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In the shared dataspace approach to concurrent computation, the concurrent com-
ponents of programs communicate by manipulating a content-addressable data structure
called a dataspace. In this dissertation we study this paradigm by means of a simple
model called Swarm.

The Swarm model unifies several computational paradigms into a single framework.
It integrates the tuple space communication metaphor of Gelernter’s Linda with a com-
putational model inspired by Chandy and Misra’s UNITY. Swarm reduces both com-
munication and computation to a single mechanism—the atomic execution of statements
called transactions. In a manner similar to production rules, Swarm transactions specify a
group of tuple insertions and deletions. Unlike UNITY’s static set of statements, Swarm
supports a dynamically varying set of transactions. The synchrony relation construct
adds further dynamism and flexibility to the Swarm programs. It enables a program to
couple individual transactions dynamically into groups; each group is executed atomically
as if it were a single transaction.

This dissertation informally specifies the Swarm notation, presents a formal oper-

ational model, and defines an axiomatic programming logic—the first such logic for a

shared dataspace language. Using a sequence of solutions to the problem of labeling the

equal-intensity regions of a digital image, the dissertation explores the impact of Swarm

upon programming styles. The dissertation also illustrates use of the programming logic

by verifying the correctness of three of the region labeling programs.
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THE SHARED DATASPACE APPROACH

TO CONCURRENT COMPUTATION:

The Swarm Programming Model, Notation, and Logic

1. INTRODUCTION

1.1. MOTIVATION

Although important for decades at the system level, concurrency is becoming

an increasingly important concept for “applications” programming. Our society’s

appetite for computing power continues to grow unabatedly. However, the com-

putational speeds of our traditional computing machines are pushing up toward

the physical limits. Fortunately, both computer networking strategies and new

parallel machine architectures offer promising paths for continuing growth in com-

putational power. Unfortunately, our capabilities for harnessing this potential are

still quite primitive. We are bumping up against what Peter Denning has termed

the “software barrier.” [1]∗

New programming approaches are needed to exploit the capabilities of mul-

tiple processors operating in parallel. Although multicomputer implementations

∗The numbers in brackets in the text indicate references in the Bibliography.
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of traditional sequential programming languages can effectively exploit some par-

allelism in programs, in general, the conceptual frameworks underlying such lan-

guages limit the degree of parallelism that can be achieved on currently available

multicomputer architectures. To overcome the weaknesses of sequential languages,

a wide variety of approaches to concurrent programming have been advanced, e.g.,

Ada† [2], CSP [3], FP [4], Concurrent Prolog [5], and Actors [6]. Although many of

these approaches have strong features and clusters of advocates, there is no broad

agreement on which approaches are the “winners” for concurrent programming.

No approach has achieved a good balance among conceptual elegance, support

for program verification, programming convenience, and various pragmatic issues.

Research is still needed to explore new paradigms and concurrent programming

techniques.

Landmark developments are rare—their full significance often not appreciated

until a significant amount of time has passed. Although Hoare’s paper “Commu-

nicating Sequential Processes” [3] did receive considerable immediate attention,

few would have expected the language fragment he proposed to dominate a whole

decade of research in concurrency. CSP has had an enormous impact upon re-

search and development in many areas: computational models [7, 8, 9], program

verification [10, 11, 12, 13], programming languages (e.g., Occam [14, 15] and the

Ada rendezvous [2]), hardware (e.g., the Transputer [16]), distributed algorithms

[17], system design [18, 19], and implementation [20, 21] techniques. Although the

CSP approach is still important, the concurrency research community seems to be

turning in other directions.

†Ada is a registered trademark of the United States Government (Ada Joint Program Office).
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What current work will enjoy the same success? We probably will not know

until another decade passes. However, two relatively recent developments have the

makings of emerging success stories—the kind of power and simplicity that can

capture the imagination of both researchers and practitioners. These are Chandy

and Misra’s UNITY [22, 23, 24] and Gelernter’s Linda [25, 26, 27].

UNITY. Chandy and Misra argue that the fragmentation of programming

approaches along the lines of architectural structure, application area, and pro-

gramming language features obscures the basic unity of the programming task.

With UNITY, their work has not been directed toward the development of a new

programming language, per se. Instead, their goal is to unify seemingly disparate

areas of programming with a simple theory consisting of a model of computation

and an associated proof system.

They build the UNITY computational model upon a traditional imperative

foundation, a state-transition system with named (shared) variables to express the

state and conditional multiple-assignment statements to express the state transi-

tions. Above this foundation, however, UNITY follows a more radical design: all

flow-of-control and communication constructs have been eliminated from the nota-

tion. A UNITY program consists of a set of variable declarations, a specification

of their initial values, and a finite, static set of multiple-assignment statements. A

program execution starts from any state satisfying the initial condition and contin-

ues infinitely; in each step an assignment statement is selected nondeterministically,

but fairly, and executed atomically. A computation of a UNITY program may reach

a fixed point, that is, a state in which further execution of the program does not

change the values of the variables. (In [22] Chandy credits the popularity of spread-

sheet programs with motivating their study of this simple program structure.)
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The UNITY proof system uses an assertional programming logic built on the

underlying computational model. By the use of logical assertions about program

states, the programming logic frees the programmer from the necessity of reasoning

about the execution sequences. Unlike most assertional proof systems which rely

on the annotation of the program text with predicates, the UNITY logic seeks to

extricate the proof from the text by relying upon proof of program-wide properties

such as invariants and progress conditions.

Despite its attractiveness, UNITY does have some shortcomings. The static

set of statements inhibits the programmer’s ability to cleanly specify dynamically

evolving computations—those involving frequent and unpredictable creation of sub-

computations. The fixed set of variables also makes the handling of problems with

unstructured and unbounded data difficult. Although suited for the specification

and verification of programs which use a shared variables or message-passing ap-

proach, UNITY is less well suited for paradigms in which data elements are accessed

by content rather than by name, e.g., rule-based systems.

Linda. David Gelernter argues that “machine-independent methods for parallel

programming have been slow to emerge, and that consequently programmers have

been forced to accommodate themselves to the machines rather than vice versa.”

[28] To remedy the situation, he and his colleagues have put forth the Linda com-

munication model as a practical, machine-independent programming vehicle.

Linda’s primary contribution to concurrent programming has been the notion

that the communicating processes of a concurrent program can be spatially and

temporally uncoupled from each other. In the Linda model, the processes com-

municate by inserting tuples into, deleting tuples from, and examining tuples in a

common, content-addressable data structure called a tuple space—a process which

Gelernter calls generative communication. The processes are uncoupled because
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the process that creates the tuple does not “know” when or where or by which

process the tuple will be used. Consequently, program changes concerning the use

of the particular data do not affect the producer in any way. The model also treats

processes as “live tuples” which come into existence by being inserted into the tuple

space. The uncoupling and dynamic creation of processes facilitate programs which

exhibit high degrees of concurrency.

Although somewhat outside of the mainstream of concurrent programming re-

search, Linda has stimulated considerable interest [27]. Linda has been implemented

as an extension to the Fortran and C programming languages by Gelernter’s group;

other researchers have used other base languages. Implementations have been done

for shared memory multicomputers like the Encore Multimax, Sequent Balance and

Symmetry, and Alliant FX/8; for distributed memory multicomputers like the In-

tel iPSC/2 and the S/Net [29]; and for a VAX-based local area network. A Linda

Machine [30, 31] which supports the tuple space operations in hardware is under

construction. In a commercial venture, Cogent Research is using the Linda commu-

nication model as the basis for the operating system in its transputer-based XTM

multicomputer system [32]. As noted in [33], Linda has been used for a number of

applications, e.g., DNA sequencing.

The Linda research also has shortcomings. Since pragmatic issues have appar-

ently driven much of the recent work on Linda, theoretical issues are given little

attention. To our knowledge, no formal model for the language has been published.

Proof systems are dismissed as irrelevant. In addition, the one-tuple-at-a-time op-

erations and the inability to handle synchronous computations considerably limit

the power and flexibility of the language.
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1.2. APPROACH

We believe that a model of concurrency which preserves the gains made by

UNITY and Linda, while overcoming their limitations, can become a serious alter-

native to the two dominant concurrent programming paradigms, message-passing

and shared variables. Our research has identified a concurrency model that can

accomplish this. We call it the shared dataspace paradigm. This paradigm, first so

named in [34], refers to a class of languages and models in which the primary means

for communication among the concurrent components of a program is a common,

content-addressable data structure called a shared dataspace. Elements of the data-

space may be examined, inserted, or deleted by programs. Gelernter’s Linda, Rem’s

Associons [35, 36], Kimura’s Transaction Networks [37], our own Swarm model [38],

and production rule languages such as OPS5 [39] all follow the shared dataspace

approach.

By choosing the name Swarm for our shared dataspace programming model,

we evoke the image of a large, rapidly moving aggregation of small, independent

agents cooperating to perform a task. In designing Swarm, we attempted to merge

the philosophy of UNITY with the methods of Linda. Swarm has a UNITY-like

program structure and computational model and Linda-like communication mech-

anisms. We partition the Swarm dataspace into three subsets: a tuple space (a

finite set of data tuples), a transaction space (a finite set of transactions), and a

synchrony relation (a symmetric relation on the set of valid transaction instances).

We replace UNITY’s fixed set of variables with a set of tuples, and the fixed set of

conditional assignment statements with a set of transactions. A Swarm transaction

denotes an atomic transformation of the dataspace. It is a set of concurrently ex-

ecuted query-action pairs. A query consists of a predicate over all three subsets of
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the dataspace; an action consists of a group of deletions and insertions of dataspace

elements. Instances of transactions may be created dynamically by an executing

program.

A Swarm program begins execution from a specified initial dataspace. On

each execution step, a transaction is chosen nondeterministically from the transac-

tion space and executed atomically. This selection is fair in the sense that every

transaction in the transaction space at any point in the computation will eventually

be chosen. An executing transaction examines the dataspace and then, depending

upon the results of the examination, can delete tuples (but not transactions) from

the dataspace and insert new tuples and transactions into the dataspace. Unless a

transaction explicitly reinserts itself into the dataspace, it is deleted as a by-product

of its execution. Program execution continues until there are no transactions in the

dataspace.

The synchrony relation feature adds even more dynamism and expressive power

to Swarm programs. It is a relation over the set of possible transaction instances.

This relation may be examined and modified by programs in the same way as

the tuple and transaction spaces are. To accommodate the synchrony relation, we

extend the program execution model in the following way: whenever a transaction

is chosen for execution, all transactions in the transaction space which are related

to the chosen transaction by (the closure of) the synchrony relation are also chosen;

all of the transactions that make up this set are executed as if they composed a

single transaction.

