
Encoding Feature Models Using Mainstream JSON Technologies
Hazim Shatnawi

University of Mississippi

University, Mississippi, USA

hhshatna@go.olemiss.edu

H. Conrad Cunningham

University of Mississippi

University, Mississippi, USA

hcc@cs.olemiss.edu

ABSTRACT
Feature modeling is a process for identifying the common and

variable parts of a software product line and recording them in

a tree-structured feature model. However, feature models can be

difficult for mainstream developers to specify and maintain because

most tools rely on specialized theories, notations, or technologies.

To address this issue, we propose a design that uses mainstream

JSON-related technologies to encode andmanipulate featuremodels

and then uses the models to generate Web forms for product config-

uration. This JSON-based design can form part of a comprehensive,

interactive environment that enables mainstream developers to

specify, store, update, and exchange feature models and use them

to configure members of product families.

CCS CONCEPTS
• Software and its engineering→ Software product lines.

KEYWORDS
Software Engineering, Software Product Line, Software Reuse, Fea-

ture, Feature Model, Feature Diagram, JSON, MongoDB

ACM Reference Format:
Hazim Shatnawi and H. Conrad Cunningham. 2021. Encoding Feature Mod-

els Using Mainstream JSON Technologies. In 2021 ACM Southeast Conference
(ACMSE 2021), April 15–17, 2021, Virtual Event, USA. ACM, New York, NY,

USA, 8 pages. https://doi.org/10.1145/3409334.3452048

1 INTRODUCTION
A software product line (SPL) is a set of software systems from

some application domain in which all members share some charac-

teristics. For any pair of systems from the set, there are also some

characteristics that differentiate one from the other. The shared and

differing characteristics are called commonalities and variabilities,
respectively. These characteristics, or software assets, are known

as features [3, 13, 18].
An SPL should enable and encourage software reuse within

its application domain. However, as an SPL grows in size (i.e., in

the number of features), it can become complex and confusing be-

cause of the many dependencies among its features. To manage this

complexity, Kang et al. [18] introduced Feature-Oriented Domain

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACMSE 2021, April 15–17, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8068-3/21/04. . . $15.00

https://doi.org/10.1145/3409334.3452048

Analysis (FODA). In this method, the analyst studies the set of re-

lated software systems to identify its features and then assembles

the features and their interrelationships into a feature model, which

can be depicted using a feature diagram (as described in Section 2).

Various researchers have extended the feature modeling method

to better enable it to handle large, complex software families [11, 13,

14, 19]. to support manipulation and analysis using automated tools

[6] and to guide developers in constructing valid feature models

[1, 9, 10]. However, effective use of these methods and tools often

requires specialized knowledge and skills. Mainstream developers

thus may find it difficult to systematically build, modify, and reason

about feature models and to build valid products from them.

Other researchers leverage the Extensible Markup Language

(XML) technologies to specify feature models and configure prod-

ucts from SPLs [12, 15]. XML is “a metalanguage for creating

markup languages” [25]. In these approaches, a feature model is

an XML document that conforms to an XML Schema. However,

a possible problem with XML is that “the XML Schema language

has a number of type system constructs which simply do not exist

in commonly used . . . programming languages” [20]. There is no

standard way to handle these unsupported types, which “leads to

interoperability problems” across platforms.

To mitigate the various concerns, we explore a novel approach

that encodes feature models using JavaScript Object Notation

(JSON) [5, 17]. Why use JSON instead of XML?

• JSON is simpler than XML. It is a simple, text-based lan-

guage that represents data using a nested combination of

data structures common to most programming languages,

sets of name-value pairs and sequences of values. It is both

readable by humans and easy for computers to parse and

map to and from internal data structures. JSON is thus a

convenient notation for transmitting and storing structured

data.

• JSON is better supported by client-side Web software than

XML. It is essentially a subset of JavaScript, which is sup-

ported by all browsers. By using JSON, we avoid the need for

add-on libraries to access data from a browser’s Document

Object Model (DOM). JSON is estimated to parse up to one

hundred times faster than XML in modern browsers [17, 26].

Given its prominence in Web applications, it is a good choice

for our research; most mainstream developers are familiar

with JSON and it is supported by many libraries and tools.

The primary contributions of this research include:

• How to accurately encode feature models in JSON. Section 3

describes the syntax and semantics of our JSON-encoded

feature models.

• How to translate valid RDB-encoded feature models to and from
JSON. Shatnawi and Cunningham [30, 31] encode feature

models in relational database (RDB) tables. Section 4 specifies

algorithms to translate their RDB encoding to and from our

JSON encoding.

• How to ensure validity of JSON-encoded feature models while
creating, modifying, and deleting features. Section 5 presents

algorithms for creating, modifying, and deleting features.

Our approach aims to separate the feature concept from its

implementation by using the JSON notation.

