
Towards a Reactive Game Engine

João Paulo O. Marum
Department of Computer and Information Science

University of Mississippi

University, MS, USA

jomarum@olemiss.edu

J. Adam Jones
Department of Computer and Information Science

University of Mississippi

University,MS, USA

jadmj@acm.org

H. Conrad Cunningham
Department of Computer and Information Science

University of Mississippi

University, MS, USA

hcc@cs.olemiss.edu

Abstract—Developing new ways to improve game engines
and enabling the creation of more accurate experiences is an
important issue, especially for real-time applications such as
Virtual Reality. As this technology has evolved, the gap between
rendered frames has become smaller and environments have
become more complex. As a result, mistakes can arise with
regard to order-dependent events. Often these mistakes result in
a temporarily unstable state in the environment, and may not be
visible because of the time lapse between rendered frames. These
errors are compounded by events which are not directly driven
by the game engine, such as user movement and input. There is a
continuous interaction between the user and the environment and
the precise actions that user may take often cannot be predicted
a priori.

Reactive programming is a still evolving paradigm that
has been employed in many different applications such as
robotics and user interfaces. Our research presents a reactive,
dependency-based framework for game engines using associ-
ations between components to establish the order in which
they update. Automated tests were developed to evaluate the
framework and compare its performance to Unity3D’s default
update structure as well as an existing reactive programming
framework.

Index Terms—reactive programming, game engines, depen-
dency graph, script

I. INTRODUCTION

Our research presents a reactive, dependency-based frame-

work for game engines. The reactiveness is defined by de-

tecting the dependencies between components and encoding

them in a dependency graph. These dependencies are then

flattened into a priority queue, setting the order in which the

components’ update functions should be called by the reactive

component.

This project’s practical objective is to guarantee the exe-

cution order of the components’ update functions on script-

based game engines without degrading performance while

preserving the correctness and increasing the predictability of

order-sensitive operations.

The correctness and predictability come from the ability to

accurately determine the chain of reactions that occurs after a

given action is taken by the user or by a non-human actor in

the system. This is guaranteed because the chain of reactions

completes within a single update cycle with no side effects.

The final state of the tree is deterministic allowing predicted

results to be compared with the system’s performance.

We test our framework using Unity3D [1], a commonly

used game engine. It does not currently allow programmers

to specify the update order for the components within a game

at runtime. As a result, programmers must take appropriate

countermeasures to maintain accurate game states. For exam-

ple, they can ignore updates that occur in the wrong order or

that use outdated inputs since these would result in incorrect

game states.

The predictability and determinism of the internal interac-

tions between components in game engines are especially im-

portant for graphical, order-sensitive systems that may require

high accuracy, such as simulations of mathematical, physical,

and chemical interactions. It is necessary for interactions in

the simulated world to occur in the same order as they would

in the real world.

In this research, we built a framework as a component

to be embedded as a script at the root of the game tree.

To evaluate the effectiveness of this approach, we measure

how well the proposed solution guarantees the accuracy and

predictability of simulations, mathematical calculations, and

logical evaluations.

Using a small platform as a proof of concept, we have tested

our approach with a wide variety of scene complexities. These

include mathematical calculations and a small shooting game.

We compare the results achieved for these scenarios to the

results achieved by similar applications built on UniRx [2],

the reactive extension for Unity3D.

II. BACKGROUND

A. Reactive Programming

Bertoluzzo [3] defines reactive programming as a program-

ming paradigm that focuses on how the software should react978-1-7281-0137-8/19/$31.00 ©2019 IEEE

Fig. 1. Difference between imperative and reactive programming [4].

to changes in the system’s state. A change may be caused

by either an internal mechanism—such as some calculation

setting the value of a variable—or by a user-initiated external

event.

Westberg [4] describes this approach as follows: “When the

value of a specific cell is changed, all the dependent cells to

that cell are instantly updated as a function of that change.

This type of model makes it possible to have sequences of

dependent values and events. If object C is dependent on

B, while B is dependent on A, then, if A changes, B is

reevaluated, followed by C. Changing object A creates a chain

of reaction.” A change in the value of A causes B to be

recomputed based on A’s new value. A change in the value

of B, in turn, causes C to be recomputed because of the

changes in the value of B. The changes thus ripple through the

entire graph of dependencies. This is the familiar computing

paradigm used in spreadsheet software. It gives a push-based

or event-driven model of computation, where the environment

rather than the program determines the speed at which the

program interacts with the environment. Figure 1 illustrates

this behavior.