Although we may occasionally refer to Swarm as a “language,” it is not really a

programming language. We give little attention to the pragmatic issues necessary

for a programming language, e.g., input/output facilities, syntactic sugar, and effi-

cient implementation. Instead, we focus on Swarm as a computational model and
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present a simple notation for specifying computations. We have based the Swarm

model on a small number of concepts (e.g., the tuple space communication medium,

atomic transactions, and the synchrony relation) which we believe are at the core

of a large class of shared dataspace languages. By concentrating on the essential

nature of the shared dataspace paradigm, our goal was to develop techniques appli-

cable to many shared dataspace languages. For instance, the Swarm programming

logic presented in this dissertation can perhaps be reformulated for Linda.

1.3. DISSERTATION ORGANIZATION

The starting point for this research is the desire to meld the programming

flexibility of a Linda-like communication metaphor with the conceptual elegance of

a UNITY-like computational model and programming logic. We want to preserve

the strengths of both, while eliminating their weaknesses. We want to go further

and explore the new opportunities created by the new concepts that arise out of this

combination. As noted in the previous section, the Swarm programming notation

is our vehicle for this investigation.

This dissertation lays the conceptual foundation for Swarm. We define the

notation and specify a formal operational model and a UNITY-style programming

logic. We also explore programming strategies and proof techniques fostered by the

programming notation and its logic. Portions of the dissertation are based on earlier

papers [38, 40, 41, 42]. In related efforts by others, a simple prototype for Swarm

is being built for a hypercube multicomputer [43, 44] and “declarative” techniques

for “visualizing” the dynamics of concurrent program execution are being studied

in the context of the shared dataspace model [45, 46].
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In this chapter we have looked at two models closely related to Swarm, UNITY

and Linda. In Chapter 2 we survey some of the other related research in concurrent

programming languages, models, and logics.

Chapter 3 informally presents the syntax and semantics of the Swarm notation.

It first introduces the notation by analogy to a more familiar procedural language,

and then discusses its features in more detail.

The Swarm model brings together a variety of programming styles (e.g., syn-

chronous and asynchronous, static and dynamic) within a unified computational

framework. Using the problem of labeling the equal-intensity regions of a digital

image as an example, Chapter 4 explores some of the programming styles made

possible by the notation. This chapter illustrates the different styles by means of a

sequence of variant solutions to the region labeling problem.

To put the notation system on a firm formal foundation, in Chapter 5 we present

an operational, state-transition model for Swarm. This model formalizes the lin-

guistic concepts expressed informally in Chapter 3 and lays the foundation for our

development of a Swarm programming logic in Chapter 6.

In Chapter 6 we present an assertional programming logic for a subset of Swarm;

we do not consider the synchrony relation feature in this chapter. The Swarm logic

is similar in style to the logic given for UNITY in [24]. To incorporate Swarm’s

distinctive features, we must define a proof rule for transaction statements to replace

UNITY’s rule for multiple-assignment statements, redefine the ensures relation

to accommodate the creation and deletion of transaction statements, and replace

UNITY’s use of fixed-point predicates with other methods for determining program

termination.

Chapter 7 applies the programming logic given in Chapter 6 to the verification of

two Swarm programs. The programs are two of the solutions to the region labeling
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problem given in Chapter 4. This chapter formally defines the problem and the

correctness criteria, elaborates the program data structures, and then presents the

programs and argues that they satisfy the correctness criteria.

In Chapter 8, we extend the logic given in Chapter 6 to handle synchronic

groups. We present a synchronic group rule and generalized definitions for the

unless and ensures relations.

In Chapter 9 we specify a program for a variant of the region labeling problem

in which the image extends infinitely in one direction and then verify the program’s

correctness using the generalized Swarm programming logic outlined in Chapter 8.

This program uses the synchronic group feature of Swarm.

Chapter 10 discusses the contributions of this work to the field of concurrent

programming. Chapter 11, the final chapter, outlines several directions for future

research.

The proofs in Chapters 7 and 9 use the Swarm analogues of several theorems

proved for the UNITY logic. These theorems, from Chapter 3 of Chandy and

Misra’s book [24], are listed in the Appendix.
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2. BACKGROUND

In Chapter 1 we examined two programming models that have greatly affected

the direction of our shared dataspace research, UNITY and Linda. In this chapter,

we survey some of the other related research in concurrent programming languages,

models, and logics on which we have drawn. Filman and Friedman’s book [47] and

Andrews and Schneider’s survey article [48] provide good starting points for a survey

of concurrent programming issues. Books by Manna [49], de Bakker [50], Gries [51],

Loeckx and Sieber [52], and Barringer [53] survey various results of programming

logic and verification research.

2.1. PROGRAMMING LANGUAGES AND MODELS

For purposes of this discussion we classify programming languages and models

by the primary way in which data and control information is communicated among

the concurrent components of a program. Our taxonomy is similar the ones used

in [25] and [48]. We group programming languages into four categories:

• shared variables,

• message passing,

• remote operations,

• shared dataspace.

Shared variables (e.g., monitors) provide controlled access to (physically or log-

ically) shared data entities. Components of concurrent programs communicate
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data and control information by the serial manipulation of these shared variables.

Message-passing systems communicate by passing data and control messages along

communication channels among the concurrent components. In languages based

on remote operations (e.g., remote procedure calls), subtasks are carried out for

a component by other components. There is a master/slave control relationship

between the components; data are communicated via argument/result linkages. In

the shared dataspace paradigm, concurrent components of a program can commu-

nicate by manipulating the dataspace, e.g., by inserting data into or deleting them

from the dataspace. Elements in the dataspace are addressed by content rather

than by name or address. The dataspace is viewed as being directly accessible to

many processes simultaneously.

2.1.1. Shared Variables

As noted above, shared variables provide controlled access to physically or log-

ically shared data entities. The concurrent components of a program communicate

data and control information by the manipulation of these shared variables. The

access to the shared variables by the components must be coordinated in some

fashion, usually by requiring that a component obtain mutually exclusive access

before it can use or change the value of a variable. A number of different mech-

anisms have been developed to enable a programmer to achieve this coordination

[48]—busy waiting (spin locks) [54], semaphores [55], conditional critical regions

[56], monitors [57], and path expressions [58]. A number of shared variable lan-

guages handle synchronization implicitly by expressing computations in terms of,

perhaps quite complex, atomic operations which are executed in some serial order.

Monitors. Probably the most common way of supporting shared variables in

programming languages is by means of monitors. A monitor encapsulates a set of



- 13 -

shared variables with a set of procedures for manipulating these variables. The

values of the shared variables are retained between activations of the procedures

and can be accessed only from within the monitor. The monitor’s procedures

are invoked by concurrent components of the program using the usual procedure

call semantics, but execution of monitor procedures is guaranteed to be mutually

exclusive. The most important languages that use monitors to synchronize access

to shared variables are probably Brinch Hansen’s Concurrent Pascal [59, 60] and

Wirth’s Modula [61] (whose descendent language Modula-2 [62] sees considerable

current usage). The monitor concept has had little direct influence on the design

of the Swarm programming model.

Serialized atomic actions. Chandy and Misra’s UNITY [24] model and no-

tation were discussed in Chapter 1. The UNITY notation is a very simple. The

coordination of access to single variables is subsumed into the computational model

(i.e., serial, atomic execution of multiple assignment statements) and the language

design (i.e., conflicting assignments of values to variables are not allowed within

a multiple assignment statement). No higher-level synchronization primitives are

provided; if needed, they must be implemented by the programmer.

Two other recently proposed programming notations follow an “atomic action”

approach similar to UNITY’s. Instead of using conditional assignment statements,

Shankar and Lam’s Event Predicates approach [63, 64] expresses the atomic trans-

formations of the values of the program’s variables (i.e., the state) as predicates over

the variables. The predicates have two parts, an enabling condition and an action

relation. The enabling condition is a predicate on the state before an occurrence

(execution) of the event. The action relation is a predicate which expresses a rela-

tionship between the state before the event’s occurrence and the state afterward.

Upon occurrence of the event, if the enabling condition is satisfied, then the values
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of the variables are changed so that the action predicate is satisfied; otherwise the

state is left unchanged. The fairness criteria for selection of events for execution

differ from those of UNITY. While UNITY requires weak fairness [65] uniformly

over the set of assignment statements, the Event Predicates approach allows each

individual event to be assigned a different fairness attribute, e.g., weak fairness or

no fairness. (See Section 2.2 for a discussion of fairness.)

Back and Kurki-Suonio’s Action Systems [66] are also similar to UNITY in ap-

proach. In this system, the behavior of processes is described in terms of the possi-

ble interactions (actions) that the processes can engage in. A process is a grouping

of variables and an action is a conditional statement labeled with the processes

that execute the statement. The actions thus provide a symmetric communication

mechanism that permits an arbitrary number of processes to be synchronized by a

common handshake—a generalization of the usual asymmetric, two-way mechanism

in a language like CSP. In addition to the UNITY-like sequential execution model,

a concurrent execution model has been developed. In this model, concurrently ex-

ecuting actions must compete for access to the processes. The sequential model

is the more convenient context for formal reasoning, while the concurrent model

provides a more accurate representation of how a distributed implementation might

actually work. Since the fairness notions differ between the two models, properties

proved with respect to one model may not hold with respect to the other. The de-

velopers have studied the relationship between the two models and defined a class

of action systems in which properties proved with respect to the sequential model

also hold with respect to the concurrent model.

Swarm’s model represents a program execution as a sequence of atomic actions

similar to UNITY, Event Predicates, and Action Systems. Accordingly, some of

this work has been (or can be) adapted to Swarm. However, since Swarm has a
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different type of operation (content-addressable transactions), a slightly different

notion of fairness, and allows the dynamic creation of new instances of “actions,”

we had to reformulate and extend several of the concepts.

Data parallel languages. Also of interest are the data-parallel languages

[67] such as those designed for execution on a SIMD (Single-Instruction, Multiple-

Data stream) architecture like the Connection Machine (CM) [68, 69]. In data

parallelism the parallelism comes from simultaneous operations across large sets

of data rather than from multiple threads of control. In the CM, for instance,

each data element is stored on a separate CM processor and one serial program

on the host machine directs the simultaneous operations on all the processors.

For example, under direction of a host program the processors can carry out an

operation on all elements of an array simultaneously.

Several data parallel languages have been developed. Data parallel languages

for the CM include C∗ [70] and ∗Lisp [71], extensions to C and Common Lisp re-

spectively. A CM implementation of the proposed FORTRAN 8x standard, which

contains array operations, has also been developed [72]. Data parallelism is not re-

stricted to SIMD machines like the Connection Machine, but can execute on MIMD

(Multiple-Instruction, Multiple Data stream) machines as well. For example, C∗

has been implemented for the Ncube hypercube multicomputer [73].

Although the data-parallel languages have not had much direct influence on

Swarm, the Connection Machine literature has been a valuable source of useful

application algorithms.

2.1.2. Message Passing

Message-passing systems communicate by passing data and control messages

along communication channels among the concurrent components. Such systems
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come in many different flavors: synchronous or asynchronous, buffered or un-

buffered, reliable or unreliable, point-to-point or broadcast, datagram or virtual

circuit, and so forth. Here we focus on two language approaches, Hoare’s CSP and

Hewitt’s Actors.

