
Unified Library for Dependency-graph Reactivity on Web and
Desktop User Interfaces

João Paulo Oliveira Marum
University of Mississippi

University, Mississippi, USA
jmarum@acm.org

H. Conrad Cunningham
University of Mississippi

University, Mississippi, USA
hcc@cs.olemiss.edu

J. Adam Jones
University of Mississippi

University, Mississippi, USA
jadamj@acm.org

ABSTRACT
In user interfaces onWeb and desktop applications, the systemmust
quickly respond to user inputs and accurately display the result.
Current solutions for user interfaces often respond too slowly and
display temporarily inaccurate or misleading states, resulting in low
user satisfaction. To alleviate this problem, we develop a reactive
programming approach that encodes the complex relationships
among the user interface components in a dependency graph and
then uses the graph to order the updates of the components without
violating the dependency constraints. This enables more timely
updates and more accurate visualizations, potentially providing
users with a more satisfying experience. We evaluate our approach
by comparing its performance with important alternative reactive
libraries for user interfaces.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-

itories; • Human-centered computing → Graphical user inter-
faces.
KEYWORDS

User interface, event-driven system, dependency graph, reactive
programming

ACM Reference Format:
João Paulo Oliveira Marum, H. Conrad Cunningham, and J. Adam Jones.
2020. Unified Library for Dependency-graph Reactivity onWeb and Desktop
User Interfaces. In 2020 ACM Southeast Conference (ACMSE 2020), April 2–4,
2020, Tampa, FL, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3374135.3385278

1 INTRODUCTION
Most contemporary software applications are reactive. That is, they
engage in ongoing interactions with their environments [4, 14].
They respond to events, which may correspond to an interaction
with the outside world (e.g. a mouse click) or with other components
of the application (e.g. changes in the values of important data
attributes).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACMSE 2020, April 2–4, 2020, Tampa, FL, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7105-6/20/03.
https://doi.org/10.1145/3374135.3385278

In this paper, we consider both desktop and Web-based user
interfaces (UIs). Foust et al. [9] argue that UIs are reactive applica-
tions that are normally implemented using imperative callbacks,
which are then handled by an event-processing layer. Czaplicki and
Chong [7] note that the user interface components are arranged in
graph structures: for the Web, this graph is the Document Object
Model (DOM) and for the .Net desktop, it is the Designer class.
Unless the executions of the controls are explicitly scheduled by the
program, they are scheduled in whatever order the controls happen
to fit into the system. Normally, an event first causes its associated
component to be executed, which may raise other events that can
subsequently execute other components in the interface.

Foust [9] states that a graphical user interface (GUI) must be able
to execute complex tasks in which one user interaction can initiate
a chain of effects on other GUI components. It should be able to do
so without introducing any inaccurate or misleading displays, even
temporarily. The current approaches to the implementation of a
GUI rely on asynchronous calls. These approaches enable the GUI
to respond to a user at any time, but they make the management of
the data dependencies among components difficult.

For example, consider the .Net framework. An event causes its
associated GUI control to be scheduled for execution. The execution
of this control may have an effect upon another control in a chain
(e.g. the second control may use data that the first modifies). The
first control does not directly call the second. Instead, the first
control raises a new event, which will cause the execution of the
second control at some later point. In a complex system, effects may
appear slowly and in a different order than expected by the user.
This may result in temporarily inaccurate and misleading displays.

In an attempt to alleviate this problem, developers sometimes
employ reactive programming techniques. These can help because
theymake the data dependencies explicit and enforce them automat-
ically at runtime, However, they still do not handle dependencies
between controls.

In this research, we develop a reactive programming approach
that addresses the problem described above. Our approach (de-
scribed in Section 3) analyzes the complex relationships among
the controls, encodes the dependencies between them in a depen-
dency graph, and then uses the graph to order the updates of the
components without violating the dependency constraints. We hy-
pothesize that this approach can improve the performance of a set
of updates that users conceptualize as occurring in a single chain
and ensure a deterministic result. Whenever an event associated
with some control A is fired in the user interface, our approach uses
the graph to generate the list of other controls affected by control
A. The system then executes these controls along with control A in



the order defined by the list. Thus they appear as part of the same
update of the display.

We evaluate our approach by comparing its performance to that
of Sodium, a commonly used alternative reactive library for user
interfaces. Section 4 describes our test methodology and Section 5
analyzes the results of our tests. Section 6 relates our research to
previous work and Section 7 summarized this research and discuses
possible future work. Before we look at the implementation, let’s
examine the problem in more detail in Section 2.

