
 1

Java in the Box:
Implementing the BoxScript Component Language

Yi Liu
Dept. of EE and Computer Science

South Dakota State University
Brookings, SD 57007

1-605-688-5280

yi.liu@sdstate.edu

H. Conrad Cunningham
Dept. of Computer and Information Science

University of Mississippi
University, MS 38677

1-662-915-5280
cunningham@cs.olemiss.edu

ABSTRACT
BoxScript is a Java-based language that supports the component-
oriented programming paradigm. BoxScript introduces a
composition strategy and type structure to support two main
properties of component-oriented programming, compositionality
and flexibility. This paper briefly introduces the fundamental
concepts of BoxScript and then describes how BoxScript
components (i.e., boxes) are realized as clusters of interrelated
Java interfaces, classes, and packages.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – frameworks, modules, packages.

General Terms
Design, Languages.

Keywords
Component-oriented language, BoxScript, interface, runtime
structure, Java implementation.

1. INTRODUCTION
Component-oriented programming (COP) is a programming
paradigm that seeks to build software systems quickly and
reliably by assembling groups of independently developed
software components. The most used definition of component is
given by Szyperski [7], who defines a software component as
follows:

A software component is a unit of composition with a
contractually specified interface and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third parties.

As shown in Figure 1, the internal design and implementation of a
software component are hidden behind its provided and required
interfaces. A component implements its provided interfaces and
makes them available for use by other components. In
implementing its functionality, a component may use other
components only through its required interfaces. During

assembly, a required interface of a component must be connected
to a matching provided interface of another component. Thus
components depend upon the specifications of interfaces, not
upon the specifications of other whole components.

Components are strongly encapsulated and compositional. This
leads to two key properties of component-oriented programming–
compositionality and flexibility.

Figure 1. Components and their interconnections

Compositionality is the most distinctive property of component-
oriented programming. An application is built by assembling
components, each of which is sufficiently independent from the
others to allow it to be developed individually without knowledge
of the others’ implementations. Composing such components into
a system requires the selection of suitable components and the
right strategies for assembly. When a subsystem is assembled
from components, its behavior should be predictable based on the
behavioral specifications of the components.

The flexibility property of a component-oriented system means
that adapting the system to changing requirements is not difficult.
It can be accomplished by replacing, adding, or removing a few
components with minimal impact on the clients of the system.

By providing these two properties, a COP language can deliver a
reasonable means for developing large-grained software systems.
However, currently popular approaches to component-oriented
programming have little language support.

BoxScript is a new Java-based language that responds to this need
[3,4]. It introduces a composition strategy and a novel component
type system to support the desired levels of compositionality and
flexibility, respectively. Java code provides the computational
notation and the BoxScript concepts enable the computational
units to be composed flexibly into systems.

This paper focuses on how the BoxScript components are realized
in Java. Section 2 introduces the BoxScript language. Section 3
presents the implementation of components, focusing on their
runtime structure and their Java implementations. Section 4

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACMSE’07, March 23-24, 2007, Winston-Salem, North Carolina, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Component 1

Component 2

interface

inner
component

provided required provided required

 2

discusses this work and addresses some possible future research.
Section 5 concludes the paper.

2. BOXSCRIPT
The component concepts in the BoxScript language are based on
Figure 1. A component is called a box. A box is a blackbox
entity; that is, it strongly encapsulates its internal details, only
exposing its interfaces to the outside. A box has the functionality
needed to satisfy some requirement and can be used either
individually or as a part of a larger box that contains it. A group
of boxes can be composed to form a larger box that provides some
higher level functionality.

The units of code needed to build a box are a box description,
interfaces and their implementations, configuration information,
and box manager code. A box description declares the features of
the box (in a file with extension. box). The configuration
information file gives some additional assembly information. The
box manager is a Java class, with the same name as the box, that
is generated by the BoxScript compiler [3, 4].