• How to store JSON-encoded feature models in MongoDB
databases and preserve their validity while creating, mod-
ifying, deleting, and extracting information about features.
Section 6 presents our approach to using document-oriented

MongoDB databases [4, 23] to store and manipulate valid

JSON-encoded feature models. The section also describes

how to generate Web forms (similar to that of Shatnawi

and Cunningham [31, 31]) that enable users to specify valid

products.

We conclude this paper by examining additional related work in

Section 7 and then summarizing our contributions and outlining

possible future work in Section 8.

2 FEATURE MODELS
A feature model is a compact representation of an SPL that captures

all the design choices in one high-level description [18]. Each fea-

ture corresponds to a single design choice. A common feature is
shared by all products in the SPL. A variable feature only appears

in specific products. When configuring a product in the SPL, a com-

mon feature must be included; a variable feature may or may not

be included based on the user’s choice. The feature model should

enable these variabilities to be managed effectively [2].

A feature model is a tree-like structure with a single root (called

the concept) that represents the entire SPL [13, 18]. A node repre-

sents a feature and an edge represents the relationship between

two features. There are two kinds of relationships [2, 3, 13, 18]:

• Parent-child relationships, each of which represents the re-

lationship between a high-level (parent) design choice and a

more detailed (child) design choice

• Cross-tree inclusion and exclusion constraints

Figure 1 shows an example feature model for a raster/vector im-

age manipulation SPL. This simple feature model uses the Geospa-

tial Data Abstraction Library (GDAL) and OpenGIS Simple Features

Reference Implementation (OGR) libraries [36] in Python 3.8.

The relationships between a parent and its children include:

• Mandatory features, which are child design choices that

must appear in the final product whenever their parent fea-

tures also appear. A mandatory feature is labeled by a black

circle on top of the node in the feature model [13, 18]. In

Figure 1, Library and GDAL are mandatory features.

• Optional features, which are child design choices that may

or may not appear in the final product based on the user

selections. An optional feature is labeled by a white circle

on top of the node in the feature model [13, 18]. In Figure 1,

OGR, Polygonize, and PNG are optional features.

• OR (one-to-many) features, which are sets of child features

from which one or more members are selected. The selected

features appear in the final product if their parent node and

Figure 1: Feature Model for Raster/Vector Manipulation SPL

all other ancestor features up to the root are selected. An OR

group is labeled by a black-filled arc or line that joins the OR

features’ edges. It is an extension to FODA’s basic feature

models proposed by Czarnecki [13]. In Figure 1, CustomBlock
and NativeBlock form an OR group.

• Alternative (exactly one) features, which are sets of child

features from which exactly one must be selected. This fea-

ture appears in the final product if its parent and all other

ancestor features up to the root are selected. An alternative

group is labeled by an arc or a line that joins the alterna-

tive features’ edges [13]. In Figure 1, DeleteEmptyPolygons,
AreaCalc, Dissolve, and AddFields form an alternative group.

The cross-tree constraints enable features to require or exclude
other features in the feature model [13, 18]. These constraints are

represented by dotted edges. In Figure 1, Polygonize requires OGR,
so the edge points to OGR. Therefore, if Polygonize is selected,

then OGR must also be included. The converse does not hold. In

excludes relationships, however, the converse does hold.
Figure 1 depicts an SPL with the product line concept RasterVec-

torProcessing. This feature indicates the purpose of the SPL. The
figure shows a Library feature with two children. (1) The GDAL
library, shown as a mandatory feature, is selected by default. (2) The

OGR library, shown as an optional feature, can either be selected

or not selected to be in a product.

The RasterVectorProcessing SPL accepts raster files (as results

of flood simulations) to perform calculations to determine flood

hazard risks and potentially lethal flood zones. For small rasters, the

SPL’s GDAL feature includes gdal_calc.py, a command line raster

calculator that uses NumPy [27] array syntax. For larger rasters,

the SPL offers the ReadingAlgorithm feature for reading raster files.

This feature offers two mechanisms in an OR relationship, enabling

the user to select one or both. (1) The CustomBlock feature is an

algorithm that determines the best block size (tile) to read the rows

and columns in a raster file, thus enhancing the read/calculate

time. (2) The NativeBlock feature uses whatever the raster’s reading

{
"id": "RasterVectorProcessing",
"type": "root",
"parent": "",
"relation": "",
"requires": [],
"excludes": [],
"children": [

{
"id": "Library",
"type": "mandatory",
"relation": "",
"requires": [],
"excludes": [],
"children": [

{
"id": "GDAL",
"type": "mandatory",
"relation": "",
"requires": [],
"excludes": [],
"children": []

},..........
]

},
{

"id": "Polygonize",
"type": "optional",
"relation": "",
"requires": [

"OGR"
],
"excludes": [],
"children": [

{
"id": "DeleteEmptyPolygons",
"type": "optional",
"relation": "alternative",
"requires": [],
"excludes": [],
"children": []

},..........
]}]

}

Figure 2: Example of a JSON-encoded Feature Model

mechanism to read column-by-column, row-by-row, or using the

native block size retrieved from the raster band.