CSP. Hoare’s Communicating Sequential Processes (CSP) [3] language frag-

ment is based on a simple idea—input/output commands—carefully integrated

with a few other simple mechanisms [48]. CSP uses a variant of Dijkstra’s Guarded

Commands [74, 75] language to specify the sequential processes. To this base lan-

guage, Hoare adds input/output commands as the mechanism for synchronization

and communication among the processes. The message passing among processes

is synchronous and two-way—a process executing an output command synchro-

nizes with a process executing a matching input command. Input and output

commands match if the type of the source value being transmitted by the output

command is compatible with the receiving target variable on the input command.

The communication structure is static—an output command must directly name

the destination process and vice versa. However, by allowing input commands to

appear in guards of the alternative and iteration statements, CSP supports a lim-

ited amount of selectivity in communication. Since Hoare proposed the language

in 1978, other researchers have generalized CSP somewhat—replacing the static

naming with ports [76, 77] and allowing output commands on guards [20]. The

CSP ideas form the basis for the language Occam [14, 15] which is supported on

the INMOS transputer [16].

Actors. The Actor model [6, 78, 79], a message passing framework being

developed by Carl Hewitt and his colleagues at MIT, “takes the theme of object-

oriented programming seriously and to an extreme.” [47] In a pure actor model all

programming constructs (procedures and data) are represented as (active) objects
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called actors. Actors have unique addresses; they communicate by sending messages

to other actors and by creating new actors. Actors are implemented as serialized

closures, i.e., functional code within a specialized environment waiting to be applied

to (accept) a message matching a specific pattern. The specification of an actor

enables considerable parallelism during execution. The model also promotes an

open systems [6, 80] approach by providing for dynamic growth and reconfiguration

of programs.

The Actors model has been an active area of research since the mid-1970’s. Sev-

eral Actor-based languages have been defined, including Plasma, Act-1, Act2, Act3,

Ether, and the Omega description system [81]. An Apiary multicomputer architec-

ture, consisting of a group of Lisp machines, has been implemented for executing

actor languages. The MCC consortium is developing the Rosette [82] architec-

ture and language, an actor-based system for dynamically structured, concurrent

computations.

Neither CSP nor Actors have had a direct impact upon the Swarm research.

CSP’s impact is cultural; before undertaking the shared dataspace research, we

investigated the use of a CSP-like notation for specification of distributed systems

[18, 19]. The CSP paradigm carried over into our early shared dataspace research

[34, 83]. The Actors model has indirectly influenced Swarm. The programming

styles encouraged by Actors—a fine-grained, dynamic, message-passing model—

and Swarm—a fine-grained, dynamic, shared dataspace model—are similar.

2.1.3. Remote Operations

In languages based on remote operations, subtasks are carried out for a concur-

rent component by subordinate components. There is a master/slave control rela-

tionship between the components; data are communicated via the argument/result
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linkages of a remote procedure call. Examples of remote operation languages [48]

include Ada [2, 84], Brinch Hansen’s Distributed Processes [85], Andrews’ Synchro-

nizing Resources (SR) [86, 87], and Liskov’s Argus [88, 89]. Here we look at the

Ada and Argus languages.

Ada. The Ada language was developed by the U.S. Department of Defense for

use in programming of embedded systems, i.e., real-time, process-control software

deployed as a part of a computer system embedded within a weapon or other prod-

uct [48]. Ada processes are called tasks; the intertask communication mechanism

is the rendezvous, a type of remote procedure call. The remote procedures, called

entries, are ports into a server process; entries are specified by accept statements

and are invoked by remote call statements. Interrupts can also be treated as re-

mote calls of entries. The select statement, a construct similar to CSP’s alternative

command, allows a server to select among several competing entry calls. Remote

procedure calls normally block unconditionally until the accept is processed, but

several other alternatives are supported.

Argus. In the Argus language, being developed by Barbara Liskov’s group

at MIT, processes also interact by means of remote procedure calls. Argus has a

guardian construct which encapsulates a computing resource; a guardian consists

of data objects and handlers which manipulate the data. Handler calls result in the

creation of concurrent processes within the guardian to carry out the operations.

Argus integrates the data abstraction concepts of the programming language CLU

[90] with ideas from the realm of database systems, e.g., atomic actions, recovery,

and two-phase commit protocols, to form an elegant and practical language for

distributed processing.

No language based on remote operations has had much direct influence on

Swarm. However, by successfully integrating database concepts (e.g., atomic
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actions) into a programming language for distributed computation, the results of

the Argus research have encouraged our investigation of the shared dataspace pro-

gramming paradigm.

2.1.4. Shared Dataspace

In shared dataspace programs, concurrent components communicate by manip-

ulating a content-addressable data structure called a dataspace, e.g., by inserting

data into or deleting them from the dataspace. Unlike shared variables, the data-

space is viewed as being directly accessible to many concurrent components simulta-

neously. Unlike message-passing schemes, the communication medium is viewed as

a passive structure rather than an active agent. Although Roman coined the term

shared dataspace relatively recently [34], a number of older languages fit into this

paradigm. One such language, Linda [25, 26, 27], has had considerable influence

on Swarm—as discussed in Chapter 1. Other shared dataspace languages include

production rule languages, Associons, Transaction Networks, distributed versions

of Prolog, and the data language for the Abstract Database System (ADS) [91].

Here we look at production rule languages, Associons, and Transaction Networks

in more detail.

Production rules. In a rule-based language such as OPS5 [39], a program

consists of an unordered set of production rules (stored in a production memory)

and a set of data items (stored in a working memory). A rule is a guarded command

in which the guard (left-hand-side) is a predicate and the command (right-hand-

side) is a sequence of actions that create new data items, create new rules, or

change the values of existing items. Data items are normally record-like structures

(tuples); a rule’s predicate matches data items based on the contents of the various

fields. The execution of a program follows a three-step cycle. In the first step, the
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execution mechanism finds all rules whose predicates are satisfied by the current

contents of memory. These pairings of rules with data items that satisfy the rules’

predicates are candidates for execution. (Here we describe what is called a forward-

chaining matching strategy. Some rule-based systems use a backward-chaining

strategy where the right-hand-sides are matched.) In the second step, using a

complex selection (conflict resolution) strategy, the execution mechanism selects a

set of pairings for execution. In the third step, the actions of the selected rule-data

pairs are taken.

Swarm is, in essence, a rule-based model. However, it differs from most such

systems in that its rule selection strategy is quite simple—nondeterministic, but

fair selection—and it has an explicit notion of actions being taken in parallel.

Associons. Martin Rem’s Associons model [35, 36] proposes a programming

notation where the state of a computation is recorded as a set of associons (tu-

ples). The state of a computation is changed by the creation of new associons

deducible from those already recorded. The basic mechanism for these deductions

is the closure statement, whose execution can involve a high degree of concurrency.

A closure statement can be considered as implicitly specifying a community of

anonymous processes that collectively compute the transitive closure of a relation.

These processes communicate via an associon “database” (dataspace). In the de-

velopment of the Associon notation, Rem emphasized the careful definition of the

mathematical properties and correctness proving techniques.

The Associon model provides an elegant and appealing notation for fine-grained

concurrent computation. The use of anonymous, implicit processes eliminates the

need for a complex name management scheme (at least one that is visible to the

programmer). It also aids in the scaling of the computation to fit the available

computing resources; the number of processes implementing a closure statement
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can be increased or decreased without requiring a modification of the program.

The model does not support explicitly concurrent processes or allow separately

specified modules to be composed into a new program in a straightforward manner.

Transaction Networks. Kimura’s Transaction Network model [37] “demotes

the notion of process as the key concept in organizing large scale parallel compu-

tation.” It “promotes, instead, the notion of transaction, an anonymous atomic

action void of internal state, as the basic element of computation.” These transac-

tions are organized into a network structure similar to a Petri net [92] where the

transitions are replaced by transactions, the places by databases, and the tokens by

tuples. The transaction net “fires” according to rules based on a consume/produce

paradigm, consuming tuples from a transaction’s input databases and producing

new tuples in the output databases. A “two-dimensional graphic structure” is the

means for expressing computations as transaction networks.

In some ways Transaction Networks and Swarm are similar—both lines of re-

search arising from a period of collaboration in 1987. The transaction concept

is similar in the two models. However, while Transaction Networks use a two-

dimensional, graphic representation for its static program structures, Swarm uses

a textual notation to represent concurrent programs that are highly dynamic in

structure and degree of concurrency.

2.1.5. Other Paradigms

The preceding discussion is not a comprehensive survey of all concurrent lan-

guage work related to this research effort, but it does briefly discuss several models

that have had some influence on our approach. Most of the languages discussed

above follow an imperative style and have an explicit notion of concurrency. Of
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course, researchers from other programming language communities are also inter-

ested in parallelism.

The field of logic programming is quite interested in parallelism—encouraged in

their research efforts by the Japanese Fifth Generation Project. The best known

“concurrent” logic programming languages include Shapiro’s Concurrent Prolog

[5, 93], Clark and Gregory’s Parlog [94, 95, 96], and Ueda’s Guarded Horn Clauses

[97]. Implementation of the transaction queries in Swarm is similar to implemen-

tation of unification in such languages.

The field of functional languages has also seen considerable activity related to

parallelism. In addition to ∗Lisp for the Connection Machine (discussed in Sec-

tion 2.1.1), various Lisp-like concurrent languages have been proposed and imple-

mented, e.g., Multilisp [98, 99], Qlisp [100], and Spur Lisp [101]. Other approaches

from the functional language realm are also interesting. In parafunctional pro-

gramming [102, 103] the functional behavior (e.g., the application algorithm) is

specified separately from the parafunctional behavior (e.g., the mapping of the

program structures to a particular set of processors and memories). Combinator-

based languages such as Backus’ FP [4] have also stimulated considerable research.

The influence of these functional languages upon Swarm has not been extensive.

However, the powerful operators in FP and the ZF (generator) expressions in the

functional language Miranda [104, 105] did provide some of the stimulus for making

the constructor notation a prominent feature of the Swarm notation.

Before moving on to a discussion of programming logics, one other approach

to parallelism in programming languages should be mentioned briefly, that of com-

piling standard sequential languages to parallel machines [106]. Although this is

an important area of research that has been quite beneficial, we believe that there

is a limit to what can be accomplished by parallelizing compilers. For example,
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compilers cannot find parallelism that is not there; the algorithms that work best

on parallel machine are often different from the ones that work well in sequential

programs [27]. We believe that, with the “right” programming models, the “right”

formal and technological tools, and the “right” programming culture, concurrent

programming is not necessarily an onerous task. A goal of the shared dataspace

research is to help define what “right” means.

2.2. PROGRAMMING LOGICS

In this section we examine some of the historical development of programming

logics from the perspective of their influences on the development of the Swarm logic

given in Chapters 6 and 8. We first discuss early work on logics for sequential pro-

gramming languages and then later research on logics for concurrent programming

languages.

There are two general classes of program properties—safety and progress (of-

ten called liveness) properties. The work of Alpern and Schneider [107, 108, 109]

addresses these classes of properties in a formal manner.