The example used in the following is a simple system called
CalPrice that calculates the prices of items while applying a
discounting policy. The system is componentized into four main
components—Pricing , Discounting , Storage , and CalPrice .
Component Pricing calculates the price of an item based on its
original price and the discounting policy. Component Storage
delivers the original price for an item and other necessary
information from the data storage. Component Discounting
applies the discounting policy to calculate the applicable discount
for an item. The component CalPrice is assembled from
Pricing , Discounting , and Storage to deliver the function of
calculating the discounted prices of items.

2.1 Interfaces
BoxScript defines two types of interfaces. A provided interface
describes the operations that a box implements and that other
boxes may use. A required interface describes the operations that
the box requires and that must be implemented by another box. A
box has one or more provided interfaces and zero or more
required interfaces. BoxScript uses the term interface type to refer
to a general interface with method declarations and uses the term
interface handle to refer to each unique occurrence of an interface
in a box. An interface handle has an interface type.

To be compatible with Java, a BoxScript interface type is
represented syntactically by a Java interface, that is, by a set of
related operation signatures. BoxScript uses Java classes to
implement the interfaces. BoxScript introduces two relations
between box interfaces: extension and satisfaction.

A box interface x extends box interface y (syntactically) if and
only if type(x) = type(y) or type(x) extends type(y) in the Java
type system. That is, all the operation signatures in y also appear
in x , but x may have additional operations. Type extension does
not allow covariant or contravariant changes [5] to operations.

Box interface x satisfies interface y when x provides at least the
operations required by y and the operations of x have an
equivalent meaning to the matching operations in y . To add more
precision, let I(x) be an invariant for x and pre(x,m) and
post(x,m) refer to the precondition and postcondition,

respectively, for operation m on interface x . Then, box interface
x satisfies box interface y if and only if x extends y [1]:

• I(x) & C(x,y) ⇒ I(y)

• (∀m : m ∈ y :
 (pre(y,m) & I(y) & C(x,y) ⇒ pre(x,m))&
 (pre(x,m)& post(x.m)& I(x) & C(x,y)
 ⇒ post(y , m)))

Assertion C(x,y) is a coupling invariant that relates the
equivalent aspects of the information models for x and y .

The above definition of satisfaction is motivated by Meyer’s
treatment of inheritance in the design by contract approach (and
the Eiffel language) [5] and the concept of a coupling invariant in
program and data refinement [6].

Figure 2 shows interface types Price , Discount , and
PriceRetrieve for the example.

public interface Price
{ double getPrice(int client,int item,

int quantity);
}

Figure 2.a. Interface Price

public interface Discount
{ double getDiscount(int client, int item,

int quantity);
}

Figure 2.b. Interface Discount

public interface PriceRetrieve
{ double itemPrice (int item);
 int total(int item);
 boolean clientExist (int client);
 boolean itemExist (int item);
}

Figure 2.c. Interface PriceRetrieve

2.2 Boxes
There are two kinds of boxes in BoxScript: abstract and concrete.
An abstract box serves as an abstract type for which no
implementation is provided. A concrete box provides
implementation that delivers concrete functions.

 Figure 3. Abstract boxes

An abstract box is a box that describes the provided and required
interfaces but does not implement the provided interfaces. In the
box description, an abstract box is identified by a keyword
abstract followed by its box name, and is specified with its
provided interface and required interface descriptions. Figure 3
shows the structure of abstract box PricingAbs , StorageAbs ,
and DiscountingAbs . Figure 4 gives the box description for
PricingAbs . PricingAbs requests the original price of an item
from its required interface PriceRetrieve and the applicable
discount from its required interface Discount . It provides
interface Price for calculating the price after discounting.

