Javain the Box:
Implementing the BoxScript Component Language

Yi Liu
Dept. of EE and Computer Science
South Dakota State University
Brookings, SD 57007
1-605-688-5280

yi.liu@sdstate.edu

ABSTRACT

BoxScript is a Java-based language that suppatsamponent-
oriented programming paradigm. BoxScript introduces
composition strategy and type structure to supperxd main
properties of component-oriented programming, casitjgmality
and flexibility. This paper briefly introduces thifendamental
concepts of BoxScript and then describes how BadgScr
components (i.e., boxes) are realized as clusteinterrelated
Java interfaces, classes, and packages.

Categories and Subject Descriptors
D.3.3 [Programming Language$: Language Constructs and
Features frameworks, modules, packages.

General Terms
Design, Languages.

Keywords
Component-oriented language,
structure, Java implementation.

BoxScript, interfacentime

1. INTRODUCTION

Component-oriented programminCOP) is a programming
paradigm that seeks to build software systems guicnd
reliably by assembling groups of independently tmgved
software components. The most used definitionoofiponent is
given by Szyperski [7], who defines a software comgnt as
follows:

A software component is a unit of composition wih
contractually specified interface and explicit it
dependencies only. A software component can beogegl
independently and is subject to composition bydtparties.

As shown in Figure 1, the internal design and imm@etation of a
software component are hidden behindpitsvidedandrequired
interfaces A component implements its provided interfaced an
makes them available for use by other components.
implementing its functionality, a component may usther
components only through its required interfaces. rifigu

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa flist page. To copy
otherwise, or republish, to post on servers ordgistribute to lists,
requires prior specific permission and/or a fee.

ACMSE'07 March 23-24, 2007, Winston-Salem, North Carqlld8A.
Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

H. Conrad Cunningham
Dept. of Computer and Information Science
University of Mississippi
University, MS 38677
1-662-915-5280

cunningham@cs.olemiss.edu

assembly, a required interface of a component ieistonnected
to a matching provided interface of another compond&hus
components depend upon the specifications of gted, not
upon the specifications of other whole components.

Components are strongly encapsulated and compuaaitid his
leads to two key properties of component-orientedy@mming—
compositionalityandflexibility.

provide required provide required
interface
inner
component | component 1 Component 2

Figure 1. Components and their interconnections

Compositionality is the most distinctive propertly camponent-
oriented programming. An application is built bysasbling

components, each of which is sufficiently indeperndeom the

others to allow it to be developed individually maut knowledge
of the others’ implementations. Composing such camepts into
a system requires the selection of suitable commsnand the
right strategies for assembly. When a subsysterasg&mbled
from components, its behavior should be predicthbked on the
behavioral specifications of the components.

The flexibility property of a component-orientedsgsm means
that adapting the system to changing requirementsi difficult.

It can be accomplished by replacing, adding, orondng a few
components with minimal impact on the clients & fystem.

By providing these two properties, a COP language deliver a
reasonable means for developing large-grained softwystems.
However, currently popular approaches to componeetited
programming have little language support.

BoxScript is a new Java-based language that resportiis need
[3,4]. It introduces a composition strategy ancoaah component
type system to support the desired levels of coitipnality and

flexibility, respectively. Java code provides themputational
notation and the BoxScript concepts enable the aatipnal

units to be composed flexibly into systems.

This paper focuses on how the BoxScript comporesealized
in Java. Section 2 introduces the BoxScript langua§ection 3
presents the implementation of components, focusingtheir
runtime structure and their Java implementationsctiBn 4

discusses this work and addresses some possibie ftgsearch.
Section 5 concludes the paper.

2. BOXSCRIPT

The component concepts in the BoxScript languagebased on
Figure 1. A component is calledbox A box is a blackbox
entity; that is, it strongly encapsulates its intdrdetails, only
exposing its interfaces to the outside. A box tmasfunctionality
needed to satisfy some requirement and can be aibdr
individually or as a part of a larger box that @ns it. A group
of boxes can be composed to form a larger boxdimatides some
higher level functionality.