The SPL offers a Polygonize feature, which converts the cal-

culated raster areas into polygons and creates a shape file. This

feature has four operations from which the user can select only

one, because the children are grouped in an alternative relationship.

These operations add to the shape file such as deleting empty poly-

gons, dissolve polygons to be merged into one shape, calculate the

polygons’ area, and add fields to the outputted raster files (e.g. id,

description). These operation under the Polygonize feature require
the OGR library for accessing and manipulating vector shape files.

The SPL offers an output format through the OutputFormat fea-
ture, which has the shape file as a default, and two optional features

to include PNG and/or JPEG output files.

3 ENCODING FEATURE MODELS IN JSON
This section presents this paper’s first contribution: how to accu-

rately encode feature models in JSON. Figure 2 shows part of the

feature model presented in Figure 1.

This JSON-based language [17] can serve as a precise medium

for communication of feature models among independent tools and

work sites. This language can allow these to work in isolation from

each other and to communicate feature models among themselves

using a portable, text-based format. It can make extending the sys-

temwith future tools convenient and provide a system-independent

format for archiving feature models.

We represent a feature as a JSON object [17] with the following

properties:

• id, which is the feature’s unique name string

• type, which is the string mandatory, optional, or root
• parent, which is the feature’s parent’s name

• relation, which is either the string OR or alternative
• requires, which is an array of feature names

• excludes, which is an array of feature names

• children, which is an array of feature objects

The outer layer of the JSON structure for a feature model is an

object representing its concept (root) node. This feature always has

the value of its type property set to root, its relation property

set to an empty string, and its requires and excludes properties
set to empty arrays (i.e., []). No other feature can have type root.
Its children property is set to an array holding its child features.

The feature names in a requires or excludes array must be ids
for defined features that do not have the type mandatory. Manda-

tory features are preselected and cannot be deselected when con-

figuring a product. In addition, a feature can neither require nor

exclude one of its ancestors in the feature model.

4 TRANSLATING FEATURE MODELS
Shatnawi and Cunningham [30, 31] describe an approach to fea-

ture modeling with similar goals to the work we present here. It

uses a mainstream relational database (RDB) to represent a fea-

ture model as a directed acyclic graph. For the purposes of this

paper, the design consists of three tables. (1) The feature table

defines the set of features, representing each feature by a unique

id. (2) The featuresRelations table specifies the relationType
between features fromFeature and toFeature. The relation types

include hierarchical (mandatory, optional, OR, and alternative)
and cross-tree (requires and excludes) relationships. (3) The rela-
tionships table lists the static set of possible relationships between
features. Shatnawi and Cunningham’s approach also generates a

dynamic, Web-based user interface that enables users to construct

and modify valid models and to configure valid products from them.

Our research seeks to provide a JSON encoding for feature mod-

els that can also serve as an exchange and archival mechanism for

Shatnawi and Cunningham’s RDB-encoded feature models. This

section presents this paper’s second contribution: how to translate

valid RDB-encoded feature models to and from our JSON-encoded

models. Together, the two translators enable the RDB-based and

JSON-based tools to be used as a part of an integrated system.

Figure 3 sketches the RDB-to-JSON translation algorithm. It is a

recursive algorithm that does a depth-first traversal of the parent-

child tree encoded in the RDB. During the traversal, it gathers

information about the tree’s nodes and edges that it subsequently

uses to construct equivalent structures in the JSON-encoded tree.

If we apply the ENCODE function to the root feature of a valid

RDB-encoded feature model, then its return value is a valid JSON-

encoded feature model that is equivalent to the RDB-encoded fea-

ture model.

rdbTojsonTranslator

Data: valid RDB-encoded feature model

Output: returns feature and all its descendants encoded in JSON

function encode(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒)

if feature exists in RDB feature model then
// fetch 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒’s id from feature table

// fetch id’s parent from toFeature column of

featuresRelations table

// fetch type of id-parent relationship from

relationType column of featuresRelations

// collect arrays of id’s requires, excludes, and
child feature relationships from
featuresRelations

// call ENCODE on each child feature and collect

resulting JSON objects in children array

// return JSON object with properties id, type,

parent, relation, requires, excludes, children

else
// ERROR (should not occur)

end function

Figure 3: RDB-to-JSON Feature Model Translator

jsonTordbTranslator

Data: valid JSON-encoded feature model

Result: adds JSON feature and all its descendants to RDB

procedure decode(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒)
if 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 is a valid JSON feature object then

// fetch id, parent, requires, excludes, and

children from 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 object

// create new row of feature table for id

// create new row of featuresRelations table with
id in fromFeature, parent in toFeature, and type
in relationType column

// for each feature A that requires (or excludes)
feature B, create new row in featuresRelations
with A in fromFeature, B in toFeature, and
requires (or excludes) in relationType column