2 PROBLEM DEFINITION
Graphical user interfaces are critical components of many software
products. Developers dedicate a large portion of development effort
to their implementation. Given their prominence in software devel-
opment and their role as mediators between users and computers,
GUIs must be implemented correctly.

Bishop [1] defines a GUI as a hierarchical collection of user con-
trols with each control containing its own position and attributes.
Based upon this definition, we argue that in such a collection, some
given user’s interaction with one control may initiate a wave of
changes that spreads incrementally across many other controls in
the collection. In this paper, we call this situation a chained execu-
tion. For example, a selection of a radio button in a user form may
activate or deactivate whole sections of the form, cause changes in
default values, etc. These changes may, in turn, initiate their own
waves of changes. These behaviors are mostly seen on portals and
user forms, where certain controls are locked and unlocked based
upon one or more answers.

In a typical implementation of a GUI, a user interacts with the
GUI by raising an event (e.g. clicking the mouse while the cursor
is positioned at a particular locus on the screen). If an event is
associated with a particular GUI control, we call that control the
producer of the event. Once an event is raised, it can be processed
by event handlers associated with various consumer controls in
the GUI. To associate some behavior with an event, a software
developer must encode the desired behavior in an event handler.

In this approach, as stated by Bishop [1] and Silva [21], consumer
controls are linked to events from the producer control. When the
producer changes its state, it fires an event to let its consumers
know about the change. Whenever there is an external interaction
with some control A, then control A fires the event to notify the
runtime system. The runtime system then asynchronously executes
A’s event handler whenever it is idle. If the execution of A’s event
handler affects another control B, then the control B fires a new
event and then B’s event handler is also asynchronously executed
as soon as possible.

This is an asynchronous process that breaks the chained execu-
tion into several time-consuming steps. Usually, a chained execution
requires the handling of several events, with one control executed
per event-handling cycle. In a typical GUI, it may take several cycles
for all the executions belonging in a chain of executions to propa-
gate throughout the entire user interface. A user must wait for the
entire sequence of steps to complete. The time may extend across
more than one update of the display. What the developer intended
to be a smooth and coherent experience may appear choppy and
incoherent to the waiting user.

The event-handling approach described above is organized ac-
cording to the well-known Observer design pattern described by
Gamma et al. [10]. This structure can also affect the accuracy of the
GUI and the predictability of the operations on the GUI. Salvaneschi
[19, 20] attributes these shortcomings to the loose coupling of the
GUI controls. Because events are handled asynchronously, the order
and timing of change propagation is machine-dependent. This is es-
pecially problematic in situations where many events occur within
a small time interval. The order in which events are processed may
differ from the order in which they were generated. Listener-based
asynchronous execution enables the system to keep responding to
the user while one control is still executing. However, because it
handles each execution independently from the others, it decreases
the control over the execution, which complicates the handling
of dependencies between controls. The existence of dependencies
between controls means that the execution of one control’s event
may affect the outcome of another; therefore changing the order in
which these events run may yield different outcomes.

The asynchronous nature of the Observer pattern guarantees
neither the order in which events will be handled nor that the
event will be handled at all. Events may occur in an order that does
not respect the dependencies among the controls. This traditional
approach thus can lead to misleading or inaccurate results.

Intuitively, when execution of some control A causes a change to
its state, control A fires an event saying "here is my new state". Then
some other control B with interest in and access to some portion
of A’s state can examine that portion and respond appropriately.
This is basically how an event-driven system works. From our
perspective, event-driven systems have two flaws. The first is that
there may be a considerable time lag between A’s state change and
B’s response. When a user perceives that the changes in A and B
are linked, the time lag between may make the execution seem
slow and choppy. The second flaw is that A’s state may change
a second time before B is able to examine the result of the first
change. This can cause B to miss an update or retrieve data from A
that is inconsistent with its other state. This can cause inaccurate or
misleading displays, at least temporarily. Although the event-driven
approach is appropriate in many circumstances, there are some
situations in which executing all the updates as a single atomic
chain is a more appropriate approach.

A functional reactive programming (FRP) library—such as So-
dium [2], Reactive Extensions [13], ReactiveBanana [5], or Elm
[7]—is an effective alternative to the use of the Observer pattern.
According to Czaplicki [7], the FRP paradigm treats user events as
discrete happenings on an infinite stream. Each event can be han-
dled as it comes and the programmer can fully define the system’s
reaction to each event. There are no unexpected results. Because
all data dependencies are explicit and are enforced on each event
in the stream, the FRP paradigm is closer to being a solution to the
problem described in this section than the traditional approach.