The units of code needed to build a box arfeoa description
interfacesand theirimplementationsconfiguration information,
andbox manager codeA box description declares the features of
the box (in a file with extensiorbox). The configuration
information file gives some additional assemblyomfiation. The
box manager is a Java class, with the same narnie d®x, that

is generated by the BoxScript compiler [3, 4].

The example used in the following is a simple gystealled
CalPrice that calculates the prices of items while applyang
discounting policy. The system is componentized four main
components—Pricing , Discounting , Storage , andCalPrice
Componenericing calculates the price of an item based on its
original price and the discounting policy. Compan&torage
delivers the original price for an item and othezcessary
information from the data storage. Compon®Bitcounting
applies the discounting policy to calculate theliapple discount
for an item. The componentalPrice is assembled from
Pricing , Discounting , andStorage to deliver the function of
calculating the discounted prices of items.

2.1 Interfaces

BoxScript defines two types of interfaces.pfovided interface
describes the operations that a box implements that other
boxes may use. fequired interfacedescribes the operations that
the box requires and that must be implemented byhan box. A
box has one or more provided interfaces and zeranore
required interfaces. BoxScript uses the tértarface typedo refer

to a general interface with method declarations aseb the term
interface handleo refer to each unique occurrence of an interface
in a box. An interface handle has an interface .type

To be compatible with Java, a BoxScript interfagpet is
represented syntactically by a Java interface, ihabty a set of
related operation signatures. BoxScript uses Jdaases to
implement the interfaces. BoxScript introduces tvaations
between box interfacesxtensiorandsatisfaction.

A box interfacex extendsbox interfacey (syntactically) if and
only if typek) = typefy) or typek) extends type() in the Java
type system. That is, all the operation signatimes also appear

in X, butx may have additional operations. Type extensiorsdoe
not allow covariant or contravariant changes [S)perations.

Box interfacex satisfiesinterfacey whenx provides at least the
operations required by and the operations ok have an
equivalent meaning to the matching operationg.imo add more
precision, leti(x) be an invariant fox and pre(x,m) and
post(x,m) refer to the precondition and postcondition,

respectively, for operatiom on interfacex. Then, box interface
x satisfiesboxinterfacey if and only ifx extendsy [1]:

o 1(x) & C(Xy) =1(y)
* (Om:m QOy:

(pre(y,m) & I(y) & C(x.y)
(pre(x,m)& post(x.m)& I(x) & C(x,y)

= posty ,m)))
Assertion C(x,y) is a coupling invariant that relates the
equivalent aspects of the information modelsd@ndy .

= pre(x,m))&

The above definition ofatisfactionis motivated by Meyer’'s
treatment of inheritance in the design by contegproach (and
the Eiffel language) [5] and the concept of a couplnvariant in
program and data refinement [6].

Figure 2 shows interface type®rice , and

PriceRetrieve for the example.

Discount

public interface Price

{ double getPrice(int client,int item,
int quantity);

}

Figure 2.a. InterfacePri ce

public interface Discount
{ double getDiscount(int client, int item,
int quantity);

Figure 2.b. InterfaceDi scount

public interface PriceRetrieve

{ double itemPrice (int item);
int total(int item);
boolean clientExist (int client);
boolean itemExist (int item);

}

Figure 2.c. Interface PriceRetrieve

2.2 Boxes

There are two kinds of boxes in BoxScrighistractandconcrete.
An abstract box serves as an abstract type for twiio
implementation is provided. A concrete box provides
implementation that delivers concrete functions.

Price Discount PriceRetrieve
provided AP ADis A PrRt
interface

PricingAbs DiscountingAbs StorageAbs
require
interface

PriceRetrieve Discount
@A PRI A De

Figure 3. Abstract boxes

An abstract box is a box that describes the pravated required
interfaces but does not implement the providedriates. In the
box description, an abstract box is identified bykeyword
abstract ~ followed by its box name, and is specified with it
provided interface and required interface desamsti Figure 3
shows the structure of abstract bewcingAbs , StorageAbs ,
and DiscountingAbs Figure 4 gives the box description for
PricingAbs . PricingAbs requests the original price of an item
from its required interfacePriceRetrieve and the applicable
discount from its required interfac®iscount It provides
interfacepPrice for calculating the price after discounting.