// call DECODE for each object in children array

else
// ERROR (should not occur)

end procedure

Figure 4: JSON-to-RDB Feature Model Translator

If we assume that a JSON document correctly encodes a valid

feature model (e.g., is an output of the RDB-to-JSON translator

above), the JSON-to-RDB translator works similarly to the RDB-to-

JSON translator. (We leave the syntactic and semantic validation

of JSON-encoded feature models for future work.) As shown in

Figure 4, the algorithm traverses the JSON-encoded tree and gathers

information about the tree’s nodes and edges that it subsequently

uses to populate the feature and featuresRelations tables [30].
The relationships table is a static table that is the same for all

feature models.

createFeature

Data: name, type, parent, relation, requires, excludes, children

1 newFeatureObj← {’id’: name, ’type’: type, ’parent’: parent,

’relation’: relation, ’requires’: requires, ’excludes’: excludes,

’children’: children}

2 if feature is unique then
3 if parent is empty string AND type == ’root’ then
4 numOfKeys← get number of JSON object’s keys

5 if numOfKeys returns 0 then
6 newFeatureObj← {’id’: name, ’type’: ’root’, ’relation’:

”, ’requires’: ”, ’excludes’: ”, ’children’: children}

7 write newFeatureObj to to JSON feature model file

8 return

9 if type is ’optional’ or ’mandatory’ AND relation is ’OR’ or
’alternative’ or "" then

10 if if parent is valid feature in feature model then
11 parJSON← lookup parent object in the JSON structure

12 if parJSON does hasChildren then
13 relationship← parJSON.children.relation

14 if relationship == relation then
15 desArr← getDescendants(parJSON, parent)
16 ascArr← getAscendants(parJSON, parent)
17 mergeArr← merging ascArr and desArr

18 Push newly created feature’s id and parent to

mergerArr

19 requireExclude(requires, ’requires’,
mergerArr)

20 requireExclude(excludes, ’excludes’,
mergerArr)

21 assign new feature to parent in

newFeatureObj

22 else
23 write newFeatureObj to JSON feature model file

Figure 5: Operation to Create a Feature

If we call the DECODE procedure with a valid JSON-encoded

feature model as its argument and with an “empty” database, on

return the database represents a feature model that is equivalent to

the argument. By an “empty” database we mean that the feature
and featuresRelations tables have no rows and that the rela-
tionships table is prepopulated with the static definitions of the

relationships.

5 MANIPULATING JSON MODELS
This section presents this paper’s third contribution: how to ensure

the validity of JSON-encoded feature models while creating, modi-

fying, and deleting features. We define operations to create, modify,
and delete features. All three operations preserve the validity of the

JSON-encoded feature model. If initiated with a valid model, each

terminates with a valid model that has been updated appropriately.

Figure 5 shows the operation to create a new feature and add

it to the JSON-encoded feature model. The operation’s inputs are

the properties of a feature object as described in Section 3. The

operation first verifies that the feature’s name is unique among

getDescendants

Data: parentObj
Output: array of feature descendants up to root

1 listOfChildArray← get list of parent’s children

2 tempArray← []

3 for (item in listofChildArray) {
4 tempArray.push(item)

5 childObj← lookup item (child object) in JSON file

6 if child has property .children then
// recursive call for child

7 getDescendants(childObj)

8 return tempArray

Figure 6: Algorithm to Get a Feature’s Descendants

the defined features. Then the operation checks whether a parent

feature is passed. If a parent is not passed and the model does not

already have a root, then the new feature becomes the root (concept)

node. If a root already exists, then the operation exits with an error.

If a parent is passed and the parent feature exists, then the new

feature becomes a regular child feature of that parent. If the parent

does not exist, then the operation exits with an error. If no error has

occurred, then the operation checks the correctness of the type,
relation, and parent properties passed. If the feature model is

empty, the user can leave out the parent property.
If the parent property is passed, the algorithm retrieves the

parent object from the JSON-encoded model to determine what

types of relationships exist between the parent and its children. The

operation then checks whether the relationship matches what the

user passes in the relation property. After passing these checks,
the operation determines the newly created feature’s ascendants

and descendants by passing the parent object to two algorithms:

getDescendants and getAscendants.
Figure 6 shows the getDescendants algorithm. It first stores the

child features in an array. Then, for each item in the array, it checks

whether that item has children. If the item does have children, the

algorithm gets that item’s object and then calls itself recursively

with that object as its argument. The algorithm then returns an

array that has all descendant features from the feature being created

down to the leaves. The getAscendants algorithm has similar steps

but instead, looks for the property parent instead of children.
The create operation (Figure 5) merges the arrays returned by

the getAscendants and getDescendants algorithms and then passes

the result to a third algorithm (shown in Figure 7) that enforces the

requires and excludes constraints. This algorithm first iterates

through the items in the require (or exclude) argument’s array. If an

item is in the merged array (which holds ascendants, descendants,

parent, and the feature being created), the algorithm skips this item;

otherwise, the algorithm continues to process the item. The next

step is to retrieve the item’s object from the JSON structure, if it

exists. Then the algorithm checks the item object’s type property
to ensure that no mandatory feature is required or excluded. If

the type property is optional, then the feature to be required or

excluded passes all the checks and the algorithm pushes the update

requireExclude

Data: requires or excludes arg, ’requires’ or ’excludes’ as strings,
mergerArr

Output: Require or exclude operation gets accepted and updated in

JSON structure or an error is shown

1 for (item in requires or excludes) {
// mergerArr contains ascendants, descendants,

parent, created feature

2 if feature to get required/excluded not in mergerArr then
3 itemObj← get feature’s object from JSON structure