However, FRP does not fully solve the problem. Because each
execution is self-contained, the FRP paradigm does not allow one
control to impact the execution of another. Thus FRP does not well
support user interfaces with dependencies between controls. In
addition, the implementation of FRP libraries still relies on listeners.
Each control’s execution is regarded as a different point in time, a
drop in the stream of events, with each drop handled internally as



a regular event handler. So, for each control, the execution is still
handled internally as an asynchronous event.

The primary goal of this research is to define a method for imple-
menting a library for user interfaces that (a) supports dependencies
among controls as described above, (b) avoids misleading or inac-
curate visual presentations, and (c) performs competitively with
other approaches. In the following section, we describe the imple-
mentation of our library.

3 IMPLEMENTATION
This section describes our reactive approach to implementing dy-
namic user interfaces. Each control within a page or form starts
in some state and continuously interacts with the user and its en-
vironment (including other controls). Our approach analyzes the
dynamic dependency relationships among the controls and builds
a dependency graph. (For example, if a text box enables a button,
then the button depends upon the text box.) This graph forms the
basis for the reactive, dynamic user interface.

After the creation of the page, our approach creates the form’s
dependency graph by calling our CreateGraph() function on the
controls in the UI. This function examines each control’s proper-
ties, fields, and methods (its dynamic information, not its code) to
construct a list of all other controls that this control affects. If a
control in the form is intended to be reactive, it must implement
IUpdatable, an interface that includes getTarget(), getter, and
setter methods.

Then, the dependency graph is created based upon the analysis
of the DOM, the hierarchical data structure that contains all the
components available in the GUI. For every control we track the
associated dependencies, using the dependency criteria defined
for this application. The dependency graph is a directed acyclic
graph (DAG), where the nodes represent the control’s internal state
and edges between nodes represent direct dependency relations
between controls. Each node contains the control object copied
from the original UI and the control’s type.

Dependency is defined as a relation where a control A, through
one of its methods, directly modifies one of the properties of another
control B or even B itself. In such cases, B is dependent on A. Then,
we argue that when A is executed, a subsequent execution of some
control B is affected, then B must be executed so it can react to this
change.

Algorithm 1 describes the function CreateDGraph() the process
of building the dependency graph. This process executes only at
the beginning of the GUI execution.

Algorithm 1 encodes the dependency relationships between all
pairs of controls using a directed acyclic graph. Each node of this
dependency graph represents exactly one of the reactive controls
in the GUI. A node object contains a reference to the control object
in the GUI and information about it such as its type and name or ID.
If the control corresponding to some node (called the source) can
affect the execution of some other node’s control (called the destina-
tion), then the dependency graph includes a directed edge from the
source node to the destination node. However, the algorithm does
not allow the dependency graph to have cycles (which would cor-
respond to an infinite update process). Function createDGraph(),
which creates the dependency graph, is called only at the startup

ALGORITHM 1: Function CreateDGraph: Building the
Dependency Graph from the DOM
if Form or Page is not empty and is IReactive then

Q = empty queue;
Tree = Document Object Model hierarchy;
First = first control in the control list from the form or
page;
Enqueue the First in Q;
while Q is not empty do

P = Dequeue the next Control in Q;
if P is not in the Dependency Graph then

Insert P as a Node in the Graph;
end
while for each Control C in the list of targets of cont
do

if C is not empty and is IUpdatable then
if C is not in the Dependency Graph then

Insert C as a Node in the Graph;
end
if Edge between C and cont does not exist
then

if Edge do not cause a cycle then
Create a Edge in the Graph between
source P and destination C;

end
end

end
end

end
end

of the application, just after the GUI is built. In the case that a cycle
is formed, the dependency is ignored by the system, and then this
execution is handled as a regular event by the system.

Whenever a user interacts with a reactive control, the language’s
runtime system invokes that control’s event handler as usual for
event-driven systems. However, our approach modifies the event
handler to call our function UpdateGraph() before executing the
handler’s other code. This function does a depth-first search (DFS)
on the current dependency graph. If the function determines that
any control in the UI structure has been modified, deleted, or in-
serted relative to the current dependency graph, then it updates
the dependency graph accordingly. For this purpose, it compares
every control in the DOM with the previous state stored in the de-
pendency graph. Algorithm 2 shows the function UpdateDGraph()
for the reanalysis of the graph, generation of the partial graph, and
the execution of each object.