A concrete box is either atomic or compound. &&omic boxis a
basic element in BoxScript. It does not contain ather boxes.
The description of an atomic box gives the box'snaaand the
name of any abstract box that it implements. lb a$ves its
provided and required interfaces by listing theiterface types
and handles. In the example, atomic boresing , Storage ,
and Discounting implement the abstract box®sicingAbs
DiscountingAbs , and StorageAbs , respectively. Figure 5.a
shows the atomic boRricing . An atomic box must supply an
implementation for each provided interface, i.eJasa class that
implements the interface type. Figure 5.b showsiglacode for
the implementation of its provided interfaedce .

abstract box PricingAbs
{ provided interface Price Pr;
/IPr is the handle for interface Price
required interface Discount Dc,
PriceRetrieve PrRt;

//IDc and PrRt are handles for Discount and PriceRet, respectively
}
Figure 4. PricingAbs.box

box Pricing implements PricingAbs
{ provided interface Price Pr;
required interface Discount Dc,
PriceRetrieve PrRt;

Figure 5.a. Atomic box description Pricing

As a concrete box, an atomic box has a box mantgsris
automatically generated during box compilation. Thex
manager code includes a constructor for the atdimic object
and code that instantiates the interface handlectdj The box
manager is a Java file with the same name as the bo

package boxes.PricingAbs.Pricing;
import interfaces.Price;
import interfaces.Discount;
import interfaces.PriceRetrieve;
import datatypes.systems.*;
public class Primp implements Price
{ private BoxTop _box;
Discount dc; I required interface
PriceRetrieve prRt; [lIrequired interface
public Primp(BoxTop myBox)
{ _box = myBox;
InterfaceName name= new InterfaceName("Dc");
dc = (DisCount)_box.getRequiredltf(name);
name= new InterfaceName("PrRt");
prRt=(PriceRetrieve) box.getRequiredltf(name);

public double getPrice(int client,
int item, int quantity)
{

double price = prRt.itemPrice (item);

double disc= dc.getDiscount(client, item,
quantity);

return price * (1 - disc* 0.01) * quantity;

}

Figure 5.b. Primp.java — Implementation of Interface Price

A compound boxis composed from atomic boxes or other
compound boxes. It does not implement its providedrfaces
but uses the implementations provided by its ctrestt boxes. In
the box description, each constituent box is giaenidentifier,
called itsbox handle to enable it to be uniquely identified as a
participant within the composition. The box destop for a
compound box not only supplies the information givia the

atomic box but also specifies (1) the boxes itcagnposed
from , (2) the interface sources from which the provided
required interfaces come, and (3) the informatidmoud how
provided and required interfacesnnect to one another.

The valid relationship between a concrete Boand an abstract
box A that it implements is that baxconforms to boxa. Clearly,

if abstract boxA specifies the presence of a provided interface
then concrete boB musthave a provided interface that satisfies
p. If concrete boxB has a required interfage then abstract box
A mustspecify a required interface that satisfresin terms of
operations, the provided interfacesBo$hould supply at least the
operations ofa, and the required operations Bfshould be at
most those ofA. A similar situation occurs if one considers an
abstract box extending another abstract box [1].

More formally, boxB conformsto boxA if and only if:
I(B) & C(A,B) = I(A)
(Op:p O prov(A): (g O prov(B):
handle(q) = handle(p) & g satisfies p))
(Or:r OreqB):([s:s Oreq(A):
handle(r) = handle(s) & s satisfies r))

Above, req(A) refers to the required interfaces of béxand
C(A,B) denotes a coupling invariant for the refinementthaf
information model when replacirfyby B. In particular,C(A,B)
serves as the coupling invariant for showing thatinterfaces of
B have the needed satisfaction relationship withctireesponding
interfaces ofA. The notatiorhandle(p) refers to the interface
handle of interface.

The compound box is BoxScript's composition meckiamiThe
compound box is the only type of box that needs psition.
The composition operation follows the composititategy.