4 if itemObj exists in JSON structure then
// check itemObj’s property type to identify

if it’s mandatory or optional

5 if itemObj.type == ’mandatory’ then
// can’t require or exclude mandatory

features

6 continue

7 else
8 update properties requires and excludes in

newFeatureObj defined in the creation algorithm

Figure 7: Algorithm to Enforce Cross-tree Constraints

to the JSON structure. The algorithm skips any item whose type
property is mandatory.

Themodify operation is similar to the feature creation operation.

When modifying a feature property such as id, type, or relation,
the operation applies the same checks that are applied in feature

creation, but no new JSON feature is created and stored. Instead,

the operation first determines whether the feature to be modified

actually exists in the JSON structure. If the feature exists, the opera-

tion retrieves its object and then checks the id property against the
features in the feature model. After completing the requested mod-

ifications (if correct), the operation updates the object and stores it

back in the JSON structure.

The delete operation takes one additional step. If the deleted

feature is the root of the feature model, the operation allows the

user to either create another root or delete the whole feature model.

If the deleted feature has children, then the user has the choice of

either assigning the children to another existing feature or deleting

the feature along with all its descendants.

As a proof of concept, we implemented and tested these op-

erations using both Python 3.8 and the JavaScript (ECMAScript

2017) in a Chrome browser version 87.0.4280.88. Both programs

performed these operations on a JSON document that had been

deserialized into a programming language data structure. After

each operation, the updated JSON document was serialized back

into an external file. We also created a Web form similar to the

one proposed in [31] for enabling the creation, modification, and

deletion of features through the user interface.

6 USING MONGODB DATABASES
So far, we have defined how to encode feature models as JSON

documents and discussed how to manipulate them without giving

much attention to how they are stored. In this section, we present

this paper’s fourth contribution: how to store JSON-encoded feature

models in MongoDB databases and preserve their validity while

creating, modifying, deleting, and extracting information about

features. We also generate Web forms that enable users to specify

valid products.

Since the 1970s, relational databases have been the most promi-

nent approach to organizing large data collections [34]. As we have

noted, Shatnawi and Cunningham [30] use the rows and columns

of three RDB tables to encode feature models. However, in recent

years, a number of alternative storage structures have emerged.

These are often grouped under the broad term NoSQL [21].

In this section, we explore the use of a NoSQL database to store

feature models. In particular, we investigate the document-oriented

MongoDB databases [4, 23] to store the JSON-encoded models and

its query language to manipulate the models. We choose a Mon-

goDB database because it is organized around JSON-like documents.

To support this investigation, we install both the MongoDB server
and the Compass Community GUI. We use PHP’s MongoDB Driver
Manager class [33] to connect to a MongoDB database.

In our JSON-encoded feature model (e.g., Figure 3), a feature

is a JSON object with zero or more other distinct JSON objects

embedded within its children array. The representation in a Mon-

goDB database separates each object representing a feature and

stores it in a separate document. Therefore, the MongoDB rep-

resentation of the feature model depicted in Figure 1 consists of

19 documents linked to each other via the defined relationships

(parent, children, requires, or excludes). Using the MongoDB

Query Language (MQL) enables us to create new features, delete or

modify existing features, and extract information from the model.

If we construct a valid JSON-encoded feature model (e.g., in-

directly using the RDB-to-JSON translator or directly using the

creation algorithm), then we can store it in a MongoDB database

using the Model Tree Structures with Parent References (MTSPR)

pattern [23]. An MTSPR is a data model that organizes documents

in a tree-like structure by storing references to the parent nodes in
the child nodes [22].

Figure 8 shows the resulting feature model stored in a MongoDB

database. The top feature in the feature model (i.e., the concept

node) is RasterVectorProcessing. Like the other features, it has
_id, parent, relation, requires, excludes, and children sim-

ilar to the properties in the JSON-encoded models presented in

Section 5. The primary difference is that the type property (which

is a reserved word in MongoDB) is renamed typeMndOpt.
For the MongoDB-encoded feature models, we developed opera-

tions for creating new features and modifying and deleting existing

features. These are similar to the ones described in Section 5 except

that they create and manipulate the MTSPR representation used

in the MongoDB database. In addition, we developed an algorithm

that traverses the MongoDB-encoded feature model, determines

the relationships and constraints between features, and generates

a dynamic Web form (similar to that of Shatnawi and Cunningham

[30, 31]) that enables a user to configure valid products from the

SPL.