Algorithm 2 updates the dependency graph according to the
type of changes made to the GUI:

New control inserted: The algorithm adds the new control
as a new node in the dependency graph and encodes the new
dependencies that arise from this insertion as new edges in
the graph. The algorithm then recomputes the dependencies
for all components that became dependent upon the new
component.



Figure 1: Diagram of the Partial Update Order Based on the Original User Interface

Control modified: The algorithm adds edges to or deletes
edges from the dependency graph to reflect the new depen-
dencies of the modified control.

Control deleted: The algorithm deletes the corresponding
node and all its incoming and outgoing edges from the depen-
dency graph. All the dependencies for all controls affected
must be recomputed.

Once the dependency graph has been updated (if needed), the
system traverses the graph to generate an update order. It begins
with the reactive control that launches the event and considers all
controls that are directly or indirectly affected by that control. (Fig-
ure 1 illustrates how our approach defines this execution order from
the original structure.) The idea is to try to realize all the direct and
indirect effects of the launching event within one cycle of the event-
handling system. This "chain of execution" approach addresses the
problem described in Section 2 by propagating the effects quickly
through the GUI in an order that preserves the dependencies, thus
decreasing the likelihood of inaccurate or misleading displays. The
recomputation of the dependency graph does introduce some over-
head, but, by only doing this once at the beginning of a related
chain of executions, our approach seeks to minimize its impact on
system performance. In many cases, the performance gain from
executing a whole chain of controls at once should be greater than
the overhead introduced by the computation of the dependency
graph.

To enable the chain of execution behavior described above, the
form or page must call the function UpdateGraph() as the first
action in the event handler for every reactive control. Any form
that is required to have this reactive behavior must implement
the interface IReactive and provide an implementation of the
Update() function. For each control that executes, its execution
is redirected to Update(), this function identifies which control
is being executed by its type and name. The Update() function

then executes the reactive code respective to the control identified
and after the execution is over, it returns to the UpdateGraph()
execution so the next reactive execution can be handled.

We chose to develop our library using C# on the .Net framework.
The primary reason for this choice is its support for interoperability;
the same code using the same extensive library of GUI controls can
be used in both Web and desktop GUI applications. This facilitates
the testing approach described in Section 4. Another reason for the
choice of the C#/.Net platform is its advanced object-oriented fea-
tures and user-defined generic types, both of which promote code
reuse in both the library and the testing framework. A third reason
for the choice is the platform’s metaprogramming and reflection
facilities. These enable us to conveniently implement the library’s
analyses needed to build and update the dependency graph.

Along with our library, we developed a toolkit with several
controls that extend the most popular controls from the .Net GUI
framework. We developed reactive versions of Button, TextBox,
ListBox, ComboBox, Label, and RadioButton. Each reactive con-
trol consists of a class that extends the original control and im-
plements the IUpdatable interface. This interface includes getter,
setter, and getTarget() methods, which must be implemented dif-
ferently for each reactive control. The library also includes sets of
controls for the Web and for the desktop, the interfaces IReactive
and IUpdatable, the graph class, and the dependencyAnalyzer
class encapsulating Algorithms 1 and 2.

The library’s code is the same on both the Web and desktop
platforms. However, there is a flag that indicates whether or not the
library is being used on a Web-based system. Some small details of
the implementation differ between the two platforms. For example,
for the purposes of comparisons we use the attribute name for
desktop controls and the attribute id for Web controls. We handle
these differences by using conditional statements in the code.



ALGORITHM 2: Function UpdateDGraph: Reanalyze the
DOM to Update the Dependency Graph and Create a Partial
Update Queue
if Form or Page is not empty and is IReactive then

Q = empty queue;
Tree = Document Object Model hierarchy;
First = reactive control that was executed;
Enqueue the First in Q;
while Q is not empty do

Cont = Dequeue the first object in the queue;
call C.getTarget() to update the target of controls;
C1 = instance of Cont in the Graph, null if not found;
if C1 is null then

Insert Cont as a Node in the Dependency Graph;
while for each target control P in Cont do

if value of P is a control and is IUpdatable
and not null then

Insert P as a Node in the Graph;
if Edge between Cont and P do not cause a
cycle then