Vasiv [5] characterizes the general class of programming

problems that are solvable by reactive programming as prob-

lems where there is a continuous interaction between the

program and the environment. In this class of problems, any

meaningful event or interaction depends on the user’s choices;

the event thus cannot be predicted beforehand.

One way to achieve reactive programming is to manage the

data dependencies. In this work, we represent the data depen-

dencies by encoding them in a directed acyclic graph (DAG),

where the nodes represent individual states (i.e. variables) and

edges represent direct dependencies between states.

At the start of the application, the framework creates the

dependency graph. It then traverses this graph whenever a

change occurs to any data item. It continues traversing the

graph as long as changes are propagated from one node to

others. When it stops, the graph remains stable until the next

chain of reactions.

The benefit of reactive programming becomes more evident

in applications that are highly interactive with a multitude of

user-interface events that can change data values. Applications

that can be improved by the reactive approach include robotics,

autonomous vehicles or drones, virtual reality applications,

and web and mobile applications.

B. Game Engines and Game Development

Sherrod [6] describes the game engine as “a framework

comprised of a collection of different tools, utilities, and

interfaces that hide the low-level details of the various tasks

that make up a video game”.
Cowan [9] and Lavalle [8] summarize the main features pro-

vided by several game development frameworks. The features

include:

• Scripting—controlling the game objects and events

• Rendering—generating the 3D scene with sufficient speed

and accuracy

• Animation—moving and deforming objects (such as char-

acters)

• Artificial Intelligence—carrying out behaviors normally

requiring ”intelligence” (e.g. path finding)

• Physics—depicting realistic physical behaviors in the

scene (e.g. when objects collide or when force is applied

to an object)

• Audio—rendering sounds to have an appropriate spatial

location withing the environment

• Networking— provide online interaction with other hu-

man actors inside the environment by sharing information

through a network

The code that provides each functionality is used along with

the others to produce the finished game. A graphical user

interface (GUI) is commonly provided by the game engines

which ties together several editors. Cowan [9] and Lewis and

Jacobson [7] lists the tools commonly included within the

game engines:

• Scene or Level Editor—enables creation and modification

of virtual 2D or 3D ”worlds”

• Script Editor—supports customization of object behaviors

by attaching scripts to the objects

• Material Editor—enables creation and modification of

object surfaces and visual effects by combining Shader

code and images

• Sound Editor—supports combining sound settings with

filter and other general effects provided by the sound

engine

A commonly used game engine is Unity3D [1], which is

described by Hocking [10] as “a powerful graphics platform

and game engine that became widely used in the field because

it provides physics simulation, normal maps, screen space am-

bient occlusion, dynamic shadows and many other professional

graphics resources.” Many other game engines boast such

features, but Unity3D has three main advantages over other

contemporary game development tools, as described by Smith

and Queiroz [11]: a productive visual workflow, support for

cross-platform development, and a modular component system

used to construct game objects.
Unity3D uses component-oriented programming. It attaches

scripts to objects as components. Thus one object can be

many different things (i.e. has many inheritances), giving pro-

grammers the ability to mix and match functionality on every

game object. Every script provides programmable aspects for

the application, modelling any desired behaviour that could

be attached to one or more game objects. Every script adds

functionality to the game object. Cube objects have a Cube

component, Sphere objects have a Sphere component, and so

on.

Games in Unity3D are composed of multiple Game Ob-

jects that contain meshes, scripts, sounds, or other graphical

elements such as Lights. Unity3D event system execute every

script by calling special functions that every script contains,

even implicitly. Once a function has finished executing, ex-

ecution is passed back to Unity3D. Unity3D uses a naming

scheme to identify which function to call for a particular event

during gameplay.

Unity3D does not define an explicit order of execution.

It executes components in reverse order of their creation or

modification. It executes the most recently created or modified

objects first, because that is how the objects are placed in

the self-generated metadata used by the compiler to determine

contextual information about the scripts. If the game requires

a specific update order, the programmer can use the Inspector

to order the script execution. But the order must be known

beforehand. It must be changed manually before execution

begins; it cannot be changed during execution. That is an error-

prone and time-consuming method that seems inappropriate

for a complex animation with many objects. Unity3D lacks the

capability to programmatically change the component update

order at runtime.