Informally, a safety property states that nothing “bad” ever happens, i.e., the

program never enters an unacceptable state [110]. Safety properties of interest

include:

• partial correctness—if the program begins in a valid initial state, then it never

terminates in an unacceptable state,

• absence of deadlock—the program never enters a state in which no further

progress is possible,
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• mutual exclusion—two different processes are never in their critical sections

at the same time.

A progress property states that something “good” eventually does happen, i.e.,

the program eventually enters a desirable state. Progress properties of interest

include program termination, the attainment of some stable state, and guaranteed

delivery of messages. Total correctness is partial correctness plus termination—if a

program begins in a valid initial state, then it always terminates in an acceptable

state.

An important issue for progress properties is a concept we mentioned in the pre-

vious section—fairness. To illustrate the meaning of fairness, consider a repetitive

choice among alternatives. In this context, fairness means that, in repeated choices

among a set of alternatives, no choice is postponed forever [65]. A number of dif-

ferent notions of fairness have been defined—of primary significance are weak and

strong fairness. If an event is continuously enabled, then weak fairness guarantees

that the event will eventually occur. Strong fairness, on the other hand, guarantees

the event will eventually occur if the event is infinitely often enabled. For example,

the assignment statements in UNITY programs, which are always enabled for ex-

ecution, are scheduled in a weakly fair manner; the actions in Action Systems are

scheduled in a strongly fair manner. In CSP both the selection of an enabled guard

and the selection of matching I/O commands for execution are considered anti-fair,

i.e., no fairness is assumed. As illustrated by a recent exchange of position papers

[111, 112, 113], the inclusion of fair constructs in programming languages is still

controversial.
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2.2.1. Sequential Programming

The notion of formal proofs of correctness for computer programs began to be

discussed seriously in the mid-1960’s. The earliest significant work was that of Floyd

[114] in 1967, later extended by Manna [49] and others. Floyd’s method concerned

verification of flowchart programs. In his method an input predicate, a logical

assertion describing the initial state of the program, is attached to the edge coming

from the START node, an output predicate, an assertion describing the valid final

state of the program, is attached to the edges going into the HALT nodes, and

appropriate assertions describing the intermediate program states are attached to

the other edges. To verify the program, one must show that each execution path

from START to HALT maintains the truth of the assertions encountered. Floyd

also introduced what has come to be known as a loop invariant. He attached

an assertion at some edge in a cycle, called a cutpoint. Proof of this assertion

requires that, for any execution beginning at the cutpoint with the assertion true,

the assertion will be true whenever execution returns to the cutpoint.

Building on the work of Floyd, in 1969 Hoare defined the partial correctness

semantics of a simple programming language by means of a system of logical axioms

and inference rules. Hoare’s system, an extension of the predicate calculus, included

rules for assignment, if-then-else, and while statements and sequences thereof.

Hoare’s expressions are usually written in the form

{p} S {q}

where p and q are predicates over the values of the program’s variables and S is

some program construct. The Hoare “triple” means that, if p is true immediately

prior to execution of S, then q is true immediately after execution. To verify the
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partial correctness of a program Prog for input condition in and output condition

out, the Hoare method requires that we prove

{in} Prog {out}.

Typically a proof of this assertion proceeds as follows: the program text is first

annotated with appropriate intermediate assertions between each statement of the

program, then, by application of the axioms and rules of inference with respect to

the program’s text, the annotation is shown to be correct.

Much of the research on program verification during the past two decades has

followed Hoare’s axiomatic approach to semantics. The method has been extended

to support total correctness proofs and additional language features.

By the mid-1970’s, interest began to develop in using program correctness no-

tions to derive programs. Building on Hoare’s approach, Dijkstra introduced a

“calculus of weakest preconditions” (i.e., wp-calculus) for the simple Guarded Com-

mands language [74, 75]. In addition to proofs of correctness, he showed how the

calculus could be used to derive programs from their input/output specifications.

This seminal work laid the foundation for the active study of derivation of se-

quential programs that has developed during the past 15 years. The concept of

developing a program hand-in-hand with its proof has become widely accepted,

but not, however, as yet widely used by practitioners.

2.2.2. Concurrent Programming

By the mid-1970’s attention was also turning to concurrent programming. In

some significant early work, Owicki and Gries [115, 116] extended Hoare’s par-

tial correctness logic for sequential programs to shared-variable concurrent pro-

grams. The Owicki-Gries method requires proofs of “interference freedom” among
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the statements of the concurrent processes. The method allows the addition of

auxiliary variables to capture information about the control state of the program.

Further work on shared variables languages has been done by Keller [117], Lamport

[118], and others.

Lamport [11, 119] advocates a view of programs as “invariance maintainers.”

Instead of using an annotated program with auxiliary variables to implicitly encode

the control state, Lamport’s approach uses assertions which explicitly mention the

control state by means of control point predicates. In this Control Point Hoare

Logic, the safety properties of a program are stated as sets of global program

invariants and the use of auxiliary variables is avoided.

Hoare’s CSP notation has also been the subject of considerable research in pro-

gram verification. The first known partial correctness proof system for CSP is that

of Apt [10]. In Apt’s system, the properties of the individual sequential processes

are proved using assumptions about the behavior of the remaining processes in the

program. Then, to prove the processes compose correctly into a program, these

assumptions must be justified. This is done by means of a “cooperation” proof.

In later work, Soundararajan presents a proof system for CSP in which the

individual processes can be proved in isolation—without assumptions about the

behavior of other processes [12]. He introduces a “communication sequence” to

record the communication activity for each process. The content of this sequence

is used in reasoning about the process—the proofs do not use auxiliary variables.

At the termination of execution the communication sequences will be mutually

compatible, hence complex cooperation arguments are avoided. This approach has

been extended to deal with the total correctness of CSP programs [13].

Another approach to the verification of concurrent programs, particularly of

progress properties, is the use of temporal logic [120, 121, 122], first applied to
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concurrent program verification by Pnueli [123]. Temporal logic is an extension

of predicate calculus to include certain kinds of assertions about time. A com-

mon form of temporal logic is linear-time logic. Using this logic, the execution of

programs is typically represented as infinite sequences of atomic events—often the

atomic events from the processes of a program interleaved in some fashion. The

primary temporal operators in this language are 2, meaning “now and forever,”

and 3, meaning “now or sometime in the future.” In its basic form, proof of the

temporal properties requires arguments over the set of execution sequences. In

[110] Owicki and Lamport structure temporal logic proofs of liveness properties of

shared-variable programs by means of “proof lattices.” (Their logic assumes weak

fairness of statement execution.)

This brings us now to Chandy and Misra’s UNITY. Their proof theory utilizes

a subset of the linear-time temporal logic, but, instead of using execution sequences

from an operational model directly, it uses a Hoare-style axiomatic approach [24].

Thus reasoning at a low level—in terms of execution sequences—is unnecessary. The

key elements of the logic are the standard multiple assignment axiom, the unless

temporal relation (between two predicates) for stating basic safety properties, and

the ensures temporal relation for stating elementary progress properties. Invariant

properties are defined in terms of the unless relation. More complex progress

properties are stated with the leads-to relation 7−→, which is defined in terms

of ensures properties. The assumption of weakly fair scheduling of statement

executions is essential to the logic—without fairness, the ensures property does not

guarantee that the computation would ever progress. In an effort to put UNITY

on a firmer formal foundation, Gerth and Pnueli [124] have defined the UNITY

logic in terms of Manna and Pnueli’s temporal logic [125] and Gerth’s transition

logic [126].
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The Swarm logics given in Chapters 6 and 8 follow the approach advocated

by UNITY. Like UNITY assignments, Swarm transactions are executed in weakly

fair, nondeterministic order. The Swarm programming logics are based on the same

logical relations as UNITY—unless and ensures.
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3. THE SWARM NOTATION

This chapter informally presents the syntax and semantics of the Swarm con-

current programming notation. The first section introduces the features of the

programming notation by analogy to a more familiar procedural language. The

remaining sections, following our presentation in [38], discuss the Swarm features

in more detail.

3.1. AN INFORMAL INTRODUCTION

As noted in Chapter 1, our choice of the name Swarm evokes the image of

a large, rapidly moving aggregation of small, independent agents cooperating to

perform a task. In this section we introduce a notation for programming such

computations. We first present an algorithm expressed in a familiar imperative

notation—a parallel dialect of Dijkstra’s Guarded Commands [75] language. We

then construct a Swarm program with similar semantics.

The algorithm given in Figure 3.1 (adapted from the one given in [67]) sums an

array of N integers. For simplicity of presentation, we assume that N is a power

of 2. In the program fragment, A is the “input” array of integers to be summed

and x is an array of partial sums used by the algorithm. Both arrays are indexed

by the integers 1 through N . At the termination of the algorithm, x(N) is the sum

of the values in the array A. The loop computes the sum in a tree-like fashion as

shown in the diagram: adjacent elements of the array are added in parallel, then

the same is done for the resulting values, and so forth until a single value remains.
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j : integer ;
x(i : 1 ≤ i ≤ N) : array of integer ;

j := 1 ; 〈 k : 1 ≤ k ≤ N :: x(k) := A(k)〉 ;
do j < N −→

〈‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::
x(k) := x(k − j) + x(k)〉 ;

j := j ∗ 2
od

Figure 3.1: A Parallel Array Summation Algorithm Using Guarded Commands
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The construct

〈‖ k : predicate :: assignment 〉

is a parallel assignment command. The assignment is executed in parallel for each

value of k which satisfies the predicate; the entire construct is performed as one

atomic action.

Swarm is a shared dataspace programming model. Instead of expressing a com-

putation in terms of a group of named variables, Swarm uses a set of tuples called a

dataspace. Each tuple is a pairing of a type name with a finite sequence of values;

a program accesses a tuple by its content—type name and values—rather than by

a specific name or address.

Swarm programs execute by deleting existing tuples from and inserting new

tuples into the dataspace. The transactions which specify these atomic dataspace

transformations consist of a set of query-action pairs executed in parallel. Each

query-action pair is similar to a production rule in a language like OPS5 [39].

How can we express the array summation algorithm in Swarm? To represent

the array x, we introduce tuples of type x in which the first component is an integer

in the range 1 through N , the second a partial sum. Assuming that j and k are

constants, we can express an instance of the array assignment in the do loop as a

Swarm transaction in the following way:

v1, v2 : x(k − j, v1), x(k, v2) −→ x(k, v2)†, x(k, v1 + v2).

In the above notation, the part to the left of the “−→” is the query; the part to

the right is the action. The identifiers v1 and v2 designate variables that are local

to the query-action pair.

The execution of a Swarm query is similar to the evaluation of a clause in

Prolog [127]. The query in the paragraph above causes a search of the dataspace



- 33 -

for two tuples of type x whose component values have the specified relationship—the

comma separating the two tuple predicates is interpreted as a conjunction. If one

or more solutions are found, then one of the solutions is chosen nondeterministically

and the matched values are bound to the local variables v1 and v2 and the action

is performed with this binding. If no solution is found, then the transaction is said

to fail and none of the specified actions are taken.