Create a Edge in the Graph from
Cont and P;

end
end

end
end
else

Update the value of C1 in the Graph;
while for each target control P in C1 do

if value of P is control and is IUpdatable and
not null then

P1 = object equal to P in the Graph, null
if not found;
if P1 is null then

Insert P as a Node in the
Dependency Graph;
if Edge between C1 and P do not cause
a cycle then

Create a Edge from C1 and P;
end

end
else

if value of P is null or different from
P1 then

Update the value of P1 in the
Graph;

end
end

end
end

end
Breadth-First Search start with First to produce a
valid partial Update Queue;

end
end

Balancing the load between the code that is placed as a reactive
code and the code that is placed as non-reactive code is the key
aspect to maintaining the performance and accuracy on medium-
to-large scale applications. In the following section, we describe
our test methodology.

4 TEST METHODOLOGY
To evaluate our framework, we compare it to a similar environ-
ment that uses the Sodium library [2]. Sodium is a state-of-art
Functional Reactive Programming (FRP) library implemented in
several languages (e.g. C#, C++, Java, JavaScript, and Scala). It is
based on the ideas promulgated by Elliot [8]. Sodium is a full FRP
library providing functional combinators and abstractions like cells
(which contains the value at any point of time) and streams (which
are a sequence of events that can happen any time). Blackheath
and Jones [2] argue that Sodium is a system with a strong seman-
tics. By this they mean that the functions implemented in Sodium
are based upon mathematical descriptions, delimited inputs and
outputs, known internal mechanisms, and previously defined side
effects.

Sodium provides a very good platform for FRP development.
A particularly attractive feature is the ability to compose asyn-
chronous streams using functional combinators. However, because
Sodium’s implementation is based on the Observer design pattern,
we expect it to exhibit the shortcomings described in Section 2.
Various researchers, such as Krouse [12], and Bregu et al. [3], have
identified other shortcomings of Sodium. For example, in complex
systems that integrate FRP and non-FRP code, FRP abstractions are
prone to induce errors or high latency in non-FRP computations.
This can lead to an unsafe state in applications, especially those
running on the Java Virtual Machine or the .Net framework. Also,
Sodium uses a large amount of memory to keep the underlying
contextual information about the streams, especially because they
are kept alive even when they stop to produce values.

For our comparisons, we chose to use self-completion forms
and Web pages. We implemented each form using both Sodium
and our library and then compared the performance of the two
implementations. By a self-completion form, we mean a form in
which the user supplies some initial information and then asks the
system to populate dependent fields in the form from what has
already been supplied. In each case, we constructed two different
implementations: one on a Web page and one on the desktop.

For all of our tests, we implemented an example self-completion
form that uses several reactive controls from our reactive li-
brary: ReactiveButton, ReactiveTextBox, ReactiveComboBox,
ReactiveListBox, ReactiveLabel, and ReactiveRadioButton.
We made the following reactive:

• the click events of the Button and RadioButton controls
• the textChanged properties of the textBox and Label con-
trols

• the selectChanged properties of the ComboBox and ListBox
controls

• the Visible and Active properties of all of the above con-
trols

We scattered instances of these reactive controls across the exam-
ple form (or page) and then linked them to each other. For example,



when a button is clicked, it uses the value of a text box to populate
two other text boxes with predefined values.

We use the .Net StopWatch class to measure the time spent
filling a form. This class emulates the behavior of a real stopwatch,
enabling the developer to start and stop it as needed. We start it at
the first click on the form (the first modification in the cycle) and
stop it as the last control is filled. The property Elapsed from the
class StopWatch gives the amount of time in milliseconds spent
from start to stop. The Microsoft documentation [17] of the class
StopWatch claims that the default method for counting time is
the timer ticks from the system timer. If the operating system or
hardware supports a high-resolution performance counter, then
the Stopwatch class uses that counter to measure the elapsed time.

We devised the following metrics to measure the accuracy of the
result for each box inside the form:

• Measure the length of the latency between the user action
(write something, click enter, press a mouse button) and the
desired state being seen on the screen. For this application,
we intend to measure the time needed to get the whole Web
page into the desired state from the triggering action.

• Count the number of the errors detected for a sequence
of complex interactions. By an error we mean a situation
where one of the units is executed before one or more of its
dependencies and that causes the units to use an out-of-date
or missing value. This incorrect order either causes a total
failure of the unit or a temporary mistaken state of the unit.