In its only reference to this issue, the Unity3D manual

[1] states: “By default, the Awake, OnEnable and Update

functions of different scripts are called in the order the scripts

are loaded (which is arbitrary). However, it is possible to

modify this order using the Script Execution Order settings.”

However, what it does not say is in which order a number of

Update functions are executed. This can be important as each

update can change things that then affects the next update.

There is no defined order to Update functions. If a

specific order is needed, then programmers must implement

it themselves. For example, the program could create an array

of objects and, from a single Update function, call functions

on those objects in the array in order or could create a single

”game manager” object that updates the other game objects in

the scene in the specific order.

III. RELATED WORK

In the previous section, we identified the need to control

the order that updates are performed if we wish to create an

accurate simulation of the real world. Many other problems

have similar characteristics. They must perform tasks in a

particular order known beforehand (such as according to a

dependency graph) or they must modify the order dynamically

according to the stimuli received or generated. Researchers

are tackling these problems using using reactive programming

in areas such as robotics [12] [13] [14], chatting AI bots

[15], autonomous drones [16] or vehicles [17], graphical user

interfaces (web or desktop based) [18] [19] [20] [21] [22],

biology-emulating behavior systems [23], telecommunications

[24] arts [25]), and education [26].

Czaplicki [27] and Blackheath [28] set the background

on reactive programming and examined the development of

reactive libraries (Elm and Sodium) from scratch. Furness [29]

examines the theoretical aspect of the development and design

of virtual environments.

Some researchers have also looked at how to use reactive

programming to improve the graphics platform with interesting

results. Blom and Beckhaus [30] examined the development

of a system called Functional Reactive Virtual Reality. This

system implements a Haskell library that inserts a reactive

layer between the user interface and the virtual environment

manager. However, this work is no longer contemporary and

does not address the level of complexity seen in modern game

engines.

The general characteristics of the research examined in this

section are that the interactions between the user and the

system are unpredictable, and accurate results require that

various internal state changes occur in a correct order. Every

decision must be taken with the latest available information

from the inputs.

IV. IMPLEMENTATION

Our research presents a reactive, dependency-based frame-

work for game engines using associations between compo-

nents to establish the order in which they update. This section

describes our implementation. Figure 2 shows the overall

operation of the framework.

Fig. 2. Functionality of the framework on the game tree.

The first step in Algorithm 1 is to perform a Depth-First

Search (DFS) from top to bottom on the game scene. The

algorithm determines the dependencies for each component

in each game object. A dependency is a relationship between

two node. If component A attached to a node has an attribute

that references component B, then component A depends on

component B.

For every game object, when a new node is inserted, all

the components attached to the node are inserted into the

dependency graph. If component Y depends on component

X, then a direct edge from Y to X is inserted into the graph.

The is only done once when the game starts up.

For every new edge created, the algorithm ensures that no

circular dependency exists. A circular dependency would result

in an infinite loop in the Depth-First Search and, hence, in the

update process.

Algorithm 1 Build a Dependency Graph

Q = empty queue;

Tree = hierarchy of game objects;

Root = root of the game tree;

Enqueue Root on Q;

while Q is empty do
Obj = Dequeue the next object in Q;

Enqueue in Q all the child objects of Obj;

Populate list L with all the components of obj in Q;

while There is an unchecked Component C in List L do
if c is not in Unity3D Framework or Net Framework

then
Insert c as a Node in the graph;

while There is an unchecked Field or Property P

in the Component C do
if P is a component of a programmer type and

value of P is not null then
Insert P as a Node in the graph;

if edge between c and P do not cause a

cycle then
Create a edge in the graph between

node c and node P;

end

end

end

end

end

end

The result is a graph consisting of a list of nodes, where

each node contains the component object, its game object

information, and its type information. The edges are composed

of a destination node and a source node.

The order in which the components are updated is defined

by performing a DFS that will result in the definition of the

component queue and its update process in every frame.

Once for every frame, the algorithm rechecks the graph

using a DFS as in the start-up routine. However, this time

it compares every component in the scene graph with the

previous state stored in the dependency graph.