The action of the above transaction consists of the deletion of one tuple and the

insertion of another. The † operator indicates that the tuple x(k, v2), where v2 has

the value bound by the query, is to be deleted from the dataspace. The unmarked

tuple form x(k, v1 + v2) indicates that the corresponding tuple is to be inserted.

Although the execution of a transaction is atomic, the effect of an action is as if all

deletions are performed first, then all insertions.

The parallel assignment command of the algorithm can be expressed similarly

in Swarm:

[ ‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::
v1, v2 : x(k − j, v1), x(k, v2)

−→ x(k, v2)†, x(k, v1 + v2) ]

We call each individual query-action pair a subtransaction and the the overall paral-

lel construct a transaction. As with the parallel assignment, the entire transaction

is executed atomically. The cumulative effect of executing a transaction is as if the

subtransactions are executed synchronously: all queries are evaluated first, then

the indicated tuples are deleted, and finally the indicated tuples are inserted.

Like data tuples, transactions are represented as tuple-like entities in the data-

space. A transaction instance has an associated type name and a finite sequence

of values called parameters. A subtransaction can query and insert transaction

instances in the same way that data tuples are inserted, but transactions cannot
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be explicitly deleted. Implicitly, a transaction is deleted as a by-product of its own

execution—regardless of the success or failure of its component queries.

Two aspects of the do command in Figure 3.1 have not been translated into

Swarm—the doubling of j and the conditional repetition of the loop body. Both of

these can be can be incorporated into a transaction. We define a transaction type

called Sum as follows:

Sum(j) ≡
[‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::

v1, v2 : x(k − j, v1), x(k, v2)
−→ x(k, v2)†, x(k, v1 + v2) ]

‖ j ∗ 2 < N −→ Sum(j ∗ 2)

Thus transaction Sum(j), representing one iteration of the loop, inserts a successor

which represents the next iteration.

For a correct computation, the Swarm array summation program must be ini-

tialized with the following set of tuples in the dataspace:

{ x(1, A(1)), x(2, A(2)), · · · , x(N,A(N)) }.

In addition, the transaction Sum(1) must also be present in the dataspace.

Since each x tuple is only referenced once during a computation, we can modify

the Sum subtransactions to delete both x tuples that are referenced. A complete

ArraySum program with this modification is given in Figure 3.2. The program,

tuple types, and transaction types portions of the program declare program

structures. The initialization section defines the contents of the initial dataspace.

In the remainder of this chapter, we discuss the syntax and semantics of Swarm

programs in more detail.
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program ArraySum(N,A : N > 0, A(i : 1 ≤ i ≤ N))
tuple types

[ i, s : 1 ≤ i ≤ N :: x(i, s)]
transaction types

[ j : j > 0 ::
Sum(j) ≡

[‖ k : 1 ≤ k ≤ N ∧ kmod (j ∗ 2) = 0 ::
v1, v2 : x(k − j, v1)†, x(k, v2)†

−→ x(k, v1 + v2) ]
‖ j ∗ 2 < N −→ Sum(j ∗ 2)

]
initialization

Sum(1), [ i : 1 ≤ i ≤ N :: x(i, A(i))]
end

Figure 3.2: A Parallel Array Summation Program in Swarm

initialize the dataspace;
while the transaction space is not empty

select a transaction fairly;
evaluate the transaction’s query;
if the query succeeds

delete tuples & the transaction;
insert tuples & transactions;

else
delete the transaction;

D0
t0−→ D1

t1−→ D2
t2−→ D3

t3−→ D4
t4−→ D5

t5−→ · · ·

Figure 3.3: Swarm Execution Model



- 36 -

3.2. BASIC CONCEPTS

Execution Model. Underlying the Swarm language is a state-transition model

similar to that of UNITY, but recast into the shared dataspace framework. In the

model, the state of a computation is represented by the contents of the dataspace,

a set of content-addressable entities. The model partitions the dataspace into three

subsets: the tuple space, a finite set of data tuples ; the transaction space, a finite

set of transactions ; and the synchrony relation, which is discussed at the end of the

chapter. An element of the dataspace is a pairing of a type name with a sequence

of values. In addition, a transaction has an associated behavior specification.

Although actual implementations of Swarm can overlap the execution of trans-

actions, we have found the program execution model shown in Figure 3.3 to be

convenient. The program begins execution with the specified initial dataspace. On

each execution step, a transaction is chosen nondeterministically from the transac-

tion space and executed atomically. This selection is fair in the sense that every

transaction in the transaction space at any point in the computation will eventually

be chosen. An executing transaction examines the dataspace and then, depending

upon the results of the examination, can delete tuples (but not transactions) from

the dataspace and insert new tuples and transactions into the dataspace. Unless a

transaction explicitly reinserts itself into the dataspace, it is deleted as a by-product

of its execution. Program execution continues until there are no transactions in the

dataspace. (In Chapter 5 we discuss the operational model more formally.)

Before further explaining the syntax and semantics of programs, we introduce

a few frequently used basic constructs: constructors, predicates, and generators.

Constructors. Swarm’s ubiquitous constructor notation is used to form a set

of entities and apply an operator to the elements of the set. It has the form:



- 37 -

[ operator variables : domain :: operands ]

The operator field is a commutative and associative operator such as ∃, ∀,⇔, Σ, Π,

min, and max. The operands field is a list of operands (separated by semicolons)

compatible with the operator. The variables field is a (possibly null) list of bound

variables whose scopes are delimited by the brackets. An instance of the constructor

corresponds to a set of values for the bound variables such that the domain predicate

is satisfied. (If the domain is blank, then the constant true is taken for the predicate

and the preceding colon is omitted.) The operator is applied to the set of operands

corresponding to all instances of the constructor; if there are no instances, then the

result of the constructor is the identity element of the operator, e.g., 0 for Σ, 1 for

Π, false for ∃, and true for ∀.

Predicates. Swarm predicates are first-order logical expressions constructed

in the usual manner from other predicates, parentheses, and the logical operators

∧, ∨, and ¬. (For convenience, a comma can be used in place of ∧). Simple predi-

cates include tests for the usual arithmetic relationships among values. Predicates

can also denote tests of the dataspace for membership by tuples and transactions.

For example, an execution of the predicate has label(17, λ), where λ is a variable,

examines the dataspace for an element of type has label having two components,

the first being the constant 17 and the second being an arbitrary value. If such an

element exists, the predicate succeeds and the value of the second component of

the matched element is bound to the variable λ.

Generators. A special form of the constructor, called a generator, is used to

form a set of entities. For example, the generator

[P,L : Pixel(P ), P ixel(L) :: has label(P,L)]
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generates a set consisting of a has label(P,L) tuple for all values of P and L that

satisfy the predicate Pixel. We do not allow the domain predicate of a generator

to contain dataspace membership tests.

3.3. PROGRAM ORGANIZATION

A Swarm program consists of five sections: a program header, optional constant

and “macro” definitions, tuple type declarations, transaction type declarations,

and a dataspace initialization section. The syntax and semantics of these program

sections are given below. Figure 3.4 shows a Swarm program to label each pixel

in equal-intensity regions of a digital image with the smallest xy-coordinate pair in

the region. (We order the pixel coordinates lexicographically, i.e., (x, y) < (a, b) if

and only if x < a ∨ (x = a ∧ y < b).) Various versions of this program are used as

examples in the chapters that follow.

Program header. The program header associates a name with the program

and defines a set of program parameters. An invocation of the program with specific

arguments causes the substitution of the values for the parameter names throughout

the program’s body. The argument values must satisfy the constraint predicates

given in the program header. The program in Figure 3.4 is named RegionLabel; it

has parameters M, N, Lo, Hi, and Intensity constrained as indicated. Intensity is

an array of input intensity values indexed by the pixel coordinates.

Definitions. The optional Swarm definitions section allows the programmer

to introduce named constants and “macros” into a program. For example, the

RegionLabel program in Figure 3.4 defines predicates Pixel(P ), neighbors(P,Q),

and R neighbors(P,Q). These predicates allow the other sections to be expressed

in a more concise and readable fashion.
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program RegionLabel(M,N,Lo,Hi, Intensity :
1 ≤M, 1 ≤ N,Lo ≤ Hi, Intensity(ρ : Pixel(ρ)),
[∀ ρ : Pixel(ρ) :: Lo ≤ Intensity(ρ) ≤ Hi] )

definitions
[P,Q, L ::

Pixel(P ) ≡ [∃x, y : P = (x, y) :: 1 ≤ x ≤ N, 1 ≤ y ≤M ];
neighbors(P,Q) ≡

Pixel(P ), P ixel(Q), P 6= Q,
[∃x, y, a, b : P = (x, y), Q = (a, b) :: a− 1 ≤ x ≤ a+ 1, b− 1 ≤ y ≤ b+ 1];

R neighbors(P,Q) ≡
neighbors(P,Q), [∃ ι :: has intensity(P, ι), has intensity(Q, ι)]

]
tuple types

[P,L, I : Pixel(P ), P ixel(L), Lo ≤ I ≤ Hi ::
has label(P,L);
has intensity(P, I)

]
transaction types

[P : Pixel(P ) ::
Label(P ) ≡

ρ, λ1, λ2 :
has label(P, λ1)†, has label(ρ, λ2), R neighbors(P, ρ), λ1 > λ2

→ has label(P, λ2), Label(P )
‖ NOR → Label(P )

]
initialization

[P : Pixel(P ) ::
has label(P, P ),
has intensity(P, Intensity(P )),
Label(P )

]
end

Figure 3.4: A Nonterminating Region Labeling Program in Swarm
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Tuple types. The tuple types section declares the types of tuples that can

exist in the tuple space. Each tuple type declaration defines a set of tuple instances

that can be examined, inserted, and deleted by the program. In Figure 3.4 tuple

type has label pairs a pixel with a label; has intensity pairs a pixel with its intensity

value.

Transaction types. The transaction types section declares the types of trans-

actions that can exist in the transaction space. Each transaction type declaration

defines a set of transaction instances that can be executed, inserted, or examined

by a program. The program in Figure 3.4 declares a transaction type Label(P ).

The body of a transaction instance consists of a sequence of subtransactions

connected by the ‖ operator:

variable list1 : query1 → action1

‖ · · ·
‖ variable listn : queryn → actionn

Each subtransaction definition consists of three parts: the variable list, a comma-

separated list of variable names; the query, an existential predicate over the data-

space; and the action which defines changes to be made to the dataspace. If the

variable list is null, then the colon that separates it from the query may be omitted.

A subtransaction’s action specifies sets of tuples to insert and delete and transac-

tions to insert. Syntactically, an action consists of dataspace insertion and deletion

operations separated by commas. In the action of a subtransaction, the notation

name(values) specifies that a tuple or transaction of the type name is to be in-

serted into the dataspace; a † appended to a tuple specifies that the tuple is to be

deleted if it is present in the dataspace. Generators may be used to specify groups

of insertions or deletions.