The algorithm first connects to the MongoDB server with the

default hostname and port provided by the MongoDB Compass

application and then determines which database name and collec-

tion holds the feature model. Next, it uses the MQL query {parent:

Figure 8: Feature Model for Raster/Vector Manipulation SPL
Stored in a MongoDB Database

Figure 9: Part of the Product Configuration Form

"root"} to fetch the unique feature whose parent property has the
value "root". The root feature’s _id property is the root’s name.

In the next step, the algorithm generates an HTML form like the

one shown in Figure 9. The algorithm represents the feature model’s

hierarchical structure as an HTML directory list structure. The al-

gorithm builds the form by calling a recursive display function that

takes the current feature’s name (the root by default), its parent, its
relationship with its parent, and the current indentation level.

The display function fetches the value of the feature’s children

property and then recursively calls itself for each child. It stops

the recursion when a feature has no children. The HTML form

represents optional features and features within an alternative
group as check boxes and features within an OR group as radio

buttons. It represents mandatory features as radio buttons which
are selected by default and cannot be modified. The form shows

the cross-tree requires and excludes relationships, which cannot

be shown directly in the hierarchy, as warning messages under

the determined features. When the user selects a feature, the form

updates the display to show which features have been selected and

which are still available to be selected according to the semantics

of the feature model.

Figure 9 shows part of the Web form generated from the SPL

depicted in Figure 1. The directory list displays check boxes for

the optional feature OutputFormat and the OR relationship among

ReadingAlgorithm’s children and radio buttons for the alternative

relationship among Polygonize’s children. The mandatory feature

ReadingAlgorithm shows as a radio button locked into the selected
state. The form indicates the cross-tree constraint that Polygonize
requires OGR as a warning message under the determined feature.

The proof-of-concept implementation stores a JSON-encoded

feature model in a MongoDB database. To do so, the implementa-

tion must transform the JSON model by breaking it into a set of

JSON feature objects structured according to the MTSPR pattern. It

connects to the MongoDB database using Python 3.8 and the pack-

age pymongo [24]. The implementation generates the Web form by

printing the needed HTML statements into a text file.

7 DISCUSSION
The work reported in this paper focuses on how to use mainstream

technologies to construct and maintain syntactically and semanti-

cally correct feature models for SPLs. In particular, we explore how

to use the ubiquitous JSON notation and technologies to encode

feature models. In this section, we compare our approach to others

found in the literature.

Since Kang et al. [18] introduced the FODA method in 1990, re-

searchers and practitioners have used the feature modelling method

extensively to model SPLs. Over the years, researchers have pro-

posed several variations to the method [11, 13, 14, 19]. However,

to use these methods effectively, mainstream developers may need

to acquire specialized knowledge and skills. They may find it dif-

ficult to use these methods in building, modifying, and reasoning

about feature models. In our work, we seek to use mainstream

technologies familiar to most developers.

To support manipulation and analysis using automated tools,

some researchers express feature models using formal specifica-

tions. For example, Batory et al. [7] represent a feature model as

a language generated by a formal grammar. A sentence in the lan-

guage corresponds to a product in the SPL. Checking the validity

of a product configuration is thus a matter of parsing the sentence.

In other work, Batory [6] encodes a feature model in a proposi-

tional formula. A variable in the formula represents a feature. The

variable has the value true if the feature is selected or false if it
is not. The formula uses logical operators to encode the relation-

ships between features, such the OR and alternative relationships

discussed in Section 2. Checking the validity of a product configura-

tion is thus a matter of evaluating the corresponding propositional

formula. If the resulting value is true, the configuration is valid;

otherwise, it is not.

We agree that the use of grammars and propositional formulas

can help users understand feature models. Mainstream software

developers should have basic familiarity with these concepts, but

many may not be comfortable using them as intensely as required

by some of the tools for representing feature models. In compari-

son, our approach uses everyday programming technologies such

as databases, Web forms, and JSON. In addition, our interactive

approach helps users discover problems during model construction,

albeit at the cost of running frequent validity checks.

Other feature modeling research (e.g., pure::variants [10], FAMA

[9], and FeatureIDE [1]) seeks to guide developers in constructing

valid feature models. However, these require considerable expertise

to use effectively, and they do not help users to configure products.

Cechticky et al. [12] and Ge and Whitehead [15] propose ap-

proaches to feature modeling and SPL configuration that use the

Extensible Markup Language (XML) technologies. XML is “a meta-

language for creating markup languages” [25]. To design a language

in the XML family, a designer must choose a specific set of names

for the language’s elements and attributes. In these approaches, a

feature model is thus an XML document that conforms to an XML

Schema.