2.3 Composition Strategy

Compositionality requires that the composition ladesand the
functionality of the composed component to be mtadlle. The
following defines the composition of boxes in Boxft([1, 3, 4]:

i. A required interface of a box may connect to a jated
interface of another box as long as the providedriace
satisfiesthe required interface.

i. All the provided interfaces of the constituent boxare
hidden unless exposed by the compound box.

iii. A compound box must expose every required interéddes
constituent boxes that is not connected to a psavid
interface of another constituent box.

Figure 6 illustrates theompositionprocess forcompound box
CalPrice . CalPrice is composed from three other boxes. The
example uses abstract boxes to participate in csitipo to
enable flexibility (discussed in section 2.4pricingAbs has
required interface®riceRetrieve and Discount , which are
satisfied by the provided interfabeiceRetrieve of component
StorageAbs and the provided interfad@iscount of component

DiscountingAbs , respectively. The example wires together
boxes PricingAbs and DiscountingAbs and boxes
PricingAbs andStorageAbs . It exposes the provided interface

of PricingAbs to the outside. No required interface needs to be
exposed since all of them are satisfied. Figushd@ws the box
description forCalPrice

Price 4 @ tPrice
Provided) Discount
mertace M7 > 4Provided
= Dis | interface
PricingAbs DiscountingAbs
require (X boxP A boxD
interfaces Discount L
i : A pc
PR ey PriceRetrieve
PrRt Pl
StorageAbs .
CalPrice
A boxS

Figure 6. Composition process

box CalPrice implements CalPriceAbs
{ composed from PricingAbs boxP,
DiscountingAbs boxD,StorageAbs boxS;
/I boxP, boxD and boxS are the box handles fariRgAbs,
/I DiscountingAbs, and StorageAbs, respectively
provided interface Price tPrice from boxP.Pr;
connect boxP.Dc to boxD.Dis,
boxP.PrRt to boxS.PrRt;

Figure 7. CalPrice.box

2.4 Flexibility Strategy

The concepts of abstract boxes dck variantsbring flexibility

into BoxScript programming. A concrete box can lithex an

implementation of an abstract box or a standalanetbat has no
related abstract box. For the former case, alintigementations
of an abstract box are considered toviagiants of the abstract
box; one variant of a box can be substituted fastler in any
context that calls for the abstract box. For thieetacase, the
atomic or compound box is considered to have ndéanarAn

abstract box can extend another abstract box anfbtmer one is
considered to be a variant of the latter one.

To support flexibility, a compound box is normatlgfined to be
composed from abstract boxes instead of concrexesborhe
abstract box name allows the ability to plug infefiént variants
of the constituent boxes. If a concrete variantuofabstract box
preserves the semantics of the abstract box’s tipesait may be
substituted for an occurrence of the abstract blbgnathe system
executes. This substitution is given in the configion
information file. If a programmer wishes to chartgethis new
variant, he or she only needs to change the carafigu file for
that abstract box to give the new variant’'s name.

(boxP, “\warehouse\boxes\PricingAbs”,
“Pricing\Pricing”);
(boxD, “\warehouse\boxes\DiscountingAbs”,
"Discounting\Discounting”);
(boxS, “\warehouse\boxes\StorageAbs”,
“Storage\Storage”);

Figure 8. CalPrice.conf -Configuration file for CdPrice

At runtime, concrete boxes must replace the alisbraxes. The
configuration file for a compound box must indicamhich
concrete box is to be used for a constituent attstvsax. The
configuration information contains: the box handfehe abstract
box to be configured, the physical location for #iestract box,
and the physical location for the concrete boxguFé 8 shows an
example configuration file for compound b@alPrice that
bindsPricing to PricingAbs (handleboxP), Discounting to

DiscountingAbs
(handleboxS).

(handle boxD), andStorage to StorageAbs

3. BOXSCRIPT IMPLEMENTATION

3.1 Box Source Code and Compilation

There are five kinds of code units necessary fdding a box:

a) a Java interface definition for each provided arduired
interface,

b) a BoxScript box description, a file named with #zne base
name as the box plus extensibox ,

¢) aJava class to implement each provided interface,

d) configuration information, a file named with thensa base
name as the box plus extensiocanf |,

e) the box manager class for the box, a Java file wiase file
name is the same as the box name.