Discount

 PricingAbs DiscountingAbs

required
interface

Price
Pr Dis provided

interface

Discount
Dc PrRt

PriceRetrieve

StorageAbs

PrRt
PriceRetrieve

 3

A concrete box is either atomic or compound. An atomic box is a
basic element in BoxScript. It does not contain any other boxes.
The description of an atomic box gives the box’s name and the
name of any abstract box that it implements. It also gives its
provided and required interfaces by listing their interface types
and handles. In the example, atomic boxes Pricing , Storage ,
and Discounting implement the abstract boxes PricingAbs ,
DiscountingAbs , and StorageAbs , respectively. Figure 5.a
shows the atomic box Pricing . An atomic box must supply an
implementation for each provided interface, i.e., a Java class that
implements the interface type. Figure 5.b shows partial code for
the implementation of its provided interface Price .

abstract box PricingAbs
{ provided interface Price Pr;
 //Pr is the handle for interface Price
 required interface Discount Dc,

PriceRetrieve PrRt;
 //Dc and PrRt are handles for Discount and PriceRetrieve, respectively
}

Figure 4. PricingAbs.box

box Pricing implements PricingAbs
{ provided interface Price Pr;
 required interface Discount Dc,

PriceRetrieve PrRt;
}

Figure 5.a. Atomic box description Pricing

As a concrete box, an atomic box has a box manager that is
automatically generated during box compilation. The box
manager code includes a constructor for the atomic box object
and code that instantiates the interface handle objects. The box
manager is a Java file with the same name as the box.

package boxes.PricingAbs.Pricing;
import interfaces.Price;
import interfaces.Discount;
import interfaces.PriceRetrieve;
import datatypes.systems.*;
public class PrImp implements Price
{ private BoxTop _box;
 Discount dc; // required interface
 PriceRetrieve prRt; //required interface
 public PrImp(BoxTop myBox)
 { _box = myBox;
 InterfaceName name= new InterfaceName("Dc");
 dc = (DisCount)_box.getRequiredItf(name);
 name= new InterfaceName("PrRt");
 prRt=(PriceRetrieve)_box.getRequiredItf(name);
 }

 public double getPrice(int client,
int item, int quantity)

{ …
 double price = prRt.itemPrice (item);
 double disc= dc.getDiscount(client, item,
 quantity);

 return price * (1 - disc* 0.01) * quantity;
 }
}

Figure 5.b. PrImp.java – Implementation of Interface Price

A compound box is composed from atomic boxes or other
compound boxes. It does not implement its provided interfaces
but uses the implementations provided by its constituent boxes. In
the box description, each constituent box is given an identifier,
called its box handle, to enable it to be uniquely identified as a
participant within the composition. The box description for a
compound box not only supplies the information given in the

atomic box but also specifies (1) the boxes it is composed
from , (2) the interface sources from which the provided and
required interfaces come, and (3) the information about how
provided and required interfaces connect to one another.

The valid relationship between a concrete box B and an abstract
box A that it implements is that box B conforms to box A. Clearly,
if abstract box A specifies the presence of a provided interface p,
then concrete box B must have a provided interface that satisfies
p. If concrete box B has a required interface r , then abstract box
A must specify a required interface that satisfies r . In terms of
operations, the provided interfaces of B should supply at least the
operations of A, and the required operations of B should be at
most those of A. A similar situation occurs if one considers an
abstract box extending another abstract box [1].

More formally, box B conforms to box A if and only if:
I(B) & C(A,B) ⇒ I(A)
(∀p: p ∈ prov(A): (∃q: q ∈ prov(B):

 handle(q) = handle(p) & q satisfies p))
(∀r: r ∈ req(B):(∃s: s ∈ req(A):

 handle(r) = handle(s) & s satisfies r))

Above, req(A) refers to the required interfaces of box A and
C(A,B) denotes a coupling invariant for the refinement of the
information model when replacing A by B. In particular, C(A,B)
serves as the coupling invariant for showing that the interfaces of
B have the needed satisfaction relationship with the corresponding
interfaces of A. The notation handle(p) refers to the interface
handle of interface p.

The compound box is BoxScript’s composition mechanism. The
compound box is the only type of box that needs composition.
The composition operation follows the composition strategy.

2.3 Composition Strategy
Compositionality requires that the composition be safe and the
functionality of the composed component to be predictable. The
following defines the composition of boxes in BoxScript [1, 3, 4]:

i. A required interface of a box may connect to a provided
interface of another box as long as the provided interface
satisfies the required interface.

ii. All the provided interfaces of the constituent boxes are
hidden unless exposed by the compound box.

iii. A compound box must expose every required interface of its
constituent boxes that is not connected to a provided
interface of another constituent box.