If a new object is in the scene, the algorithm adds a

new node to the graph. It computes the new component’s

dependencies and, if some other component depends on the

new component, the addition causes a recomputation of that

component.

Algorithm 2 Update a Dependency Graph

Q = empty queue;

Tree = hierarchy of game objects;

Root = root of the game tree;

Enqueue Root on Q;

while Q is empty do
C = Dequeue the next object in Q C1 = object that is equal

to C in the Dependency Graph, null if none is found if C1

is null then
Insert C1 as a Node in the graph;

while There is an unchecked Field or Property P in

the Component C do
if P is a component of a programmer type and

value of P is not null then
Insert P as a Node in the graph;

if edge between c and P do not cause a cycle

then
Create a edge in the graph between node

c and node P;

end

end

end

end

else
while There is an unchecked Field or Property P in

the Component C1 do
if P is a component of a programmer type and

value of P is not null then
P1 = object that is equal to C in the Depen-

dency Graph, null if none is found if P1 is null

then
Insert P as a Node in the graph;

if edge between C1 and P do not cause a

cycle then
Create a edge in the graph between

node c and node P;

end

end

else
if value of P1 null or is different from P

then
Update the value of P as a Node in

the graph;

end

end

end

end

end

end

In case of a change in the object in the scene (like items on

the floor being picked by the player or items being released

by the player), the algorithm updates the dependency graph

and recomputes all dependencies, including adding the new

dependencies.

For every node that changes, only the nodes depending on

it are subsequently changed. After this step is done, a new

update order is recomputed using a DFS on the dependency

graph and then all the components are called in order.

If one component has several other components depending

upon it, it is called as soon as possible after the updates of all

components upon which it depends.

A component’s updated value remains available to be used

by all other components that depend on it. When a component

is called to be updated, the algorithm determines whether all

its dependencies are solved and then the component updates

using the latest values.

The algorithm that creates and updates the graph re-

quires that any script inserted must implement the interface

IUpdatable. This interface specifies that any script that

implements it must have a FakeUpdate function. This

function is called instead of the default Update function.

All functionality to be handled in a reactive manner must be

included in this function.

Thus the Unity3D internal classes, the .Net framework

classes, and other scripts that the developer does not want to

treat reactively are not in the queue. They neither are triggered

by changes in other scripts nor trigger changes in other scripts.

This avoids unnecessary and time-consuming calculations. In

the root of the game tree, we attach the dependency graph

manager. It creates the dependency graph, analyzes changes,

determines the best order for the updates to occur, and triggers

the FakeUpdate functions.

The components that we want to monitor implement the

interface IUpdatable. Using IUpdatable, the manager

can track the changes in components. When a change occurs

in any component, the manager can propagate the change to

all that component’s dependencies, which occur later in the

queue. These components will then be updated subsequently

in the update cycle.

Theoretically speaking, every frame represents an instant in

an infinite time stream. For every instant, each reactive object

has an observable state.

V. TESTING SETUP

For the development and testing of our framework, we chose

the following software tools:

• Unity3D version 2018.2.2. We based our framework on

the October 10, 2018 release of the Unity3D game engine.

• Unity3D Standard Assets. We selected 3D models from

the Standard Assets package included with the Unity3D

installation. The package includes a Prototyping folder

that holds 3D models, materials, and prefabs to aid in

prototyping 3D levels.

• Visual Studio Community 2017. We developed the soft-

ware using the Microsoft Visual Studio Community 2017

edition. It is an Integrated Development Environment

(IDE) that supports several different programming lan-

guages. We integrated the use the Visual Studio Tools

for Unity3D with Unity3D’s editor. This enabled us, for

example, to receive debugging information from Visual

Studio when working in the Unity3D editor.

• C#. We wrote the Unity3D “scripts” (i.e. programs) in

C#, the primary programming language supported by

Unity3D. C# is a multi-paradigm programming language

with a syntax similar to C++, and Java. It is a common

language used for game development in industry.

For purposes of comparison, the tests were also conducted

on two other arrangements besides our framework:

• Unity3D alone

• Unity3D plus UniRx

UniRx is an initiative that seeks to implement reactive

programming in game engines and graphics platforms. As

described on its website [2]: “UniRx (Reactive Extensions

for Unity3D) is a re-implementation of the .NET Reactive

Extensions”. Reactive extensions are libraries developed for

several languages and technologies with the goal of imple-

menting the principles laid out in the Reactive Manifesto.

