script in the scene
implement the interface IUpdatable. This interface specifies a sin-
gle function ReactiveUpdate. This function is called in a reactive
manner instead of the default Update from the Unity3D event sys-
tem. All code in the script that will be handled reactively must be
executed in this function.

This is done so that any behavior that must be dealt without reac-
tivity can update in the default way without sacrificing performance
or dealing with the internal mechanisms of the Unity3D framework.
From the same standpoint, Unity3D internal classes, the .Net proto-
type classes, and other scripts that will not be reactive are ignored
by our framework. They are not triggered by changes and do not
trigger changes in other scripts.

In the root of the game scene tree, the developer must attach the
dependency graph manager component. This is the component that
does the functions described above. All the reactive components
implement IUpdatable, allowing the manager to detect changes
within these components. When a change occurs in any reactive
component, the manager propagates the change through the entire
dependency chain. The reactive components must be updated as a
single block during the subsequent update cycles.

One of the biggest issues encountered in the development phase
was that the Unity3D system was unable to determine equality be-
tween references to the same object in different data structures. In
our approach, comparison of multiple instances of the same object
is a key feature needed to trace changes in objects and spread them
throughout the dependency graph. This is also important when
checking if new objects were added or deleted and if new depen-
dencies were added, changed, or deleted.

When comparing using object.equals(), there were no pos-
itive answers, even though the comparisons were made between
exactly the same objects. The same was observed when compar-
ing tags and references (using ReferenceEquals()). The use
of Find(), FindByTag(), and FindByName() requires removing
many false positives and leads back to the problem of finding a
positive using one of the techniques mentioned above. As such,
we defined an indirect definition for equality comparisons between
objects that focuses on the characteristics of the objects. If two
components have the same type and name and they belong to game
objects that are equal (which means they also have the same prop-
erties), then they must be the same. This approach relies on the fact
that no two objects of the same component type and with the same

properties (name, tag, and position) can be attached to the same
game object. This set of information represents, for our purposes,
a unique identification for each component. These are required to
allow us to define equality of objects effectively.

4 TEST METHODOLOGY

For purposes of comparison, we built and tested similar environ-
ments using two other system combinations in addition to our
framework:

• Unity3D (using its own event system)

• Unity3D with UniRx (Unity3D Reactive Extension)

The algorithm described in the previous section builds a depen-
dency graph and traverses it completely in an amount of time very
close to the time performed by Unity3D alone between each frame.
We measure the time spent for all the systems tested in all scenarios
using the StopWatch class from the .Net framework. This class
emulates the behavior of a regular stopwatch, giving us the abil-
ity to start and stop it as needed. We start it at the beginning of
the start() and Update() and stop it at their end. The property
Elapsed from the class StopWatch gives the amount of time in
milliseconds spent from start to stop. Our tests do not reveal any
significant performance degradation either in the update time or the
start-up time. That happens because only the objects that can trig-
ger reactivity are considered and only when their values change.
On average, the time consumed for the system on the updates re-
mains relatively small in comparison with Unity3D alone. In the fu-
ture, we plan to develop tests to measure more rigorously the above
time increase utilizing the test methodology described in Jones et
al. [10].

To test the effectiveness of our approach, we built a test scenario
that demonstrates how the update order affects common interac-
tions among multiple objects by using the example of an expression
tree calculator. This test case passes through a set of automated tests
using UniRx, Unity3D, and our reactive framework.

It is generally quite difficult to determine whether a series of ob-
jects updates in the expected way in a virtual environment without
degrading the system performance by storing state data in memory
or writing to a file. Instead, our approach was to design a game en-
vironment where objects within the scene behaved as computation
components within an expression tree. This allowed us to build test
cases where the value computed by the expression tree is known a
priori. Any error in execution order would then be detectable in the
final state of the system simply by comparing the tree’s computed



values with the expected values. This served as a very sensitive
method for detecting errors in execution without introducing addi-
tional overhead costs. The test scenario included insertion, deletion,
and modification of components. Performing the test involved:

• Randomly generating binary trees that represent mathematical
expressions.

• Randomly placing integer values in the leaf nodes and binary
operators in the internal nodes of each tree. The “current”
value of an internal node can be computed by performing its
operation on the “current” values of its two children.

• Computing the “current” value of the tree by computing the
“current” value of the root. For the “current” value of the
tree to be the correct value of the expression, the values of
all nodes must be computed in the correct order. That is, the
value of both sub-trees of an internal node must be computed
before the value of internal node.