• Count the average number of errors on a test where errors
are detected. To measure this, we plan to determine how
many components are incorrectly ordered on a test where
are errors detected. Thenwe count the total number of errors,
count the total number of runs that reported an error, and
then compute the average.

We ran all the tests on an Intel Core i5 5300U 2.3 GHz processor
with 8 GB RAM and an Intel HD 5500 graphics card, running the
Windows 10 64-bit operating system. We used Visual Studio 2019
for development with C# 8.0 and .Net framework version 4.8. We
also used Sodium 2.0 for the Sodium tests.

5 RESULTS AND ANALYSIS
We conducted tests using three different test scenarios:

(1) A shopping list where new items (each item has a price that
the user must input) are added, updating the sum of the
prices, the sales tax (7% for Mississippi), and the total cost
with the tax included.

(2) A calculator for geometric shapes. It calculates and self-
completes the area, perimeter, and volume. It also supports
conversions from U.S. to metric units and vice versa (e.g.
from feet to meters and from meters to feet, etc.).

(3) A user form holding medical information.
We categorize our results in two ways: performance and accuracy.

Our system outperformed the Sodium system consistently across
all test scenarios. The only downside of our system was the startup
time. The implementations using our system took an average of
0.35 seconds more to start up than the Sodium applications. This
can be explained by the overhead incurred by the creation of the
dependency graph and the analysis of all the controls. This is the

most time-consuming step in the execution of our library code.
Table 1 illustrates the average startup time for each implementation
using both Sodium and our library.

Table 1: Startup Time for Each Test Scenario

Platform Scenario 1 Scenario 2 Scenario 3
Sodium 29.58 ms 30.65 ms 31.12 ms
Our Tool 51.24 ms 55.45 ms 58.28 ms

For each test, we calculated the time needed to execute the full
self-completion routine. We started the stopwatch on the first but-
ton click and stopped it when the last control had been executed.
We checked during the execution to make sure that no exceptions
or errors were raised, because, in such a case, the execution would
never reach the last control.

On average, for the three test scenarios, our implementation
completed the form in 10% to 20% of the time that the Sodium
implementation took for the same form. The average is taken for
each of the 50 executions. On each execution, the form was opened
and self-completed, then the information cleared from the form
before the execution was repeated. Figure 2 shows the average
performance graph in each of the executions for the three test
scenarios in both implementations.

With respect to accuracy, our system outperformed the Sodium
implementation. We measured accuracy by comparing the intended
final state of the self-completion form (i.e. the state of each control)
determined beforehand with the actual final state generated by the
self-completion form.

This test case seeks to highlight the effect that execution order
has on achieving a correct final display. Sodium does not consider
the dependencies in scheduling updates. Our library seeks to guar-
antee that the dependencies between controls are not violated by
the actual execution order—that only up-to-date and accurate in-
formation is used to fill in the form at all points during execution.
This works works like dominoes falling. If a later one falls before a
previous one, the inaccurate result may be perceived by an observer.

Table 2 shows the result of the first test scenario, which imple-
ments a shopping list user interface for both systems.

Table 2: Test Results for Scenario #1

Platform Total
Cycles

Total
Errors

Avg
Errors /
Cycle

Latency
in
Cycles

Sodium 50 8 2 1
Our
Tool 50 3 1 1

Table 3 shows the result of the second test scenario, which im-
plements a geometric self-completion calculator user interface for
both systems.

Table 4 shows the result of the third test scenario, which imple-
ments a metric converter user interface for both systems.

The Sodium-based implementation behaved similarly to our
library. It yielded errors after a wave of updates in 15% of the tests.



Figure 2: Average performance graph - All 3 Scenarios

Table 3: Test Results for Scenario #2

Platform Total
Cycles

Total
Errors

Avg
Errors /
Cycle

Latency
in
Cycles

Sodium 50 6 1 1
Our
Tool 50 2 1 1

Table 4: Test Results for Scenario #3

Platform Total
Cycles

Total
Errors

Avg
Errors /
Cycle

Latency
in
Cycles

Sodium 50 7 1 1
Our
Tool 50 3 1 1

Our implementation yielded errors in less then 10% of the tests. For
both, it took one or two waves on average to restore the structure
to a valid state as shown in Tables 2, 3, and 4.

With respect to performance, the graph depicted in Figure 2
shows that our framework performed the same task in 10% to 20%
of the time in milliseconds that Sodium took. The execution time
for our implementation was less than 1 second while Sodium’s
execution time was up to 6 seconds. Our implementation was sub-
stantially faster than the Sodium implementation. The performance
of the three tests by our library are near the bottom of the graph.