Both abstract and concrete boxes have interfaes #ind box

description files. Only atomic boxes provide inmpkntations for

its provided interfaces. A compound box should hawe

configuration information file to specify the lo@a of its

constituent boxes. Each concrete box has a boxagesnwhile

an abstract box does not. All the files associatitd a particular

box, abstract or concrete, are separated intoa@ackage.

BoxScript is built on top of Java. Programmers egprthe box
interfaces and their implementing classes directlyyava. Box
descriptions, including the composition and flekibistrategies,
must be translated from the BoxScript notation iJdwa code. A
box manageiis the bridge that connects a BoxScript box to the
Java implementations of the box’s interfaces. Téve tvanager is

a Java class whose function is to organize thefate references
and box references at runtime. Each concrete hax a
corresponding box manager class.

The BoxScript compiler, called BoxCompiler, takdse tbox

description and other necessary files as inputclkch¢he syntax
and interface conformity, translates the BoxSceipde into Java,
and then delegates the translation of the generdded code to
the Java compiler. Once compiled by the Java dempa

BoxScript program can run on the Java Virtual Maeh{JvVM).

The BoxCompiler itself is written in BoxScript, hiag been
bootstrapped from an initial version written in d44].

3.2 Box Runtime Structure

To the Java compiler, a BoxScript box is a packagkling a

cluster of related Java classes and interfacesuftime, the box
is represented by a cluster of instances of thizsses executing
on the JVM. The runtime system manages the instéotis of

these classes and the linking of the box’s requiinegtfaces with

provided interfaces of other boxes. This sectioangkes the
runtime structure of BoxScript concrete boxes. thdet boxes
are compile-time structures in the current impletagon.

An atomic box has two kinds of Java class filesHes< for its

box manager and a class for the implementatiorach g@rovided
interface. When a BoxScript atomic box is instatetil, what
really occurs in the Java-based runtime environnerthat an

instance of the box manager class is instantialdte box

manager object creates instances of the interfapéementation
class for each provided interface. As needed, tixenanager for
an atomic box obtains references to the objeatghiar boxes that
implement the required interfaces.

A compound box manager instantiates the box manajects

for its constituent boxes (at this time, the cotefgoxes replace
the corresponding abstract boxes), connects thequired

interfaces to the provided interfaces, passes medjuinterface
references to its constituent boxes, and getsrindded interface
references from its constituent boxes.

The prototype BoxScript system uses a lazy strateginterface

object instantiation. The implementation class #oprovided

interface will not be instantiated until the firstquest for this
interface. If an atomic box manager gets a requeegtovide the
reference of one of its provided interfaces, itaksewhether the
interface object reference is null or not. If thigect reference is
not null, it returns the reference; otherwise, nstantiates the
interface implementation class and returns thereefee. If a

compound box gets a call on one of its provideérfate, it

checks the interface object reference. If the abjeference is
not null, it returns the reference; otherwise, iit pass the request
for getting the interface object reference to tlastituent box
that provides this interface. If no object referens found, this
request passing continues until it meets an atdmix, which

instantiates the interface implementation class eetdrns the
reference. This reference is passed back thoughp#th the
request through which it came, and the referenceeisto the
provided interface of each box on the path.

When a required interface reference for a compdumdis set,
the box passes the interface reference to the itoerst box that
requires the interface.

reterence <<interface >>
tantiat Price
Instantiates |« < Jjava class >>|instantia implement#
Pricing Pricing \' <<Java class >>
<<Java class >>] PrIimp
CalPrice constructorPricing |
1
! <<interface >>
con ructorCaIPricN ' Discount
instantiates y
;) <<Java class >>|. Y . implement:
Discounting) - instantiates P
Discounting
<<Java class >>

constructorDiscounting DiscountImp

Figure 9. Box Manager and Interface Object Instantition

We use the&alPrice system to illustrate the box manager object
and provided interface object instantiationCalPrice 's box
manager object is created when the system is imkoke
CalPrice 's box manager instantiates the box manager obfects
its constituent boxesricing andDiscounting , as shown in
Figure 9. Pricing ’s box manager object instantiatesmp , the
implementation class of its interfacgice , when thePricing
object is requested to provide the reference fBrimp .
Similarly, the Discounting box manager object instantiates
Discountimp ~ when the Disounting object is requested to
provide the reference fobiscountimp CalPrice gets the
reference tisimp in Discounting and sets it to the reference
of Discount in Pricing when it builds the connection.