The algorithm randomly generates a component that represents
an expression tree. The tree is either a leaf or an internal node. If
the tree is a leaf, then the algorithm randomly selects some integer
value. If the tree is an internal node, then the algorithm randomly se-
lects an arithmetic operator chosen from addition, subtraction, mul-
tiplication, division, and exponentiation. To keep the expressions
relatively simple, we limit the number of operators that can be se-
lected to five. We also require that the root node be an operator
to eliminate trivial cases. This algorithm generates mathematical
expressions such as the following:

• 5+(4∗9)+3−52

• 32∗ (7+9)–12–16

• 50–(12+16)/8–(12−9)

The diagram in Figure 2 depicts the test process. The tree is
first embedded in a game hierarchy, then the “current” value of the
tree is calculated, then this value is compared to the expected (i.e.,
correct) value of the expression. To determine the adaptability, the
test is repeated with several variations of the original tree.

The result of A is a calculation between its child nodes A1 and
A2, which means that in order to obtain the result of A correctly,
both A1 and A2 must be available and correct. A1 similarly depends
on its two children A11 and A12. So the calculation will obtain the
correct final result only if the updates that trigger the calculations
respect the following order: A11 → A12 → A1 → A2 → A. Any
execution order in which A executes before its children ( A1 and A2)
would produce a wrong result since it used an outdated or nonexis-
tent value.

In our tests, after the end of the update cycle, the value of each
internal node is compared with the expected value computed be-
forehand. At some random time during the tests, we introduce
changes to the scene graph by inserting new nodes in random lo-
cations, deleting random nodes, or modifying the value of a node.
In the next update cycle, the test compares the result from the ex-
pression with the new expected value. We also keep testing between
modifications to ensure that the result remains stable.

The test configuration that we use in this work is a three-way
comparison between projects built using Unity3D with our frame-
work, the default Unity3D event system, and UniRx. The com-
puter that we used for testing was a laptop Dell Latitude E5550
with the processor Intel Core i5 – 5300 2.3 GHz, 8 Gb RAM, Intel
HD Graphics 5500, running a Windows 10 64-bit operating system,
Visual Studio 2017, and Unity3D 2019 3.0.

5 RESULTS AND INTERPRETATION

Performance-wise, our framework showed that the time spent in the
update cycle is, on average, similar to the performance achieved by
UniRx or Unity3D alone. Thus, the use of our framework did not
indicate a significant increase in the time spent in the update cycle.
Creating the dependency graph and performing the topological sort
initially took, on average, 198 ms. When the dependency graph
needed to be reconstructed, the update function took up to 100 ms
to redo the analysis and sort.

To measure accuracy of each testing platform, we determined
whether it reached a correct (i.e. accurate) state at the end of each
update cycle, despite having to handle unpredictable situations. In
this test, our framework performed better than UniRx and Unity3D
with default functionality.

We chose to record three metrics to compare performance be-
tween systems. We recorded the measurements and took the av-
erage based upon the total number of update cycles, the average
results were recorded in Tables 1 and 2 for each platform in each
scenario:

• The latency (number of update cycles) needed to get the game
into the expected state once set into action.

• The number of errors detected for a sequence of interactions
expressed as the average number of update cycles that con-
tained at least one error.

• The average number of errors in a single test where errors
were detected. This is how many components’ updates were
incorrectly ordered in a test where there were errors detected.
We count the total number of errors, the total number of runs
that reported an error, and finally compute the average.

Table 1 shows the result of the first test, with the expression tree
running for 100 user cycles and no modifications inserted.

Platform
Total
Cycles

Total
Errors

Avg Er-
rors per
Cycle

Visible
Errors

Latency
in Cy-
cles

Unity3D 100 95 5 0 5

UniRX 100 15 2 0 5

Our Tool 100 15 2 0 1

Table 1: Test Results for Scenario #1

Table 2 shows the result of the second test, with the expression
tree running for 100 user cycles (which means cycles initiated by a
direct user interaction) and modification inserted in the expression
tree (game objects modified, added, or deleted).

Platform
Total
Cycles

Total
Errors

Avg Er-
rors per
Cycle

Visible
Errors

Latency
in Cy-
cles

Unity3D 100 100 5 0 7

UniRX 100 80 5 0 20

Our Tool 100 20 3 0 1

Table 2: Test Results for Scenario #2

When referring to errors, we specifically mean a situation where
one of the game components is executed before one or more of its
dependencies, thus causing inadvertent use of out-of-date or miss-
ing values. This incorrect order causes a failure of the component or
a temporarily erroneous state of the component. Latency means the
number of cycles (or the time taken) between the beginning of the
test and when the expected system state has been reached. Observ-
able inaccuracy is the temporarily incorrect state of one or more



Figure 2: Mathematical Expression tree generation used for testing our framework.

of the components that is visible in the rendered imagery of the
game. Since many update cycles can execute per frame of rendered
video, we considered an inaccuracy to be observable if it persists
for enough cycles to out last a single rendered frame. This does
not mean that an observer will necessarily be able to see the inac-
curacy in question, but instead that if some visible element of the
environment relied on this component, the resulting error could po-
tentially be visible to the observer. As such, this can be thought of
as a lower bound or minimal criterion for a visible error to occur in
the environment.