The tests performed by Sodium are near the top. The graphical
distance between give the magnitude of the difference between
both of the performances.

How can we explain the performance differences? Both the So-
dium and regular .Net implementations are based on asynchronous
event-handling systems as described in Section 2. Because of the
way asynchronous systems work, there is a time lag between one
action and the next. Although Sodium implements reactivity and
significantly tames the problems of asynchronous calls, the way the
systemworks behind the curtain limits its effectiveness for the kinds
of applications this research addresses. Sodium connects events
to values but not events to events. One stream does not connect
directly with another; each event happens on a single control only.
However, our system links an event directly with its dependent
events, executing one directly after the other, avoiding a significant
time lag between the event executions.

The tests described in this section demonstrate the effectiveness
of our approach. Our library outperformed Sodium, a state-of-the-
art reactive library. It alleviated the performance problems caused
by the asynchronous nature of the event-handling approach used by
.Net. Asynchronous calls are important for user interfaces because
they enable the system to continue responding to the user while
waiting for a result from a previous command. However, exclusive
use of asynchronous calls means that the system has no mechanism
for defining when a response will appear. Compared to Sodium-like
systems, our library produces a faster and smoother experience
for the class of problems it was designed to solve—applications
with dependencies between events and the need to initiate a whole
chain of executions as if it is a single execution. The tests also



demonstrate that our library can give more accurate results than
Sodium for a variety of user interface applications, while yielding
small performance improvements.

6 DISCUSSION
Most papers focus primarily on how to build programs by generat-
ing and relating different parts of the source code. Czaplicki [6, 7],
Foust et al. [9], Krishnaswami [11], Reynders et al. [18], and Sal-
vaneschi et al. [19] present reactive implementations of GUIs. The
difference between these approaches and ours is that our approach
specifically builds a dependency graph and periodically updates it.
This allows our approach to work well in dynamic environments
with high unpredictability. Foust et al. [9] describes a reactive model
that can be used to generate a GUI that satisfies the dataflow con-
straints (i.e. data dependencies between GUI components). This
work addresses the same problem as our work but from the oppo-
site direction. Czaplicki [6, 7] is developing Elm, a JavaScript-based
language for creating dynamic GUIs and Web pages. However, Elm
is evolving in a different direction, even though it was initially
based on reactivity in general.

Our previous work [15, 16] presents a dependency-based, reac-
tive approach to game development that targets Unity3D applica-
tions. That solution is similar to the one we present in this paper,
but it is hosted in a different environment and addresses a particular
problem encountered in game development for Unity3D.

The approach in this paper differentiates itself from the above
in that it aims to solve what we consider the core of the problem:
controlling the inherent delay and lack of control and inaccuracy
resulting from the use of asynchronous execution in current user
interface technologies. By restoring some synchronicity to the asyn-
chronous executions, our approach increases the performancewhile
decreasing the number of temporary inaccuracies.

7 CONCLUSIONS AND FUTUREWORK
The primary contributions of our research are as follows.

• We define a method for extracting the dependencies between
the reactive controls in a UI and using them to generate an
event-handling order that can adapt to changes in the UI’s
structure as the program executes.

• Our approach improves responsiveness and performance
and results in a more accurate behavior. It should be possible
to integrate our approach into similar systems that are based
on similar built-in object hierarchies.

• Our framework has an advantage over other reactive libraries
(e.g. Sodium) in that these frameworks do not work at a
sufficiently low level. Internally, they still rely on asynchro-
nous calls. This effectively makes a reactive system that only
works on top of the asynchronous core, which means that
whenever the execution spreads across multiple events, each
of these events is handled asynchronously.

In future work, we plan both to consider additional testing sce-
narios and to add additional tests that include the unmodified .Net
framework and several other reactive libraries (e.g. Rx.Net, Re-
act.js, and React.js + Redux). We also plan to identify and document
the common threads running through this and our previous work
[15, 16] and apply what we learn to other similar problems. Of

course, each new application may have different concepts of depen-
dency, different original structures, and different default execution
orders. A version of our reactive library should enable these appli-
cations to respond expeditiously to interactions and adapt quickly
to ever-changing environments resulting with similar gains in per-
formance and accuracy.