As a convenience, tuple deletion may be specified in the query by appending the

symbol † to a tuple space predicate. The construct name(pattern)† indicates that
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the matching tuple in the tuple space is to be deleted if the entire query succeeds.

Any variables appearing in the pattern must be defined in the variable list of the

subtransaction (not in a constructor nested inside the query).

A subtransaction is executed in three phases: query evaluation, tuple deletions,

and tuple and transaction insertions. Evaluation of the query seeks to find values

for the subtransaction variables that make the query predicate true with respect to

the dataspace. If the query evaluation succeeds, then the dataspace deletions and

insertions specified by the subtransaction’s action are performed using the values

bound by the query. If the query fails, then the action is not executed. The sub-

transactions of a transaction are executed synchronously: the queries are evaluated

simultaneously, then the indicated deletions are performed for all subtransactions,

and finally the indicated tuple and transaction insertions are done.

The special global predicates AND, OR, NAND, and NOR (having the same

meanings as in digital logic design) may be used in queries. These special predicates

examine the success status of all the simultaneously executed subtransaction queries

which do not involve global predicates, i.e., the local queries. For example, the

predicate OR succeeds if any of the local queries in the transaction also succeed;

NOR (not-or) succeeds if none of the local queries succeed.

Initialization. By default, both the tuple and transaction spaces are empty.

The initialization section establishes the dataspace contents that exist at the begin-

ning of a computation. The section consists of a sequence of initializers separated

by semicolons; each initializer is like a subtransaction’s action in syntax and seman-

tics. Since the null computation is not very interesting, at least one transaction

must be established at initialization.
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3.4. SYNCHRONY RELATION

In our discussion so far we have ignored the third component of a Swarm pro-

gram’s state—the synchrony relation. The interaction of the synchrony relation

with the execution mechanism provides a dynamic form of the ‖ operator. The

synchrony relation is a symmetric, irreflexive relation on the set of valid trans-

action instances. (Picture an undirected graph with transaction instances repre-

sented as nodes and a synchrony relationship between transaction instances as an

edge between the corresponding nodes.) The reflexive transitive closure of the syn-

chrony relation is thus an equivalence relation. (The equivalence classes are the

connected components of the undirected graph mentioned above.) When one of

the transactions in an equivalence class is chosen for execution, then all members

of the class which exist in the transaction space at that point in the computation

are also chosen. This group of related transactions is called a synchronic group. The

subtransactions making up the transactions of a synchronic group are executed as

if they were part of the same transaction. The scope of the global predicates, e.g.,

AND, extends to all local subtransactions in the synchronic group.

The synchrony relation can be examined and modified in much the same way

as the tuple and transaction spaces can. For example, the predicate

Label(p) ∼ Label(Q)

(where parameter p is a variable and parameter Q is a constant) in the query of a

subtransaction examines the synchrony relation for a transaction instance Label(p)

that is directly related to an instance Label(Q). Neither transaction instance is

required to exist in the transaction space. The operator≈ can be used in a predicate

to examine whether transaction instances are related by the closure of the synchrony

relation.



- 43 -

Synchrony relationships between transaction instances can be inserted into and

deleted from the relation. For example, the operation

Label(p) ∼ Label(q)

in the action of a subtransaction creates a dynamic coupling between transaction

instances Label(p) and Label(q) (where p and q must have bound values). If two

transaction instances Label(p) and Label(q) are related by the synchrony relation,

then

(Label(p) ∼ Label(q))†

deletes the relationship. Note that the closure relation can be examined, but that

only the base synchrony relation can be modified. (The dynamic creation of a

synchrony relationship between two transactions can be pictured as the insertion

of an edge in the undirected graph described earlier in the section, and the deletion

of a relationship as the removal of an edge.)

By default the synchrony relation is empty. Initial couplings can be specified by

putting insertion operations into the initialization section. For the purposes here,

we assume that any two transaction instances can be related by the synchrony

relation.
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4. SWARM PROGRAMMING

In Chapter 3 we introduced a mechanism for examining and modifying the

dataspace—the transaction. A transaction consists of a fixed set of subtransactions

connected by the ‖ operator. The subtransactions of a transaction are executed

synchronously. Transactions may be coupled by means of the synchrony relation

into synchronic groups which are executed asynchronously with respect to each

other. Of course, a synchronic group may contain only one transaction, having, in

turn, a single subtransaction. In this chapter we provide some of the motivation

for these particular choices. We do this by identifying the kinds of programming

strategies made possible by these constructs.

In this chapter we discuss a series of solutions to the region-labeling problem

introduced in Chapter 3. Most of the programs in this chapter are variations of the

RegionLabel program given in Figure 3.4. To distinguish among similar transac-

tions in the various solutions, we append unique numbers to the base transaction

names.

Given a digital image in which each pixel has an intensity attribute, a region-

labeling program must assign unique labels to each connected, equal-intensity region

of the image. For the region’s label, the programs in this chapter use the “minimum”

of the set of xy-coordinates for pixels in the region. Comparisons of pixel coordinates

are in terms of the lexicographic ordering where, for example,

(x, y) < (a, b) ≡ x < a ∨ (x = a ∧ y < b).

Reasoning about concurrent computations is generally done in terms of progress

(liveness) and safety properties (e.g., stability). Progress is achieved by effecting
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changes in the computation’s state; stable properties are useful in detecting the

completion of a particular phase of the computation. For these reasons our dis-

cussion is logically divided into two parts: computational progress and stable state

detection.

4.1. COMPUTATIONAL PROGRESS

The manner in which progress is accomplished depends upon the computational

style supported by the underlying model. Swarm supports both asynchronous and

synchronous computation in the context of either a static or dynamic transaction

space. These capabilities are illustrated below by considering the region-labeling

problem. Throughout this section we will ignore the issue of termination detection

and assume that any transaction which cannot change the labeling result is harm-

less. We could inhibit the creation of such transactions, but we prefer to keep the

presentation simple.

Static asynchronous computation. First, we consider the case of an asyn-

chronous computation with a static transaction space. In a manner similar to

Figure 3.4, the transaction space consists of one transaction per pixel:

[P : Pixel(P ) ::
has label(P, P ), has intensity(P, Intensity(P )),
Label1(P )

]

Each Label1(P ) transaction reinserts itself and thus leaves the transaction space

unchanged:
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[P : Pixel(P ) ::
Label1(P ) ≡

ρ, λ1, λ2 :
has label(P, λ1)†, has label(ρ, λ2), R neighbors(P, ρ), λ1 > λ2

→ has label(P, λ2)
‖ true → Label1(P )

]

Each Label1 transaction is anchored at a pixel; the transaction repeatedly relabels

its pixel to smaller labels held by neighbor pixels. Eventually the winning label

propagates throughout the entire region.

Dynamic asynchronous computation. A very different kind of solution may

be obtained if we allow a dynamic transaction space. As before, we can start with

one transaction associated with each pixel in the image:

[P : Pixel(P ) :: · · · , Label2(P, P )]

Each transaction, however, has two arguments. The first argument is the pixel the

transaction is attempting to label; the second is the label it is attempting to place

on that pixel:

[P,L : Pixel(P ), P ixel(L) ::
Label2(P,L) ≡

[‖ δ : P = L, neighbors(P, δ) ::
ι : has intensity(P, ι), has intensity(δ, ι)

→ Label2(δ, P )
]

‖
λ : has label(P, λ)†, λ > L

→ has label(P,L)
‖

[‖ δ : δ 6= L, neighbors(P, δ) ::
λ, ι : has label(P, λ), λ > L,

has intensity(P, ι), has intensity(δ, ι)
→ Label2(δ, L)

]
]
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Each Label2(P,L) transaction consists of three groups of subtransactions. In

the first and third groups we use the subtransaction generator feature. For P = L,

the first group includes a subtransaction for each pixel δ such that neighbors(P, δ);

otherwise, the group is null. This group of subtransactions starts the propagation

of a pixel’s label to its neighbors. The second subtransaction group is a single

subtransaction which relabels pixel P when it has a label larger than L. When a

label is changed, the third subtransaction group propagates the relabeling activity

to the pixel’s neighbors. A wavefront of transactions working on behalf of the pixel

having the smallest coordinate in the region, i.e., the winning pixel, will expand

until it reaches the region boundaries where, having completed the region labeling,

it dissipates.

Static synchronous computation. The synchronous version of the static

transaction space is a highly unpleasing one. It demands the creation of a super-

transaction that covers the entire image:

[ ::
Label3( ) ≡

[‖ ρ : Pixel(ρ) ::
δ, λ1, λ2 : has label(ρ, λ1)†, has label(δ, λ2),

R neighbors(ρ, δ), λ1 > λ2
→ has label(ρ, λ2)

]
‖ true → Label3( )

]

This kind of solution, typical for many SIMD machines, creates an unnecessary

coupling between independent regions of the image. Because the structure of the

image varies, one cannot restrict a transaction to processing a single region.

For this reason Swarm includes the synchrony relation ∼. For static data, the

synchrony relation may be used to create an initial configuration of the transaction

space which is tailored to the initial structure of the tuple space. Using the earlier
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definition of the Label1(P ) transaction type, we can redefine the initial configura-

tion to be as follows:

[P : Pixel(P ) ::
has label(P, P ), has intensity(P, Intensity(P )),
Label1(P )

] ;
[P,Q : neighbors(P,Q), Intensity(P ) = Intensity(Q) ::

Label1(P ) ∼ Label1(Q)
]

All the transactions working on the same region form a synchronic group which

reinserts itself after each step.

Dynamic synchronous computation. Synchronic groups can also be formed

during program execution in response to dynamically created data. This brings us

to the case of a synchronous solution in a dynamic transaction space. This approach

can be illustrated by altering the definition of Label1(P ) so that it couples itself to

those transactions that are associated with its neighbors in the same region:

[P : Pixel(P ) ::
Label4(P ) ≡

ρ, λ1, λ2 :
has label(P, λ1)†, has label(ρ, λ2), R neighbors(ρ, P ), λ1 > λ2

→ has label(P, λ2)
‖ ρ : R neighbors(ρ, P ),¬(Label4(ρ) ∼ Label4(P ))

→ Label4(ρ) ∼ Label4(P )
‖ true → Label4(P )

]

Gradually, the Label4(P ) transactions associated with the same region are brought

into synchrony with each other.
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4.2. STABLE STATE DETECTION

Having considered four alternative ways of accomplishing the labeling, we turn

now to the issue of detecting the completion of the process on a region-by-region

basis. We examine four distinct detection paradigms and relate them to the different

computing strategies discussed above.

Coordinated detection. The first paradigm could be called coordinated de-

tection, a computation which executes a special protocol to detect the desired

condition. Termination [128], quiescence [23], and global snapshot algorithms [129]

are representative of this paradigm. Algorithms for detecting the termination of a

diffusing computation may be adapted to detecting the completion of the region-

labeling process. To do this we modify the program given in Figure 3.4 to form the

program shown in Figure 4.1. The key modification is the introduction of a tuple

is a child of(ρ, δ) which is used to construct a spanning tree of pixels—a pixel be-

comes a child of that neighbor whose label it acquired last. During labeling the tree

grows from the winning pixel and gradually attaches all pixels in the region to the

winning pixel. Trees rooted at losing pixels are eventually destroyed. The growth

is coded as part of the Label5(P ) transaction. Once the labeling is complete, the

tree shrinks to its root which is declared to be the winner. This is carried out by

the Track1(P ) transaction.