According to Lanthaler [20], a problem with XML is that “the

XML Schema language has a number of type system constructs

which simply do not exist in commonly used . . . programming lan-

guages”. There is no standard way to handle these unsupported

types, which “leads to interoperability problems” across platforms.

In comparison, our work seeks to leverage the easier-to-understand

JSON technologies.

The research reported in this paper is similar in approach to

that of Shatnawi and Cunningham [30, 31], which also seeks to

use mainstream technologies such as RDBs and Web forms. The

current research uses mainstream JSON technologies and seeks to

be compatible with their RDB and user interface designs.

8 CONCLUSION AND FUTUREWORK
Feature modelling provides a simple representation for software

product lines. This paper presents the following novel approaches:

• How to accurately encode feature models in JSON. Section 3

defines the syntax and semantics of a custom JSON language

to represent “traditional” feature models. A JSON-encoded

feature model is equivalent to the conceptual feature model

depicted by a feature diagram.

• How to translate valid RDB-encoded feature models to and
from JSON. Section 4 specifies algorithms to translate valid

feature models in Shatnawi and Cunningham’s [30, 31] RDB

encoding to and from our JSON-encoded models. The trans-

lations preserve the validity of the models.

• How to ensure validity of JSON-encoded feature models while
creating, modifying, and deleting features. Section 5 presents

algorithms for creating, modifying, and deleting features in

JSON-encoded feature models. These algorithms preserve

the validity of the feature model as it is updated.

• How to store JSON-encoded feature models in MongoDB
databases and preserve their validity while creating, mod-
ifying, deleting, and extracting information about features.
Section 6 presents our approach to using document-oriented

MongoDB databases [4, 23] to store and manipulate valid

JSON-encoded feature models. These algorithms preserve

the validity of the feature model as it is updated. The section

also describes how to generate Web forms (similar to that

of Shatnawi and Cunningham [31, 31]) that enable users to

specify valid products.

To better understand the semantic issues that underlie this work,

we are designing memory-based data structures and algorithms

for feature models. We plan two prototype implementations that

will emphasize safety, generality, and efficiency. We plan for one

implementation to use the functional language Haskell and the

other to use object-oriented Python 3.8+ with mypy type checking

[32]. We plan for both to be able to read and write valid JSON-

encoded feature models.

In the JSON-to-RDB translator, we assume that the input JSON-

encoded feature model is syntactically and semantically correct.

We plan to relax this assumption in future work. We plan to define

an appropriate JSON Schema [16, 28] to be able to validate much of

the model using standard JSON validators (e.g., Ajv [29]). However,

JSON Schema cannot express some constraints such as the unique-

ness of feature names within the model and the restrictions on the

cross-tree relationships. For these aspects, we expect to design a

custom semantic validator.

In this work, we investigate the use ofMongoDB databases [4, 23]

to store feature models. In future work, we plan to investigate the

use of graph-based Neo4j databases [8, 35] as a storage mecha-

nism. This will give us the opportunity to systematically compare

and evaluate the performance of several different feature model

encodings based on various objective and subjective criteria [34].

ACKNOWLEDGMENTS
We thank the anonymous referees and editors for their corrections

and helpful suggestions. We also thank the Department of Com-

puter and Information Science and (the first author’s employer) the

National Center for Computational Hydroscience and Engineering

(NCCHE).

REFERENCES
[1] M. Alam, A. Khan, and A. Zafar. 2018. Implementing Variability in SPL Using Fea-

tureIDE: A Case Study. In Proceedings of the International Conference on Electrical,
Electronics, Computers, Communication, Mechanical and Computing (EECCMC).
IEEE Madras Section, Tamil Nadu, India, 584–593.

[2] S. Apel, D. Batory, C. Kästner, and G. Saake. 2013. Feature-oriented Software
Product Lines: Concepts and Implementation. Springer, Berlin, Germany.

[3] P. Arcaini, A. Gargantini, andM. Radavelli. 2019. Achieving Change Requirements

of Feature Models by an Evolutionary Approach. Journal of Systems and Software
150 (2019), 64–76.

[4] K. Banker, P. Bakkum, S. Verch, and D. Garrett. 2016. MongoDB in Action (second

ed.). Manning, Shelter Island, NY, USA.

[5] L. Bassett. 2015. Introduction to JavaScript Object Notation: A To-the-point Guide
to JSON. O’Reilly Media, Sebastopol, CA, USA.

[6] D. Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In

International Conference on Software Product Lines. Springer, Rennes, France,
7–20.

[7] D. Batory, R. Lopez-Herrejon, and J. Martin. 2002. Generating Product-lines of

Product-families. In 17th IEEE International Conference on Automated Software
Engineering. IEEE, Edinburgh, UK, 81–92.

[8] D. Bechberger and J. Perryman. 2020. Graph Databases in Action. Manning,

Shelter Island, NY, USA.

[9] D. Benavides, S. Segura, P. Trinidad, and A. Cortés. 2007. FAMA: Tooling a

Framework for the Automated Analysis of Feature Models. In Proceeding of the
First International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS). VaMoS, Limerick, Ireland, 129–134.