Figure 6 illustrates the composition process for compound box
CalPrice . CalPrice is composed from three other boxes. The
example uses abstract boxes to participate in composition to
enable flexibility (discussed in section 2.4). PricingAbs has
required interfaces PriceRetrieve and Discount , which are
satisfied by the provided interface PriceRetrieve of component
StorageAbs and the provided interface Discount of component
DiscountingAbs , respectively. The example wires together
boxes PricingAbs and DiscountingAbs and boxes
PricingAbs and StorageAbs . It exposes the provided interface
of PricingAbs to the outside. No required interface needs to be
exposed since all of them are satisfied. Figure 7 shows the box
description for CalPrice .

 4

Figure 6. Composition process
box CalPrice implements CalPriceAbs
{ composed from PricingAbs boxP,
 DiscountingAbs boxD,StorageAbs boxS;
 // boxP, boxD and boxS are the box handles for PricingAbs,
 // DiscountingAbs, and StorageAbs, respectively
 provided interface Price tPrice from boxP.Pr;
 connect boxP.Dc to boxD.Dis,
 boxP.PrRt to boxS.PrRt;
}

Figure 7. CalPrice.box

2.4 Flexibility Strategy
The concepts of abstract boxes and box variants bring flexibility
into BoxScript programming. A concrete box can be either an
implementation of an abstract box or a standalone box that has no
related abstract box. For the former case, all the implementations
of an abstract box are considered to be variants of the abstract
box; one variant of a box can be substituted for another in any
context that calls for the abstract box. For the latter case, the
atomic or compound box is considered to have no variant. An
abstract box can extend another abstract box and the former one is
considered to be a variant of the latter one.

To support flexibility, a compound box is normally defined to be
composed from abstract boxes instead of concrete boxes. The
abstract box name allows the ability to plug in different variants
of the constituent boxes. If a concrete variant of an abstract box
preserves the semantics of the abstract box’s operations, it may be
substituted for an occurrence of the abstract box when the system
executes. This substitution is given in the configuration
information file. If a programmer wishes to change to this new
variant, he or she only needs to change the configuration file for
that abstract box to give the new variant’s name.

(boxP, “\warehouse\boxes\PricingAbs”,
 “Pricing\Pricing”);
(boxD, “\warehouse\boxes\DiscountingAbs”,

”Discounting\Discounting”);
(boxS, “\warehouse\boxes\StorageAbs”,

“Storage\Storage”);

Figure 8. CalPrice.conf -Configuration file for CalPrice

At runtime, concrete boxes must replace the abstract boxes. The
configuration file for a compound box must indicate which
concrete box is to be used for a constituent abstract box. The
configuration information contains: the box handle of the abstract
box to be configured, the physical location for the abstract box,
and the physical location for the concrete box. Figure 8 shows an
example configuration file for compound box CalPrice that
binds Pricing to PricingAbs (handle boxP), Discounting to

DiscountingAbs (handle boxD), and Storage to StorageAbs
(handle boxS).

3. BOXSCRIPT IMPLEMENTATION

3.1 Box Source Code and Compilation
There are five kinds of code units necessary for building a box:
a) a Java interface definition for each provided and required

interface,
b) a BoxScript box description, a file named with the same base

name as the box plus extension .box ,
c) a Java class to implement each provided interface,
d) configuration information, a file named with the same base

name as the box plus extension .conf ,
e) the box manager class for the box, a Java file whose base file

name is the same as the box name.
Both abstract and concrete boxes have interface files and box
description files. Only atomic boxes provide implementations for
its provided interfaces. A compound box should have a
configuration information file to specify the location of its
constituent boxes. Each concrete box has a box manager, while
an abstract box does not. All the files associated with a particular
box, abstract or concrete, are separated into a Java package.