Note that the additional code required to perform the detection involved the

modification of the Label1 transaction type to form the Label5 type. It was not

sufficient to merge two separate programs, a labeling and a detection program. We

had to introduce some coupling between the two computations. In Swarm such

coupling may be easily avoided because of the kinds of queries one can perform

against the tuple and transaction spaces.



- 50 -

program RegionLabel5(M,N,Lo,Hi, Intensity :
1 ≤M, 1 ≤ N,Lo ≤ Hi, Intensity(ρ : Pixel(ρ)),
[∀ ρ : Pixel(ρ) :: Lo ≤ Intensity(ρ) ≤ Hi] )

definitions
[P,Q, L ::

Pixel(P ) ≡ [∃x, y : P = (x, y) :: 1 ≤ x ≤ N, 1 ≤ y ≤M ] ;
neighbors(P,Q) ≡

Pixel(P ), P ixel(Q), P 6= Q,
[∃x, y, a, b : P = (x, y), Q = (a, b) :: a− 1 ≤ x ≤ a+ 1, b− 1 ≤ y ≤ b+ 1] ;

R neighbors(P,Q) ≡
neighbors(P,Q), [∃ ι :: has intensity(P, ι), has intensity(Q, ι)]

]
tuple types

[P,Q, L, I : Pixel(P ), P ixel(Q) ∨Q = nil, P ixel(L), Lo ≤ I ≤ Hi ::
has label(P,L) ; has intensity(P, I) ; is a child of(P,Q) ; wins(P )

]
transaction types

[P : Pixel(P ) ::
Label5(P ) ≡

ρ, λ1, λ2 :
has label(P, λ1)†, has label(ρ, λ2), R neighbors(P, ρ), λ1 > λ2

→ has label(P, λ2)
‖ ρ, δ, λ1, λ2 :

has label(P, λ1), is a child of(P, δ)†,
has label(ρ, λ2), R neighbors(P, ρ), λ1 > λ2

→ is a child of(P, ρ)
‖ true → Label5(P ) ;

Track1(P ) ≡
λ, δ : has label(P, λ), is a child of(P, δ)†,

[∀ ρ : R neighbors(P, ρ) :: has label(ρ, λ),¬is a child of(ρ, P ) ]
→ is a child of(P,nil)

‖ has label(P, P ), is a child of(P,nil) → wins(P )
‖ λ : has label(P, λ),¬wins(λ) → Track1(P )

]
initially

[P : Pixel(P ) ::
has intensity(P, Intensity(P )), has label(P, P ), is a child of(P, P ),
Label5(P ), T rack1(P )

]
end

Figure 4.1: A Region Labeling Program with Termination Detection
Using a Classic Algorithm to Detect the Termination of a Diffusing Computation
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Absence of activity. The three remaining detection paradigms show the

different ways decoupling may be accomplished. One strategy we can pursue is

to detect the absence of computational activity which may occur once a stable

state is established. Of course, this is possible only if the transaction space is

dynamic. In the dynamic asynchronous solution presented earlier (Label2), when

the labeling activity is completed, the winning pixel P is still labeled with its own

coordinate and no transactions are attempting to place the label P on any other

pixels. Unfortunately this property can also be satisfied by losing pixels. However,

a trivial change to Label2 allows us to come up with the following elegant solution:

[P : Pixel(P ) ::
Track2(P ) ≡

alive(P ), [∃ ρ :: Label2(ρ, P )] → Track2(P )
‖ alive(P ), [∀ ρ :: ¬Label2(ρ, P )] → wins(P )

]

We initially associate a Track2(P ) transaction with each pixel P in the image.

The Track2 transaction requires that we modify the RegionLabel2 program in

two ways. Initially an alive(P ) tuple exists for each pixel P . Transaction Label2′

then deletes the tuple alive(λ) whenever it relabels any pixel labeled λ to a smaller

value.

[P,L : Pixel(P ), P ixel(L) ::
Label2′(P,L) ≡

· · ·
‖

λ : has label(P, λ)†, λ > L
→ has label(P,L), alive(λ)†

‖
· · ·

]

Global coordination. In the next stable state detection mechanism we ex-

ploit the global coordination capabilities available in the definition of a synchronic
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group. For each region we grow a synchronic group of Track3 detectors, one per

pixel. The Track3 detector transaction for each pixel includes (1) a local subtrans-

action which fails if the pixel is properly labeled with respect to its neighbors, (2)

a second local subtransaction which fails if the Track3 transaction for the pixel

is in synchrony with the Track3 transactions for all neighbors, and (3) a global

check which succeeds if all local subtransactions fail and this detector transaction

is associated with the winning pixel:

[P : Pixel(P ) ::
Track3(P ) ≡

ρ, λ1, λ2 :
has label(P, λ1), has label(ρ, λ2), R neighbors(P, ρ), λ1 > λ2

→ skip
‖ ρ : R neighbors(P, ρ),¬(Track3(P ) ∼ Track3(ρ))

→ Track3(P ) ∼ Track3(ρ)
‖ OR → Track3(P )
‖ NOR, has label(P, P ) → wins(P )

]

(In the example above, skip is the “no-operation” action.) This approach works

by incrementally constructing a synchronic group of Track3 transactions for each

region of the image; a region’s synchronic group encompasses all of the Track3

transactions associated with the pixels in the region. When the construction of this

group is complete and all pixels in the region are labeled identically, the detector

can declare the pixel which is labeled with its own coordinates to be the winner.

This approach is compatible with all labeling solutions presented earlier. It does

not require that alive(P ) tuples be introduced into the Label2 computation.

Global query. Finally, the most direct solution one can construct is by actually

specifying a global query to determine whether the region is or is not labeled:



- 53 -

[P : Pixel(P ) ::
Track4(P ) ≡

has label(P, P ),¬wins(P ) → Track4(P )
‖ has label(P, P ),

[∀ ρ, δ : has label(ρ, P ), R neighbors(ρ, δ) :: has label(δ, P )]
→ wins(P )

]

This solution allows labeling and detection to be totally decoupled; it is a direct

encoding of the problem statement. To this extent, it represents the ideal program-

ming solution.

4.3. PROGRAMMING IMPLICATIONS

The desire to assist programmers in the development and analysis of concurrent

computations motivates the shared dataspace model. The model brings together

a variety of computing styles within a single unified framework. Programming

convenience has been achieved by the provision of powerful queries over both the

tuple and transaction spaces and by the ease with which unstructured and un-

bounded problems may be approached. The opportunities for temporal and spatial

decoupling of computations characteristic of shared dataspace languages have been

strengthened and enhanced. Development of a proof system for shared dataspace

languages (Chapters 6 and 8) and on declarative visualization techniques [45, 46]

promise to contribute to increased analyzability of shared dataspace programs.

In Swarm, the replicated worker [26] metaphor proposed by Gelernter and his

colleagues is refined, acquiring new forms and nuances. First of all, motivated by

the fact that reasoning about concurrent computations is done in terms of progress

and safety properties, we have been pursuing a programming methodology in which

computations are partitioned between progress and detection activities. Progress
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and detection programs can be composed either by merging or by introducing some

form of coupling (static or dynamic). As made evident in the previous section,

the simple merging of independent programs is the preferred method of composi-

tion because it enhances program modularity and simplifies reasoning about the
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composite program. The use of dynamic coupling as a program composition mech-

anism remains to be investigated.

The degree of decoupling achievable in Swarm encourages modular program-

ming. As shown in the previous section, labeling and detection activities can be

easily composed if we avoid the traditional programming approach illustrated in

Figure 4.1. We can actually go one step further: we can construct a speed-up

program which can also be merged with the Label1, Label3, and Label4 solutions

presented earlier. The speed-up can be carried out by transactions of the following

type:

[ : Pixel(P ) ::
SpeedUp(P ) ≡

ρ, λ : has label(P, ρ)†, has label(ρ, λ)
→ has label(P, λ), SpeedUp(P )

]

This transaction does not work with the Label2 program because SpeedUp allows

the labeling computation to halt prematurely. This problem can be remedied by

modifying SpeedUp(P ) to create Label2(δ, λ) transactions for each neighbor δ of P

whenever P is relabeled with λ.

Transactions participating in progress activities could be called workers, while

those involved in detection could be called detectives. In Swarm, however, work-

ers may be categorized by the way they function and by their level and style of

cooperation. Cultivating Gelernter’s metaphor, workers in Linda could be called

migrant workers because they exist solely to seek out work assignments encoded

as tuples in the dataspace. The transactions of the type Label2(P,L) are migrant

workers. In contrast, the transactions of type Label1(P ) are anchored to a partic-

ular pixel serving its labeling needs as a waiter might service a particular table.

Through the use of the synchrony relation, a group of workers can be organized
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into a community (i.e., a locally synchronous computation) which can evolve and

ultimately dissolve on its own. Finally, detectives may be monitoring either the

tuple or the transaction spaces seeking to determine the end of a particular phase

in the computation.
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5. A FORMAL MODEL

In this chapter we present an operational, state-transition model for Swarm.

This model formalizes the concepts expressed informally in Chapter 3 and lays the

foundation for our development of Swarm programming logics in Chapters 6 and

8. The model presented here is similar to the one we presented in [38].

The model represents the execution of a Swarm program as an infinite sequence

of dataspaces (program states). Terminating computations are modeled as infinite

sequences by replicating the final dataspace. The first dataspace in each program

execution sequence is one of the valid initial dataspaces of the program. Each suc-

cessive element consists of the transformed dataspace resulting from the execution

of a synchronic group from the preceding element’s transaction space. Allowed

transitions between dataspaces are specified with a transition relation. The choice

of the transactions to execute is assumed to satisfy a fairness property.

The Swarm model is stated in terms of relationships among several sets of basic

entities. Val denotes the set of constant values used in Swarm programs. In this

dissertation we restrict ourselves to integer (the set Int) and boolean (the set Bool)

values. Nam is the set from which names of tuple and transaction types are drawn

(Nam∩Val = ∅). In the definition of functions, the domain operator→ implicitly

associates to the right, i.e, A→ B → C means A→ (B → C).

The model also uses a number of operations on sets. For set S, Pow(S) denotes

the powerset and Fs(S) denotes the set of all finite subsets. We use a three-part

notation similar to Swarm’s constructor to express set construction and quantified

expressions, e.g., {n : n > 10 : n} denotes the set of values greater than 10. If R
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is a binary relation on some set, then Rτ is the reflexive, transitive closure of the

relation. If S is a set, then S∗ denotes the set of all finite-length sequences whose

elements are drawn from S and S∞ denotes the set of all infinite sequences. The

symbol ε signifies the empty (zero-length) sequence. Sequence elements are indexed

with natural numbers beginning with 0. The notation si designates the ith element

of the sequence s; #s denotes the length of the sequence.