The Reactive Manifesto [31] is a document that states the

theoretical background, benefits, and practical characteristics

that any reactive system implementation should exhibit.
The UniRx library consists of reactive asynchronous and

event-based programmable artifacts using observable collec-

tions and LINQ-style query operators. The library extends the

Unity3D object set, representing events such as sensor data or

game loops as reactive sequences. UniRx was motivated by

the desire to resolve web connection issues. UniRx thus has a

limited scope and is tightly integrated with the .Net framework.
We developed a set of automated tests using both graphical

and non-graphical applications. The tests include operations

to delete, modify, and add components and game objects

throughout the execution.
For the first test scenario, we randomly build trees that rep-

resent mathematical expressions. The task of the computation

is to determine the current value of the expression. A leaf

of the tree represents a numerical constant. An internal node

represents a binary operator that combines the values of its

two children. The diagram shown in Figure 3 illustrates the

way the game tree is constructed to emulate a calculation.
The result of node A depends on the availability of the

values of its two child nodes A1 and A2. A1 also depends

on the values of its two children A11 and A12. So an order

in which the updates are done correctly is A11 → A12 →

A1 → A2 → A. Any flow that executes A before A1 or A2

would cause the calculation to be done with an outdated or

nonexistent value, which would raise an error.
In our tests, after every update cycle we compare the value

of each node with its expected value, which can be computed

beforehand.
Throughout the execution of the tests, we simulate possible

real-world changes to the game scene by inserting, deleting,

or modifying nodes. After the next update cycle following

a modification, the test compares the result of evaluating the

expression with the expression’s expected value. We repeat the

test several times between modifications to ensure that, with

no modifications, the result remains stable.

Fig. 3. Diagram of the test performed.

We also created another test scenario—a scene in which a

player can walk around, collide with walls, look for targets,

and shoot a target. We adapted this scenario from an example

in the Standard Assets and included fully functional scripts.
We applied the same methodology to this test scenario that

we used in the first scenario above. In this scenario, we change

components and game objects throughout the execution. For

example, at some point in the test, a wall that did not

previously react to shots now receives the component that

causes it to start reacting to shots, and vice versa.

VI. RESULTS AND ANALYSIS

The test configuration used in this work is a three-way

comparison between our framework on top of the Unity3D,

Unity3D by itself, and UniRx on the top of the Unity3D.
Performance-wise, the results achieved do not show any

improvement or perceptible increase in the time spent on the

update cycle taking in consideration our framework against

UniRx or against Unity3D. All of them performed with no

considerable difference in the average time for an update.

The use of our framework does not implicate a severe loss

of performance.
On the results related to reactiveness, which is the capacity

to create a stable experience that obtains the correct and pre-

dicted answer even on unpredictable situations, our framework

performed much better than UniRx and Unity3D with default

functionality.
In the UniRx implementation, we observed episodes of

miscalculation in only 20% of the executions of the original

scenario. However, the miscalculation episodes increased to

80% when changes were made during the execution. These

episodes involved use of outdated or nonexistent values and

always occurred after a modification of the game tree. During

the period of instability, UniRx performed erratically, produc-

ing two possible situations:

• the system crashed with a null exception or a type-related

exception. (The system was expecting a value of a certain

type and found a value of another type or found nothing.)

• the system totally ignored the new/modified node.

Though UniRx was designed to reactively handle streams of

input, it is not reactive to changes in objects themselves. This is

a significant limitation when developing virtual environments

or games where objects, users, or other components may

arbitrarily enter or leave an environment. Consequently, UniRx

would only be able to handle such events if they were known

to occur ahead of execution.
In the default Unity3D implementations, we observed

episodes of miscalculation in 90% of the cases in the original

scenario. It required several updates (one update cycle for each

dependency issue) until all the values were up-to-date.
The only situation where Unity3D carried out all the cal-

culations correctly is when a test adds nodes to the tree in

the precise order they need to be calculated. The Unity3D

Event System organizes events in an arbitrary order. As a

result, when a component updates there is no guarantee that

the values it uses are up-to-date (as described in the section on

game engines). It then takes several update cycles for a single

chain of changes to spread fully through the game tree.
We also observed such behavior when changes were made