BoxScript is built on top of Java. Programmers express the box
interfaces and their implementing classes directly in Java. Box
descriptions, including the composition and flexibility strategies,
must be translated from the BoxScript notation into Java code. A
box manager is the bridge that connects a BoxScript box to the
Java implementations of the box’s interfaces. The box manager is
a Java class whose function is to organize the interface references
and box references at runtime. Each concrete box has a
corresponding box manager class.

The BoxScript compiler, called BoxCompiler, takes the box
description and other necessary files as input, checks the syntax
and interface conformity, translates the BoxScript code into Java,
and then delegates the translation of the generated Java code to
the Java compiler. Once compiled by the Java compiler, a
BoxScript program can run on the Java Virtual Machine (JVM).
The BoxCompiler itself is written in BoxScript, having been
bootstrapped from an initial version written in Java [4].

3.2 Box Runtime Structure
To the Java compiler, a BoxScript box is a package holding a
cluster of related Java classes and interfaces. At runtime, the box
is represented by a cluster of instances of these classes executing
on the JVM. The runtime system manages the instantiations of
these classes and the linking of the box’s required interfaces with
provided interfaces of other boxes. This section examines the
runtime structure of BoxScript concrete boxes. Abstract boxes
are compile-time structures in the current implementation.

An atomic box has two kinds of Java class files—a class for its
box manager and a class for the implementation of each provided
interface. When a BoxScript atomic box is instantiated, what
really occurs in the Java-based runtime environment is that an
instance of the box manager class is instantiated. The box
manager object creates instances of the interface implementation
class for each provided interface. As needed, the box manager for
an atomic box obtains references to the objects in other boxes that
implement the required interfaces.

CalPrice

PricingAbs DiscountingAbs

Provided
interface

Discount

Discount

Dc

Dis

required
interfaces

boxP boxD

Price
Provided
interface

Price tPrice

Pr

PriceRetrieve

StorageAbs

boxS

PriceRetrieve
PrRt PrRt

 5

A compound box manager instantiates the box manager objects
for its constituent boxes (at this time, the concrete boxes replace
the corresponding abstract boxes), connects their required
interfaces to the provided interfaces, passes required interface
references to its constituent boxes, and gets the provided interface
references from its constituent boxes.

The prototype BoxScript system uses a lazy strategy for interface
object instantiation. The implementation class for a provided
interface will not be instantiated until the first request for this
interface. If an atomic box manager gets a request to provide the
reference of one of its provided interfaces, it checks whether the
interface object reference is null or not. If the object reference is
not null, it returns the reference; otherwise, it instantiates the
interface implementation class and returns the reference. If a
compound box gets a call on one of its provided interface, it
checks the interface object reference. If the object reference is
not null, it returns the reference; otherwise, it will pass the request
for getting the interface object reference to the constituent box
that provides this interface. If no object reference is found, this
request passing continues until it meets an atomic box, which
instantiates the interface implementation class and returns the
reference. This reference is passed back though the path the
request through which it came, and the reference is set to the
provided interface of each box on the path.

When a required interface reference for a compound box is set,
the box passes the interface reference to the constituent box that
requires the interface.

Figure 9. Box Manager and Interface Object Instantiation

We use the CalPrice system to illustrate the box manager object
and provided interface object instantiation. CalPrice ’s box
manager object is created when the system is invoked.
CalPrice ’s box manager instantiates the box manager objects for
its constituent boxes, Pricing and Discounting , as shown in
Figure 9. Pricing ’s box manager object instantiates PrImp , the
implementation class of its interface Price , when the Pricing
object is requested to provide the reference for PrImp .
Similarly, the Discounting box manager object instantiates
DiscountImp when the Disounting object is requested to
provide the reference for DiscountImp . CalPrice gets the
reference to DisImp in Discounting and sets it to the reference
of Discount in Pricing when it builds the connection.