As can be seen in Table 1 for the UniRx implementation, we
observed inaccuracies in only 15% of the tests using the scenario
with no changes. However, Tables 2 show the inaccuracy rate in-
creased to 80% when we introduced changes randomly throughout
the test. These episodes of inaccuracy continue to occur for several
cycles after a modification of the game tree. During the unstable
period, UniRx produced several errors, catalogued in two possible
categories:

• The system entered in an error state with a null or a type-
related exception. (The system expected an object of a cer-
tain type and found an object of another type or found a null
pointer.)

• The system ignored the existence of the new or modified node.

In the tests where modifications were introduced at runtime,
UniRx took up to 30 cycles to recover from the error and reach
a stable state. Additionally, in the tests where there was an error,
the update cycle had a high number of incorrectly ordered execu-
tions per update cycle. This happens because any interaction with
one of the modified/inserted/deleted components was not correctly
handled, resulting in an erroneous state.

Though UniRx is designed to handle input streams in a reac-
tive way, it does not react properly to changes in the objects them-
selves. This significantly limits the dynamics of virtual environ-
ments where components may be arbitrarily inserted or removed,
such as multi-user experiences. Consequently, UniRx can only han-
dle such situations if they are predictable and properly handled by
the programmer.

In the default Unity3D event system, Table 1 demonstrates that
episodes of error happened in 95% of the cases in the scenario with

no changes to the scene graph. Several update cycles were neces-
sary before the scene graph was up-to-date. This can be explained
by the fact that the Unity3D event system uses an arbitrary order
for updates [24]. When a component executes, it uses the available
values, without knowing if the dependencies were updated accord-
ingly. That is why a single chain of reactions takes time to spread
through the scene graph. The number of cycles needed to reach a
desirable result in Unity3D is invariably connected to the complex-
ity of the simulations and how many components are involved in
that cycle. This behavior can also be observed in the number of
errors per update cycle.

The default Unity3D event system behaves similarly when
changes are introduced to the game hierarchy. It took several cycles
to stabilize the object hierarchy as shown in Table 2. The system
also produces errors in 95% of the cases.

For our framework, Table 1 shows that episodes of error occur
in only 15% of the cases. Table 2 shows that these results differed
very little for situations where changes were introduced to the sys-
tem. Compared to the other systems, our framework detected the
changes and reached a stable state more quickly than the others.

One potential reason for the poor performance of UniRx is that it
assumes that the structure of the scene graph will remain unchanged
from one frame to the next. When the system makes an asyn-
chronous operation, UniRx expects to find the same game struc-
ture that was there when the request was sent. When the structure
changes, UniRx considers it to be a situation that it cannot handle
and triggers a runtime exception.

6 CONCLUSION

In this research we have addressed the instability resulting from
the transitional turbulence that occurs in virtual environments. We
have demonstrated this by exploiting Unity3D’s existing object hi-
erarchy. Initially, and whenever the hierarchy changes thereafter,
our approach extracts the inter-component dependencies and gen-
erates a new event-handling order that satisfies these constraints.
Our approach groups a chain of reactions corresponding to some
external action into a large-grained reactive event that can be per-
formed in one update cycle, that is, within the execution of a single
Unity3D event. This approach seems to have the benefits of lock-
ing, non-locking, and wait-free-based approaches without dealing
with concurrency issues.

Transitional turbulence can lead to inconsistent and misleading



states within the VE, making the system seem unreliable and unpre-
dictable. By reordering the events based on the dependencies, our
approach removes many such inconsistencies without degrading the
performance of the system. By dynamically reacting to changes in
the object hierarchy, the approach can smoothly handle relatively
complex applications. Our tests show that our approach performs
better than both an unmodified Unity3D application and a similar
application developed using the reactive library UniRx.

A goal of our design is to avoid conflicts with other third-party
libraries and assets. Our tests using the Unity Standard Assets in-
dicate that this is possible in principle. We expect the approach
to be similarly compatible with a variety of applications, including
physics engines (e.g. PhysX and Havok) and libraries for adding
other simulation functionality. We also expect that the approach
can be readily adapted to Unity3D’s new Entity Component Sys-
tem (ECS) with results similar to those reported in Section 5. ECS
focuses on how Unity organizes the data. Our approach, instead,
focuses on how Unity organizes event execution. So the system
behavior should be similar. To gain a better understanding of the
approach’s capabilities and limitations, we plan to implement the
framework on a wider variety of platforms in the future.

Our approach improves responsiveness and performance to
changes and results in more accurate mathematical and visual be-
havior. We hypothesize that the same general solution can be im-
plemented for a variety of programs with built-in object hierarchi-
cal structures. For those problems, it should be easy to integrate our
approach into the analysis of the structure and understanding of the
dependency relationships between controls.
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