to the game tree. Unity3D took several seconds to stabilize and

start using the updated game tree. It inserted the new/modified

node at the end of the update queue. When changes were in-

serted, we observed that the system produced miscalculations

in 95% of the cases. The calculation only worked correctly

when a change was purposely made to the root of the tree by

modifying or replacing it.
In the implementation using our framework, we observed

episodes of miscalculation in only 15% of the cases. These

were mostly in the initial update cycles and update cycles

occurring while a change was being made. Relative to the

other implementations, our framework embraced the changes

as they occurred, introduced them into the dependency graph,

responded to the changes quickly, and then reached stability

faster than the others.
Why was there such a difference between UniRx and our

framework? UniRx was initially developed to handle network

communication and asynchronous operations. It was not de-

signed for environments that can change structurally from one

frame to another. When a user sends a request to a server,

UniRx expects the response to come back to the same game

structure that sent the request. When this behavior is disrupted,

UniRx considers it an error, or at least a misbehavior, of the

system. It either triggers an exception or computes an incorrect

answer.

We developed our framework to take this issue into account.

Our aim is to tackle this issue in particular and not deal

with general asynchronous operations. Thus our framework

does not currently satisfy all the expectations of the Reactive

Manifesto. It should be enhanced and expanded to do so in

the future.

VII. CONCLUSION

In a complex interaction among multiple objects, transi-

tional turbulence often occurs. Multiple cycles may be neces-

sary to update all the components and reach the desired final

result. In many situations, this transitional turbulence causes a

temporary inconsistency in games, simulations, and animation.

Fortunately, these inconsistencies are often hidden from the

users because of the difference between logical update cycles

and rendering cycles.

This research sought to determine what effect it would have

to reorder the updates according to the dependency relation

among the components, that is, to carry out the update of a

component only when all components that affect it have been

fully updated. In particular, this research sought to improve

the update process by using a reactive programming approach.

We hypothesized that the increased control of the update

cycle would improve responsiveness to changes in the game

tree and ensure determinism of the result. To accomplish

this, we developed a reactive framework built around the

dependency relationships among the nodes of the game tree.

We developed algorithms for constructing and maintaining the

graph, flattening it to a priority queue, and using the priority

queue to schedule the updates of components so that they

completed in one cycle.

The tests we performed show that our framework is ef-

fective. The framework mitigates much of the transitional

turbulence and produces a smoother experience when inter-

actions occur among multiple objects. It fares well when

compared with the existing Unity3D event system and UniRx,

an existing reactive framework for Unity3D. Because our

system is tailored to this problem, it effectively propagates

changes through the entire game tree thus increasing the

system’s adaptability to changes among objects within the tree.

UniRx is still the general solution for dealing with asyn-

chronous operations in Unity3D. It is still the best solution

for general cases involving asynchronous calls. The solution

proposed in this paper was more finely developed for the case

claimed: to coordinate and enforce that operations occur in

a given sequence, spread modifications out through the game

tree completely by the end of the update cycle, and respond

promptly and correctly to any structural modifications of the

environment.

The same key concepts applied in this paper can also

be applied to other applications, including web and mobile

interfaces. An underlying reactive framework, such as the

one described in this paper, can enable these applications to

respond expeditiously to interactions, adapt quickly to an ever-

changing environment, and align the internal mechanisms to

construct a production line of components.

ACKNOWLEDGMENT

The first author’s work was supported by CAPES, Coordina-

tion for Enhancement of Academic Level Individuals—Brazil.

REFERENCES

[1] Unity - Manual: Unity Manual. [online] Docs.unity3d.com. Available at:
https://docs.unity3d.com/2019.1/Documentation/Manual/ Last accessed
in 8 February 2019.

[2] Y. Kawai. Reactive extensions for Unity3D. Available at:
https://github.com/neuecc/UniRx. 2014. Last Accessed in 8 February
2019.

[3] E. Bertoluzzo. The essence of reactive programming: A theoretical
approach : Dissertation, online; last accessed in November 23, 2018.

[4] J. Westberg. Unirx and unity 5: Working with c and object-oriented
reactive programming : Dissertation, online; last accessed in November
23, 2018.

[5] M. Vasiv. Functional reactive programming for iOS with Objective-
C and Reactive Cocoa: Bachelor’s thesis, online; last accessed in
November 23, 2018.