[10] D. Beuche. 2016. Using pure::variants across the Product Line Lifecycle. In

Proceedings of the 20th International Systems and Software Product Line Conference.
ACM, Montreal, QC, Canada, 333–336.

[11] J. Carbonnel, D. Delahaye, M. Huchard, and N. Clémentine. 2019. Graph-based

Variability Modelling: Towards a Classification of Existing Formalisms. In Pro-
ceedings of the International Conference on Conceptual Structures (ICCS). Springer,
Marburg, Germany, 27–41.

[12] V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger. 2004. XML-based Fea-

ture Modelling. In International Conference on Software Reuse, Vol. 3107. Springer,
Madrid, Spain, 101–114.

[13] K. Czarnecki and U. Eisenecker. 1999. Generative Programming: Methods, Tech-
niques, and Applications. Addison-Wesley, Boston, MA, USA.

[14] K. Czarnecki, S. Helsen, and U. Eisenecker. 2005. Staged Configuration Through

Specialization and Multilevel Configuration of Feature Models. Software Process:
Improvement and Practice 10, 2 (April 2005), 143–169.

[15] G. Ge and E. Whitehead. 2008. Rhizome: A Feature Modeling and Generation

Platform. In Proceedings of the International Conference on Automated Software
Engineering. IEEE, L’Aquila, Italy, 375–378.

[16] JSON Schema Organisation 2021. JSON Schema. JSON Schema Organisation.

http://json-schema.org

[17] JSON.org 2021. Introducing JSON. JSON.org. https://www.json.org/json-en.html

[18] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-

21. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,

USA.

[19] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. 1998. FORM: A Feature-

Oriented Reuse Method with Domain-specific Reference Architectures. Annals
of Software Engineering 5, 1 (1998), 143–168.

[20] M. Lanthaler and C. Gütl. 2012. On Using JSON-LD to Create Evolvable RESTful

Services. In WS-REST ’12: Proceedings of the Third International Workshop on
RESTful Design. ACM, Lyon, France, 25–32.

[21] A. Meier and M. Kaufmann. 2019. SQL & NoSQL Databases: Models, Languages,
Consistency Options and Architectures for Big Data Management. Springer, Berlin.

[22] MongoDB, Inc. 2021. Model Tree Structures with Parent References. MongoDB,

Inc. https://docs.mongodb.com/manual/tutorial/model-tree-structures-with-

parent-references/

[23] MongoDB, Inc. 2021. The MongoDB 4.4 Manual. MongoDB, Inc. https://docs.

mongodb.com/manual/

[24] MongoDB, Inc. 2021. PyMongo 3.11.2 Documentation. MongoDB, Inc. https:

//pymongo.readthedocs.io/en/stable/

[25] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. 2005. Taxonomy of XML Schema

Languages Using Formal Language Theory. ACM Transactions on Internet Tech-
nologies 5, 4 (November 2005), 660–704.

[26] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta. 2009. Comparison of

JSON and XML Data Interchange Formats: A Case Study. In 22nd International
Conference on Computer Applications in Industry and Engineering (CAINE 2009).
International Society for Computers and Their Applications, San Francisco, CA,

USA, 157–162.

[27] T. Oliphant. 2006. A Guide to NumPy. Vol. 1. Trelgol Publishing, USA.
[28] F. Pezoa, J. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. 2016. Foundations of

JSON Schema. In Proceedings of the 25th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, Montreal,

QC, Canada, 263–273.

[29] E. Poberezkin. 2021. Ajv: Another JSON Schema Validator. https://ajv.js.org.
[30] H. Shatnawi and H. Cunningham. 2017. Mapping SPL Feature Models to a Rela-

tional Database. In Proceedings of the ACM SouthEast Conference. ACM, Kennesaw,

GA, USA, 42–49.

[31] H. Shatnawi and H. Cunningham. 2020. Automated Analysis and Construction

of Feature Models in a Relational Database Using Web Forms. In Proceedings of
the ACM SouthEast Conference. ACM, Tampa, FL, USA, 323–338.

[32] The Mypy Project 2021. mypy: Optional Static Typing for Python. The Mypy

Project. http://mypy-lang.org/index.html

[33] The PHP Group 2021. The MongoDB Driver Manager class. The PHP Group.

https://www.php.net/manual/en/class.mongodb-driver-manager.php

[34] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. 2010. A

Comparison of a Graph Database and a Relational Database: A Data Provenance

Perspective. In Proceedings of the ACM SouthEast Conference. ACM, Oxford, MS,

USA, 1–6.

[35] A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, and J. Partner. 2014. Neo4j in Action.
Manning, Shelter Island, NY, USA.

[36] F. Warmerdam, E. Rouault, et al. 2021. GDAL/OGR Geospatial Data Abstraction
Software Library. Open Source Geospatial Foundation. https://gdal.org/