ACKNOWLEDGMENTS
The first author’s work was supported by CAPES, Coordination
for Enhancement of Academic Level Individuals—Brazil. We also
thank the anonymous referees for their suggestions, which helped
us improve this paper.

REFERENCES
[1] J. Bishop and N. Horspool. 2004. Developing Principles of GUI Programming

Using Views. In Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’04). ACM, Norfolk, VA, USA, 373–377.

[2] S. Blackheath and A. Jones. 2016. Functional Reactive Programming. Manning,
Shelter Island, NY.

[3] E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and K. Whitehouse. 2016.
Reactive Control of Autonomous Drones. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services (MobiSys
’16). ACM, Singapore, 207–219.

[4] K. Chandy and J. Misra. 1988. Parallel Program Design: A Foundation. Addison
Wesley, Boston.

[5] G. Chupin and H. Nilsson. 2019. Functional Reactive Programming, Restated.
In Proceedings of the 21st International Symposium on Principles and Practice of
Programming Languages (PPDP ’19). ACM, Porto, Portugal, Article 7, 14 pages.

[6] E. Czaplicki. 2012. Elm: Concurrent FRP for Functional GUIs. Senior thesis,
Harvard University, Cambridge, MA.

[7] E. Czaplicki and S. Chong. 2013. Asynchronous Functional Reactive Programming
for GUIs. In Proceedings of the 34th SIGPLANConference on Programming Language
Design and Implementation (PLDI ’13). ACM, Seattle, WA, USA, 411–422.

[8] C. Elliott. 2009. Push-Pull Functional Reactive Programming. In Proceedings of
the 2nd SIGPLAN Symposium on Haskell (Haskell ’09). ACM, Edinburgh, Scotland,
25–36.

[9] G. Foust, J. Järvi, and S. Parent. 2015. Generating Reactive Programs for Graphical
User Interfaces from Multi-way Dataflow Constraint Systems. SIGPLAN Notices
51, 3 (Oct 2015), 121–130.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, Boston.

[11] N. Krishnaswami. 2012. Semantics for Graphical User Interfaces. In Proceedings
of the 8th SIGPLAN Workshop on Types in Language Design and Implementation
(TLDI ’12). ACM, Philadelphia, PA, USA, 51–52.

[12] S. Krouse. 2018. Explicitly Comprehensible Functional Reactive Programming.
In Proceedings of the 5th ACM SIGPLAN International Workshop on Reactive and
Event-Based Languages and Systems (REBLS 2018). ACM, Boston, MA, USA, 5.

[13] K. Malawski. 2016. Why Reactive? O’Reilly Media, Sebastopol, CA.
[14] Z. Manna and A. Pneulli. 1992. The Temporal Logic of Reactive and Concurrent

Systems: Specification. Springer, Berlin.
[15] J. Marum, J. Jones, and H. Cunningham. 2019. Towards a Reactive Game Engine.

In Proceedings of the 50th IEEE SouthEastCon. IEEE, Huntsville, AL, USA, 8.
[16] J. Marum, J. Jones, and H. Cunningham. 2020. Dependency Graph-based Reac-

tivity for Virtual Environments. In Proceedings of the IEEE VR 2020 Workshop
on Software Engineering and Architectures for Interactive Systems (SEARIS). IEEE,
Atlanta, GA, USA, 8.

[17] Microsoft. 2019. .Net Framework Developer Documentation: StopWatch Class.
https://docs.microsoft.com. Accessed Feb. 26, 2020.

[18] B. Reynders, D. Devriese, and F. Piessens. 2017. Experience Report: Functional
Reactive Programming and the DOM. In Companion to the First International
Conference on the Art, Science and Engineering of Programming (Programming
’17). ACM, Brussels, Belgium, Article 23, 6 pages.

[19] G. Salvaneschi, S. Amann, S. Proksch, andM. Mezini. 2014. An Empirical Study on
Program Comprehension with Reactive Programming. In Proceedings of the 2nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). ACM, Hong Kong, China, 564–575.

[20] G. Salvaneschi, A. Margara, and G. Tamburrelli. 2015. Reactive Programming:
A Walkthrough. In Proceedings of the 37th International Conference on Software
Engineering: Volume 2 (ICSE ’15). IEEE, Florence, Italy, 953–954.

[21] J. Silva, J. Saraiva, and J. Campos. 2009. A Generic Library for GUI Reasoning
and Testing. In Proceedings of the 2009 ACM Symposium on Applied Computing
(SAC ’09). ACM, Honolulu, HI, USA, 121–128.