[6] A. Sherrod. 2007. Ultimate 3D game engine design & architecture.
Charles River Media, Boston, USA.

[7] M. Lewis, and J. Jacobson. 2002. Game engines in scientific research.
45 (01 2002), 27–31.

[8] S. M. LaValle. Virtual Reality, Cambridge University Press, Cambridge,
UK. 2017.

[9] B. Cowan, and B. Kapralos. 2014. A Survey of Frameworks and
Game Engines for Serious Game Development. In 2014 IEEE 14th
International Conference on Advanced Learning Technologies. 662–664.
https://doi.org/10.1109/ICALT.2014.194

[10] J. Hocking. Unity in Action, Manning Publications Co., New York, USA.
2015.

[11] M. Smith, and C. Queiroz. Unity 5.x Cookbook, Packt Publishing,
Birmingham, UK. 2015.

[12] A. Kirsanov, I. Kirilenko, and K. Melentyev. 2014. Robotics reactive
programming with F#/Mono. In Proceedings of the 10th Central and
Eastern European Software Engineering Conference in Russia (CEE-
SECR ’14). ACM, New York, NY, USA, , Article 16 , 5 pages.
DOI=http://dx.doi.org/10.1145/2687233.2687249

[13] D. Soshnikov, and I. Kirilenko. 2014. Functional reactive programming:
from natural user interface to natural robotics behavior. In Proceedings of
the 10th Central and Eastern European Software Engineering Conference
in Russia (CEE-SECR ’14). ACM, New York, NY, USA, , Article 9 , 5
pages. DOI=http://dx.doi.org/10.1145/2687233.2687255

[14] C. Helbling, and S. Z. Guyer. 2016. Juniper: a functional reactive
programming language for the Arduino. In Proceedings of the 4th Inter-
national Workshop on Functional Art, Music, Modelling, and Design
(FARM 2016). ACM, New York, NY, USA, 8-16. DOI: https://doi-
org.umiss.idm.oclc.org/10.1145/2975980.2975982

[15] G. Baudart, M. Hirzel, L. Mandel, A. Shinnar, and J. Siméon. 2018.
Reactive chatbot programming. In Proceedings of the 5th ACM SIG-
PLAN International Workshop on Reactive and Event-Based Languages
and Systems (REBLS 2018). ACM, New York, NY, USA, 21-30. DOI:
https://doi-org.umiss.idm.oclc.org/10.1145/3281278.3281282

[16] E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and K. Whitehouse.
2016. Reactive Control of Autonomous Drones. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys ’16). ACM, New York, NY, USA, 207-219. DOI:
https://doi-org.umiss.idm.oclc.org/10.1145/2906388.2906410

[17] B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito. 2017. Vehicle
Platooning Simulations with Functional Reactive Programming. In Pro-
ceedings of the 1st International Workshop on Safe Control of Connected
and Autonomous Vehicles (SCAV’17). ACM, New York, NY, USA, 43-
47. DOI: https://doi-org.umiss.idm.oclc.org/10.1145/3055378.3055385

[18] N. R. Krishnaswami. 2012. Semantics for graphical user
interfaces. In Proceedings of the 8th ACM SIGPLAN
workshop on Types in language design and implemen-
tation (TLDI ’12). ACM, New York, NY, USA, 51-52.
DOI=http://dx.doi.org.umiss.idm.oclc.org/10.1145/2103786.2103794

[19] Y. Xie, H. Hofmann, X. Cheng, et al.: Reactive programming for
interactive graphics.Statistical Science 29, 2 (2014), 201–213. 2

[20] G. Salvaneschi, S. Amann, S. Proksch, and M. Mezini. 2014.
An empirical study on program comprehension with reactive pro-
gramming. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE
2014). ACM, New York, NY, USA, 564-575. DOI: https://doi-
org.umiss.idm.oclc.org/10.1145/2635868.2635895

[21] S. Van den Vonder, F. Myter, J. De Koster, and W. De Meuter.
2017. Enriching the Internet By Acting and Reacting. In Com-
panion to the first International Conference on the Art, Sci-
ence and Engineering of Programming (Programming ’17), Jen-
nifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.).
ACM, New York, NY, USA, Article 24, 6 pages. DOI: https://doi-
org.umiss.idm.oclc.org/10.1145/3079368.3079407