3.3 Box Manager Implementation
The box manager class for a box is created by the BoxCompiler
based on the box description file and the associated configuration
file. For an atomic box, the information for its provided and
required interfaces is given in its box description. Some optional

implementation information may be given in its configuration file.
For a compound box, the box description gives information not
only on the interfaces but also on the composition of the
constituent boxes. Its configuration file gives the information on
the concrete boxes that implement the abstract boxes participating
in the composition. Given box descriptions and configuration
files, the box manager class can be generated.

To create the needed runtime structure, the box manager class
B.java for a concrete box B should have four parts as follows.

• a package declaration to declare the filesystem subdirectory
under which the B.java file is located.

• import statements to include interface declarations for the
box’s provided and required interfaces and data types and for
any system classes that are needed by the current box.

• variable declarations to define the instance variables for the
class. For a compound box, its constituent box manager
objects are instantiated in this section of code.

• a class definition for the class B. An instance of this class sets
the interface instance references, box instance references, and
connections among the interfaces for the runtime system.

As noted above, the provided interface objects for box B are lazily
instantiated, that is, a provided interface object will not be
instantiated until the first call. Similarly, a box’s reference to a
required interface (another box’s provided interface) will not be
set until its first use. The BoxTop and InterfaceDsc classes are
designed for this purpose. InterfaceDsc defines a table
structure for the interface handles, which are typed as
InterfaceName , and their references. BoxTop uses one
interface reference table for its required interfaces and another for
its provided interfaces. The former is called a required interface
reference table and the latter a provided interface reference table.
Both are defined to have type InterfaceDsc . Figure 10 shows
the BoxTop and Figure 11 shows the InterfaceDsc .

public class BoxTop
{ InterfaceDsc pItfDsc, rItfDsc;
 public BoxTop()
 { pItfDsc = new InterfaceDsc();
 rItfDsc = new InterfaceDsc();
 }
 public void setProvInterfaceDsc
 (InterfaceDsc pItfDsc)
 { this.pItfDsc = pItfDsc; }
 public void setRequInterfaceDsc
 (InterfaceDsc rItfDsc)
 { this.rItfDsc = rItfDsc; }
 public Object getProvidedItf(InterfaceName name)
 { return pItfDsc.getInterfaceRef(name); }
 public Object getRequiredItf(InterfaceName name)
 { return rItfDsc.getInterfaceRef(name); }

 public void setRequiredItf
 (InterfaceName iname, Object objRef)
 { rItfDsc.setInterfaceRef(iname, objRef); }
}

Figure 10. BoxTop.java
Each box manager class extends base class BoxTop . The
constructor of box manager class B should do the following.

• Add the handles of the exposed required interfaces to the box’s
interface reference table, with the reference null for each.

• If B is compound, the constructor must set up the connections
from the required interfaces to the provided interfaces among
its constituent boxes. Each connection is built by setting a
provided interface instance reference to the reference of a

<<Java class >>
Pricing

<<Java class >>
Discounting

<<interface >>
Price

<<Java class >>
DiscountImp

<<interface >>
Discount

implements
instantiates

constructor Pricing

constructor Discounting

<<Java class >>
CalPrice

constructor CalPrice

instantiates

 Pricing

instantiates
Discounting

references

<<Java class >>
PrImp

instantiates implements

references

 6

required interface in the box’s required interface reference
table. BoxTop ’s accessor methods getProvidedItf() and
setRequiredItf() provide this functionality.

Other than the constructor, the class body of B must define the
following methods:
• getProvidedItf : B.java overrides this method to instantiate

each of B’s provided interface objects at their first use.
• setRequiredItf : If B is a compound box and it has exposed

required interfaces, B overrides this method to set the
references to the exposed required interfaces of B.

public class InterfaceDsc
{ private MyMap m;
 public InterfaceDsc()
 { m = new MyMap(); }

public void addInterface
 (InterfaceName itfName,Object itfRef)

 { m.put(itfName, itfRef); }
public Object getInterfaceRef
 (InterfaceName itfName)
{ return m.get(itfName); }
public void setInterfaceRef
 (InterfaceName itfName, Object itfRef)

