
LAZY FUNCTIONAL PROGRAMMING IN HASKELL

TUTORIAL PRESENTATION

H. Conrad Cunningham, Yi Liu, and Hui Xiong
Department of Computer and Information Science

University of Mississippi
University, MS 38677 USA

{cunningham,liuyi,hxiong}@cs.olemiss.edu

 In ACM's 1977 Turing Award Lecture [1], Backus argues that conventional
imperative programming languages are inherently disorderly:

Moreover, the assignment statement splits programming into two
worlds. The first world comprises the right sides of assignment statements.
This is an orderly world of expressions, a world that has useful algebraic
properties (except that those properties are often destroyed by side
effects). It is the world in which most useful computation takes place.

The second world of conventional programming languages is the
world of statements. The primary statement in that world is the
assignment statement itself. All the other statements in the language exist
in order to make it possible to perform a computation that must be based
on this primitive construct: the assignment statement. … This world of
statements is a disorderly one, with few useful mathematical properties.

Why is the expression world orderly? The primary reason is that, within some

well-defined context, a variable (or other symbol) always represents the same value.
Since a variable always has the same value, we can replace the variable in an expression
by its value or vice versa. Similarly, if two subexpressions have equal values, we can
replace one subexpression by the other. That is, equals can be replaced by equals. This
property is called referential transparency.

An expression represents a (mathematical) function. The variables of the
expression are the parameters of the function and the result from evaluating the
expression is the value of the function. The purpose of a functional programming
language, as we study in this tutorial, is to extend the advantages of expressions to the
entire program, ridding ourselves of what Backus called the “disorderly” world of
assignment statements.

A functional program consists entirely of functions. The main program is a
function that takes the user's input as its arguments and delivers the program's output as
its result. For nontrivial programs, this function is defined in terms of other functions,
which themselves are defined in terms of yet other functions, and so forth until every
function can be defined in terms of the language's primitive operations.

Another advantage of functional programming languages is that they support very
powerful and regular abstraction mechanisms. These mechanisms result, in part, from
the way that functions are handled. Unlike most conventional languages, functional

languages treat functions as first class values. That is, functions can be stored in data
structures, passed as arguments to functions, and returned as the results of functions.

Functions that take functions as arguments or return functions as results, often
called higher-order functions, provide quite flexible mechanisms for encapsulating
patterns of computation. For example, we can define a higher-order function that
encapsulates the computational pattern “apply operation OP to each element of a list and
return the resulting list” by making the operation OP a parameter of the function. By
taking advantage of a library of higher-order functions that capture common patterns of
computation, we can quickly construct concise, yet powerful, programs.

Functions can also be partially applied. That is, we can “call” a multi-parameter
function supplying arguments for just a subset of its parameters. The partial application
of the function returns another function—a function that takes the remaining parameters
and returns the expected result of the original function. Along with higher-order
functions, this feature enables programs to construct new operators from existing ones by
“freezing in” some of the arguments, to pass these operators to other parts of the
program, and to apply them as needed.

The actual functional programming environment discussed in this tutorial is the
Hugs 98 interpreter [7]. Hugs 98 accepts a language that is syntactically and
semantically similar to the “lazily-evaluated” functional programming language Haskell
98 [4] [2, 3, 5, 8]. Hugs is a freely available interpreter that runs on a number of
computing platforms.

In a lazy evaluation scheme, the evaluation of an expression is deferred until the
value of the expression is actually needed elsewhere in the computation. In particular, an
argument of a function (which may be an arbitrary expression) is not evaluated until the
first time the corresponding parameter is referenced during the evaluation of the function.
If the parameter is never referenced, then the corresponding argument is never evaluated.
As a consequence of lazy evaluation, a data structure can be defined without having to
worry about how it is processed and it can be processed without having to worry about
how it is created. A data structure may even be conceptually “infinite” in length (as long
as the program never actually tries to access all of it). Lazy evaluation allows
programmers to separate the data from the control of processing, thus enabling programs
to be highly modular [6].

This tutorial introduces those in attendance to the concepts of programming using
the lazily evaluated, purely functional programming language Haskell and gives several
examples that illustrate its power and elegance.

PRESENTERS

H. Conrad Cunningham is Chair and Associate Professor of Computer and
Information Science at the University of Mississippi. His professional interests include
concurrent and distributed computing, programming methodology, and software
architecture. He has a BS degree in mathematics from Arkansas State University and MS
and DSc degrees in computer science from Washington University in St. Louis.
Cunningham created a beginning graduate course on Functional Programming in 1991
and has taught the course ten times. He has written an extensive set of lecture notes on
functional programming with Hugs [3].

Yi Liu is a PhD student in Computer and Information Science at the University of
Mississippi with interests in software engineering and artificial intelligence. She has a
Master's degree in computer science from Nanjing University in China. She was a
student in Cunningham's functional programming class in the spring 2003 semester.

Hui Xiong is an MS student in Computer and Information Science at the
University of Mississippi with interests in software engineering. She has a Bachelor’s
degree in English from Wuhan University in China. She was a student in Cunningham's
functional programming class in the spring 2003 semester.

REFERENCES

[1] J. Backus. “Can Programming Languages Be Liberated from the von Neumann

Style? A Functional Style and Its Algebra of Programs,” Communications of the
ACM, Vol. 21, No. 8, pp. 613-641, August 1978.

[2] R. Bird. Introduction to Functional Programming Using Haskell, Second edition,
Prentice Hall Europe, 1998.

[3] H. C. Cunningham. Notes on Functional Programming with Gofer, Technical
Report UMCIS-1995-01, University of Mississippi, Department of Computer and
Information Science, Revised January 1997.
http://www.cs.olemiss.edu/~hcc/reports/gofer_notes.pdf

[4] Haskell Organization. Haskell: A Purely Functional Language,
http://www.haskell.org

[5] P. Hudak. The Haskell School of Expression, Cambridge University Press, 2000.
[6] J. Hughes. “Why Functional Programming Matters,” The Computer Journal, Vol.

32, No. 2, pp. 98-107, 1989.
[7] Hugs Project. Hugs Online, http://www.haskell.org/hugs.
[8] S. Thompson. Haskell: The Craft of Functional Programming, Addison Wesley,

1999.