[22] B. Reynders, D. Devriese, and F. Piessens. 2017. Experience Re-
port: Functional Reactive Programming and the DOM. In Com-
panion to the first International Conference on the Art, Sci-
ence and Engineering of Programming (Programming ’17), Jen-
nifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.).
ACM, New York, NY, USA, Article 23, 6 pages. DOI: https://doi-
org.umiss.idm.oclc.org/10.1145/3079368.3079405

[23] J. Fisher, D. Harel, and T. A. Henzinger. 2011. Biology as reactiv-
ity. Commun. ACM 54, 10 (October 2011), 72-82. DOI: https://doi-
org.umiss.idm.oclc.org/10.1145/2001269.2001289

[24] K. Toczé, M. Vasilevskaya, P. Sandahl, and S. Nadjm-Tehrani. 2016.
Maintainability of functional reactive programs in a telecom server
software. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing (SAC ’16). ACM, New York, NY, USA, 2001-2003.
DOI: https://doi-org.umiss.idm.oclc.org/10.1145/2851613.2851954

[25] M. C. Negrao. 2018. NNdef: livecoding digital musical instruments in
SuperCollider using functional reactive programming. In Proceedings of
the 6th ACM SIGPLAN International Workshop on Functional Art, Mu-
sic, Modeling, and Design (FARM 2018). ACM, New York, NY, USA,
1-8. DOI: https://doi-org.umiss.idm.oclc.org/10.1145/3242903.3242905

[26] A. Cleary, L. Vandenbergh, and J. Peterson. 2015. Reactive Game
Engine Programming for STEM Outreach. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education
(SIGCSE ’15). ACM, New York, NY, USA, 628-632. DOI: https://doi-
org.umiss.idm.oclc.org/10.1145/2676723.2677312

[27] E. Czaplicki, and S. Chong. Asynchronous Functional Feactive
Programming for GUIs. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation(NewYork, NY, USA, 2013), PLDI ’13, ACM,
pp. 411–422. URL:http://doi.acm.org/10.1145/2491956.2462161,
doi:10.1145/2491956.2462161.

[28] S. Blackheath, and A. Jones. 2016. Functional Reactive Programming.
Manning Publications Co., New York, USA.

[29] T. A. Furness, and W. Barfield. Virtual Environments and Advanced
Interface Design, Oxford Publications, Oxford, UK. 1995.

[30] K. J. Blom, and S. Beckhaus. Supporting the creation of dy-
namic,interactive virtual environments. InProceedings of the 2007 ACM
sym-posium on Virtual reality software and technology(2007), ACM,
pp. 51–54.

[31] ”ReactiveX - Introduction”.[online] ReactiveX.io. Available at:
http://reactivex.io/intro.html Last accessed in 12 February 2018.

[32] C. M. Elliott. 2009. Push-pull Functional Reactive Program-
ming. In Proceedings of the 2Nd ACM SIGPLAN Symposium
on Haskell(Haskell ’09). ACM, New York, NY, USA, 25–36.
https://doi.org/10.1145/1596638.1596643

[33] G. Foust, J. Jarvi, and S. Parent. Generating reactive programs for
graphical user interfaces from multi-way dataflow constraint systems,
SIGPLAN Not., 51(3), 2015, 121–130,doi:10.1145/2936314.2814207.

[34] D. Kraeutmann, and P. Kindermann. Functional reactive programming
and its application in functional game programming.

[35] I. Pembeci, H. Nilsson, and G. Hager. 2002. Functional reactive
robotics: an exercise in principled integration of domain-specific
languages. In Proceedings of the 4th ACM SIGPLAN Interna-
tional Conference on Principles and practice of Declarative Pro-
gramming (PPDP ’02). ACM, New York, NY, USA, 168-179.
DOI=http://dx.doi.org.umiss.idm.oclc.org/10.1145/571157.571174

[36] K. Shibanai, and T. Watanabe. 2018. Distributed functional re-
active programming on actor-based runtime. In Proceedings of
the 8th ACM SIGPLAN International Workshop on Programming

Based on Actors, Agents, and Decentralized Control (AGERE
2018). ACM, New York, NY, USA, 13-22. DOI: https://doi-
org.umiss.idm.oclc.org/10.1145/3281366.3281370