3.3 Box Manager Implementation

The box manager class for a box is created by theCBmpiler
based on the box description file and the assatiedafiguration
file. For an atomic box, the information for itsopided and
required interfaces is given in its box descriptiddome optional

implementation information may be given in its dgofation file.
For a compound box, the box description gives méttion not
only on the interfaces but also on the compositafnthe
constituent boxes. Its configuration file gives théormation on
the concrete boxes that implement the abstractdbpagicipating
in the composition. Given box descriptions and figumation
files, the box manager class can be generated.

To create the needed runtime structure, the boxagenclass
B.java for a concrete boB should have four parts as follows.

e apackage declarationto declare the filesystem subdirectory
under which th&.java file is located.

e import statementgto include interface declarations for the
box’s provided and required interfaces and datagyand for
any system classes that are needed by the cuognt b

 variable declarationgo define the instance variables for the
class. For a compound box, its constituent box agan
objects are instantiated in this section of code.

* aclass definition for the clas8. An instance of this class sets
the interface instance references, box instanaraetes, and
connections among the interfaces for the runtinstesy.

As noted above, the provided interface object®éB are lazily
instantiated, that is, a provided interface objedl not be
instantiated until the first call. Similarly, aXe reference to a
required interface (another box’s provided integfawill not be
set until its first use. ThBoxTop andinterfaceDsc classes are
designed for this purpose. InterfaceDsc defines a table
structure for the interface handles, which are dypas
InterfaceName , and their references. BoxTop uses one
interface reference table for its required intezfaand another for
its provided interfaces. The former is calledeguired interface
reference tabland the latter arovided interface reference table
Both are defined to have typeterfaceDsc . Figure 10 shows
theBoxTop and Figure 11 shows th&erfaceDsc

public class BoxTop
{ InterfaceDsc pltfDsc, ritfDsc;

public BoxTop()

{ pltfDsc = new InterfaceDsc();
ritfDsc = new InterfaceDsc();

public void setProvinterfaceDsc
(InterfaceDsc pltfDsc)

{ this.pltfDsc = pltfDsc; }

public void setRequlinterfaceDsc
(InterfaceDsc ritfDsc)

{ this.ritfDsc = rltfDsc; }

public Object getProvidedItf(InterfaceName name)
{ return pltfDsc.getInterfaceRef(name); }

public Object getRequiredltf(InterfaceName name)
{ return ritfDsc.getInterfaceRef(name); }

public void setRequiredItf
(InterfaceName iname, Object objRef)
{ ritfDsc.setInterfaceRef(iname, objRef); }

}

Figure 10. BoxTop.java
Each box manager class extends base chlsdop. The
constructor of box manager classhould do the following.

« Add the handles of the exposed required interfazéise box’s
interface reference table, with the referenaie for each.

« If B is compound, the constructor must set up the aiiomes
from the required interfaces to the provided irseels among
its constituent boxes. Each connection is builtdefting a
provided interface instance reference to the refsreof a

required interface in the box’s required interfasderence
table. BoxTop’s accessor methodsgetProvideditf() and
setRequiredItf() provide this functionality.

Other than the constructor, the class bodyBahust define the

following methods:

¢ getProvidedItf : B.java overrides this method to instantiate
each ofB’s provided interface objects at their first use.