 { m.put(itfName, itfRef); }
}

Figure 11. InterfaceDsc.java
The algorithm for code generation is shown below in pseudocode:

generateCode (B’dscFile, mngFile)
 //mngFile is the filename for the box manager code
 read in dscFile
 genPackage();
 genImports();
 genVars();
 genConstructor();
 genGetProvidedItf();
 // generate overriding method getProvidedItf
 if B is compound

 genSetRequiredItf();
// generate overriding method
setRequiredItf

 writeIntoFile(mngFile);

4. DISCUSSION AND FUTURE WORK
BoxScript is a relatively simple component language built on top
of Java. The most significant contribution of this language is the
introduction of the concepts of abstract boxes, box variants, box
conformity, and interface satisfaction to support the two key
properties of component-oriented programming: compositionality
and flexibility. The BoxScript concept of a box conforming
syntactically and semantically to an abstract box seems to be a
new concept for component-oriented programming languages that
have explicitly defined provided and required interfaces. In
conjunction with the composition facilities, it enables flexible but
safe component reuse capabilities. The concept of interface
satisfaction is the basis for the idea of box conformity since, when
a box conforms to an abstract box, we examine their interface
satisfactions. The use of interface satisfaction enables flexible but
safe composition: R and P can be composed as long as the
provided interface x of box P satisfies the required interface y of
box R to which it is connected.

The current BoxScript prototype has a static runtime structure,
that is, concrete boxes are bound during compilation time. The
advantage of this strategy is that it keeps the language simple,
understandable, and typesafe. However, the boxes would be more

flexible if the binding of box variants can be safely deferred past
assembly time, to runtime.

The box type structure and the concept of a box variant are novel
and useful features of BoxScript. The box variant enables
different implementations of an abstract box to be inserted into
the program being developed at the time of compilation. But it
could be more useful. The current BoxCompiler requires that a
concrete variant be chosen for each abstract constituent of a
compound box before the compound box can be compiled
correctly. However, this seems unnecessarily restrictive. The
compiler should be able to compile most of the compound box
features based on the characteristics of the abstract constituents.
Then, before the system is deployed, a tool that assembles
subsystems, binds the variant and performs any additional
interface conformity checks.

The advocates of the new concept of software factories [2] argue
that components must exhibit deferred encapsulation if they are
to be broadly reusable. That is, a component should not be a
complete blackbox. It should be parameterized with a number of
variable aspects that can be bound at the time of assembly of a
subsystem. However, each of these aspects should be
encapsulated pieces of well understood functionality that have
been predefined. That is essentially what the box variant
supplies.

5. CONCLUSION
BoxScript is a Java-based, component-oriented programming
language that provides convenient syntactic support for
component concepts. It supports compositionality and flexibility
in component-oriented systems and encourages good practices for
component-oriented development. This paper briefly introduces
the fundamental concepts of BoxScript and then describes how
BoxScript components (i.e., boxes) are realized as clusters of
interrelated Java interfaces, classes, and packages.

6. REFERENCES
 [1] Cunningham, H. C., Liu, Y. and Tadepalli, P. Toward

Specification and Composition of BoxScript Components. In
Proceedings of the Workshop on Specification and
Verification of Component-Based Systems (SAVCBS), pp. 114-
117, November 2004.

[2] Greenfield, J. and Short, K. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools.
Wiley, 2004.

[3] Liu, Y. and Cunningham, H. C. BoxScript: A Component-
oriented Language for Teaching. In Proceedings of the ACM
SouthEast Conference, Vol. 1, pp. 349-354, March 2005.

[4] Liu, Y. BoxScript: A Language for Teaching Component-
Oriented Programming, Ph.D. Dissertation, Department of
Computer and Information Science, University of Mississippi,
August 2005.

[5] Meyer, B. Object-Oriented Software Construction, Second
Edition, Prentice Hall, 1997.

[6] Morgan, C. Programming from Specifications, Prentice Hall
International, 1994.

[7] Szyperski, C. Component Software: Beyond Object-Oriented
Programming, Second Edition. Addison Wesley, 2000.

 7