¢ setRequiredItf
required interfaces,B overrides this method to set the
references to the exposed required interfac®s of

public class InterfaceDsc
{ private MyMap m;
public InterfaceDsc()
{m = new MyMap(); }
public void addInterface
(InterfaceName itfName,Object itfRef)
{ m.put(itftName, itfRef);
public Object getinterfaceRef
(InterfaceName itfName)
{ return m.get(ittName); }
public void setinterfaceRef
(InterfaceName itfName, Object itfRef)
{ m.put(ittName, itfRef); }

Figure 11. InterfaceDsc.java
The algorithm for code generation is shown belowsaudocode:
generateCode (B'dscFile, mngFile)
/ImngFile is the filename for the box managerecod
read in dscFile
genPackage();
genlmports();
genVars();
genConstructor();
genGetProvidedltf();
/I generate overriding method getProvidedItf
if B is compound
genSetRequiredltf();
/'l generate overriding nmethod
set Requiredl tf
writelntoFile(mngFile);

4. DISCUSSION AND FUTURE WORK

BoxScript is a relatively simple component languagét on top
of Java. The most significant contribution of tlaeguage is the
introduction of the concepts of abstract boxes, Basants, box
conformity, and interface satisfaction to suppdre ttwo key
properties of component-oriented programming: cositfpmality
and flexibility. The BoxScript concept of a boxnforming
syntactically and semantically to an abstract beenss to be a
new concept for component-oriented programminguaggs that
have explicitly defined provided and required ifdgees. In
conjunction with the composition facilities, it diias flexible but
safe component reuse capabilities. The concepintefiface
satisfaction is the basis for the idea of box camfty since, when
a box conforms to an abstract box, we examine tintérface
satisfactions. The use of interface satisfactizabées flexible but

safe compositionR and P can be composed as long as the

provided interfacex of box P satisfies the required interfage of
box R to which it is connected.

The current BoxScript prototype has a static ruatistructure,
that is, concrete boxes are bound during compilatime. The
advantage of this strategy is that it keeps thguage simple,
understandable, and typesafe. However, the boregivbe more

. If Bis a compound box and it has exposed

[4] Liu, Y. BoxScript:

flexible if the binding of box variants can be dgfdeferred past
assembly time, to runtime.

The box type structure and the concept of a bodartiare novel
and useful features of BoxScript. The box varigmables
different implementations of an abstract box toifeerted into
the program being developed at the time of comipitat But it
could be more useful. The current BoxCompiler mexguthat a
concrete variant be chosen for each abstract toesti of a

compound box before the compound box can be cothpile

correctly. However, this seems unnecessarily iotiste. The
compiler should be able to compile most of the cooma box
features based on the characteristics of the abstoastituents.
Then, before the system is deployed, a tool thaerables
subsystems, binds the variant and performs any tiaddi
interface conformity checks.

The advocates of the new concept of software fextdR] argue
that components must exhildeferred encapsulatioif they are
to be broadly reusable. That is, a componentIghoot be a
complete blackbox. It should be parameterized witiumber of
variable aspects that can be bound at the timessénably of a
subsystem. However, each of these aspects should
encapsulated pieces of well understood functignaliat have
been predefined. That is essentially what the baxiant
supplies.

5. CONCLUSION

BoxScript is a Java-based, component-oriented progring
language that provides convenient syntactic suppfmt
component concepts. It supports compositionalitg Bexibility
in component-oriented systems and encourages gaatiqes for
component-oriented development. This paper brigftyoduces
the fundamental concepts of BoxScript and then riess how
BoxScript components (i.e., boxes) are realizedclasters of
interrelated Java interfaces, classes, and packages

6. REFERENCES

[1] Cunningham, H. C., Liu, Y. and Tadepalli PToward
Specification and Composition of BoxScript Compasern
Proceedings of the Workshop on Specification
Verification of Component-Based Systems (SAYG®RS114-
117, November 2004.

[2] Greenfield, J. and Short, KSoftware Factories: Assembling

Applications with Patterns, Models, Frameworks, arabls.
Wiley, 2004.

[3] Liu, Y. and Cunningham, H. C. BoxScript: A Cponent-

oriented Language for Teaching. Pnoceedings of the ACM
SouthEast Conferenc¥ol. 1, pp. 349-354, March 2005.

Oriented Programming Ph.D. Dissertation, Department of
Computer and Information Science, University of 8isippi,
August 2005.

[5] Meyer, B. Object-Oriented Software Constructjosecond

Edition, Prentice Hall, 1997.

[6] Morgan, C.Programming from Specification$rentice Hall

International, 1994.

Programming Second Edition. Addison Wesley, 2000.

be

and

A Language for Teaching Component-

[7] Szyperski, C. Component Software: Beyond Object-Oriented