Ignoring the program and definitions sections (which are syntactic sugar), a

Swarm program is modeled as a four-tuple 〈TP,TR,SR, ID〉 where:

TP : Nam → Val∗ → Bool is the characteristic function for data tuple types.

TP(name, values) = true if and only if name(values) is a tuple instance

allowed by the tuple type declaration in the program’s text. A tuple type is

the nonempty set of all tuple instances corresponding to one tuple name. The

number of tuple types in a program must be finite.

TR : Nam → Val∗ → Beh is the characteristic function for transaction types.

TR(name, values) 6= ε if and only if name(values) is a transaction instance

allowed by the transaction type declaration in the program’s text. A trans-

action type is the nonempty set of all transaction instances corresponding to

one transaction name. The number of transaction types must be finite. The

sets of names for tuple and transaction types must be disjoint. Beh is the

set of transaction behaviors defined below.

SR is the set of valid synchrony relations. Each element of SR is a symmetric,

irreflexive binary relation on the set of valid transaction instances.

ID is the set of valid initial dataspaces; one of these dataspaces is chosen nonde-

terministically as the first dataspace of an execution sequence.
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The data type and transaction type characteristic functions define the sets of

all valid instances of tuples ( TPS ) and transactions ( TRS ):

TPS = {n, v : n ∈ Nam ∧ v ∈ Val∗ ∧TP(n, v) = true : (n, v)}

TRS = {n, v : n ∈ Nam ∧ v ∈ Val∗ ∧TR(n, v) 6= ε : (n, v)}

SR is a subset of Pow(TRS×TRS).

DS, the universe of dataspaces (program states), can now be defined as follows:

DS = Fs(TPS)× Fs(TRS)× SR

Each dataspace consists of a finite tuple space, a finite transaction space, and a

synchrony relation. ID is a (normally singleton) subset of DS.

The set of transaction behaviors Beh is a subset of the set of sequences (L∪G)∗

where:

L ∩ G = ∅.

L ⊆ [ Bool∗ → DS → Val∗ → Bool × DS × DS ] is a set of behaviors for sub-

transactions which involve only ordinary local predicates. Each element of L

maps a dataspace and a set of bindings for subtransaction variables to a query

result flag, a group of (tuple and synchrony relation) deletions, and a group

of (tuple, transaction, and synchrony relation) insertions. Given a dataspace

d and a sequence of values for the subtransaction variables v:

(∀ b : b ∈ Bool∗ : L(b, d, v) = L(ε, d, v))

because the Bool∗ argument is a “dummy” included for compatibility with

the set G.
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G ⊆ [ Bool∗ → DS → Val∗ → Bool × DS × DS ] is a set of behaviors for

subtransactions involving the special global predicates AND, OR, NAND,

and NOR as discussed in Chapter 3. The Bool∗ arguments represent the

success and failure results of all the local subtransactions executed in the

same step. The function range is interpreted in the same way as in L. Given

a dataspace d, a sequence of local query results b, and a sequence of values

for the subtransaction variables v:

(∀ b′ : b′ is a permutation of b : G(b, d, v) = G(b′, d, v))

because the global predicates are commutative and associative.

Swarm subtransactions can be translated to L and G functions in a straightforward

manner.

For convenience, we define a number of prefix operators. For any dataspace d

in DS, Tp.d, Tr.d, and Sr.d yield, respectively, the tuple space, transaction space,

and synchrony relation components of d. For example, if d = (a, b, c) is an element

of DS, then Tp.d yields the tuple space a. For any subtransaction behavior s in

L ∪ G, Q.s, D.s, and I.s are functions which yield the three components of s’s

range when applied to the same arguments as s, i.e., the query result, the dataspace

deletions, and the dataspace insertions.

For any dataspace d in DS, (Sr.d)τ is an equivalence relation on TRS. An

equivalence class of the closure is called a synchrony class. For a dataspace d

having a synchrony class C, if C∩ TR.d 6= ∅, then C∩ Tr.d, the set of transaction

instances in the synchrony class which actually exist in the transaction space, is a

synchronic group of d. To facilitate the modeling of terminating computations, we

define ∅ to be the synchronic group of the empty transaction space.
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So far we have modeled the program as a static entity. As noted at the beginning

of the chapter, an execution of a program is denoted by an infinite sequence of

dataspaces. To be more precise, we define the universe of execution sequences ES

as follows:

ES = (DS× Fs(TRS))∞

For all e ∈ ES and for all i ≥ 0, Ds.ei is the first component of ei (the “current”

dataspace) and Sg.ei is the second (the synchronic group to be executed next).

To define the allowed orders in which dataspaces may be sequenced in an exe-

cution of the program, we introduce the transition relation step. This relation is

defined in Figure 5.1. The step relation states that a transition from a dataspace d

to a dataspace d′ can occur by the execution of a set of transactions S if and only

if S is a synchronic group of d’s transaction space and d′ is a possible result of the

synchronous execution of all the subtransactions in S from dataspace d. Because

there may be several sets of values for the bound variables in a subtransaction that

allow the query to succeed on dataspace d, the execution of the subtransaction non-

deterministically chooses one set. Given a set of values that satisfy the query, the

deletion of entities from the tuple space, transaction space, and synchrony relation

are “performed before” the insertions of new entities. The subtransactions involv-

ing global predicates depend upon the success or failure of the local subtransactions

as well as directly upon the dataspace.

Some of the notation in Figure 5.1 needs further explanation. Note in lines

4 and 5 the definition of the functions v and b. v maps a subtransaction of S

into a sequence of value bindings for its variables, and b maps a subtransaction

into a boolean query success flag. In lines 10 and 11 the queries for the global

transactions depend upon the elements of b corresponding to local subtransactions.
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(∀ d, d′, S : d ∈ DS ∧ d′ ∈ DS ∧ S ⊆ TRS :
step(d, S, d′) ≡ Synch(S, d)∧

(∃ v, b :
v ∈ [{t, i : t ∈ S ∧ 0 ≤ i < #TR(t) : (t, i)} → Val∗]∧
b ∈ [{t, i : t ∈ S ∧ 0 ≤ i < #TR(t) : (t, i)} → Bool] :

(∀ t, i, σ : subtrans(S, t, i, σ) ∧ σ ∈ L :
(Q.σ(ε, d, v(t, i)) ∧ b(t, i))
∨ ((∀x :: ¬Q.σ(ε, d, x)) ∧ ¬b(t, i)))

∧(∀ t, i, σ : subtrans(S, t, i, σ) ∧ σ ∈ G :
(Q.σ(loc(b, S), d, v(t, i)) ∧ b(t, i))
∨ ((∀x :: ¬Q.σ(loc(b, S), d, x)) ∧ ¬b(t, i)))

∧Update(d, S, d′, v, b)
)

)

where
Synch(S, d) ≡

(S = ∅ ∧Tr.d = ∅)∨
(S 6= ∅ ∧ S ⊆ Tr.d ∧ (∀ t, t′ : t ∈ S ∧ t′ ∈ S : (t, t′) ∈ (Sr.d)τ )∧

(∀ t, x : t ∈ S ∧ x ∈ Tr.d ∧ x 6∈ S : (t, x) 6∈ (Sr.d)τ ))
and

subtrans(S, t, i, σ) ≡ t ∈ S ∧ 0 ≤ i < #TR(t) ∧ σ = (TR(t))i
and

loc(b, S) ≡ (SEQ t, i, σ : subtrans(S, t, i, σ) ∧ σ ∈ L : b(t, i))
and

Update(d, S, d′, v, b) ≡
Tp.d′ = (Tp.d− (∪ t, i, σ : subtrans(S, t, i, σ) ∧ b(t, i) :

Tp.D.σ(loc(b, S), d, v(t, i))))
∪ (∪ t, i, σ : subtrans(S, t, i, σ) ∧ b(t, i) :

Tp.I.σ(loc(b, S), d, v(t, i)))
∧Tr.d′ = (Tr.d− S)

∪ (∪ t, i, σ : subtrans(S, t, i, σ) ∧ b(t, i) :
Tr.I.σ(loc(b, S), d, v(t, i)))

∧Sr.d′ = (Sr.d− (∪ t, i, σ : subtrans(S, t, i, σ) ∧ b(t, i) :
Sr.D.σ(loc(b, S), d, v(t, i))))

∪ (∪ t, i, σ : subtrans(S, t, i, σ) ∧ b(t, i) :
Sr.I.σ(loc(b, S), d, v(t, i)))

Figure 5.1: The Transition Relation step
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In the definition of loc(b, S) the operator SEQ means to concatenate the items in the

range of the constructor into a sequence in an arbitrary order. In the definition of

the Update predicate the subtraction symbol “−” is used to denote the set difference

operation.

In Chapter 3 we stated the requirement that the selection of transactions for

execution be fair. This fairness constraint can be stated in terms of the execution

sequences of this model using the predicate Fair defined as follows:

(∀ e : e ∈ ES :
Fair(e) ≡ (∀ i, t : 0 ≤ i ∧ t ∈ Tr.Ds.ei :

(∃ j : j ≥ i : t ∈ Sg.ej ∧ (∀ k : i ≤ k ≤ j : t ∈ Tr.Ds.ek))))

Informally, an execution sequence is fair if, once a transaction exists in the trans-

action space, it remains in the space until it is selected for execution and it will be

selected for execution within a finite number of steps.

The set of program executions can now be formalized as follows:

Exec = {e : e ∈ ES ∧ Fair(e) ∧Ds.e0 ∈ ID ∧
(∀ i : 0 ≤ i : step(Ds.ei,Sg.ei,Ds.ei+1))

: e}

This is the set of all execution sequences which begin in a valid initial dataspace,

execute a synchronic group of transactions at each computational step, and select

transactions for execution in a fair manner.

Using this state-transition model to capture the desired notion of program ex-

ecution, we have developed programming logics for Swarm (Chapters 6 and 8).

These programming logics are similar in style to the logic for UNITY [24]. The

above concept of fairness is a central assumption of the logics; it is essential to

proofs of progress (liveness) properties of Swarm programs.
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6. A PROGRAMMING LOGIC

This chapter presents an assertional programming logic for Swarm, building

upon the formal model given in Chapter 5. (The logic presented here also appears

in [41] and [42].) For simplicity in presentation, we do not consider the synchrony

relation feature of Swarm, but we do keep the notation used here compatible with

that needed for the full language. The model and logic presented here are general-

ized to incorporate synchronic groups in Chapter 8.

For the purposes of this chapter, a Swarm dataspace can be partitioned into a

finite tuple space and a finite transaction space. For a dataspace d, Tr.d denotes

the transaction space of d. The transaction types section of a program defines

the set of all possible transaction instances TRS.

In Chapter 5 we modeled a Swarm program as a set of execution sequences, each

of which is infinite and denotes one possible execution of the program. Let e denote

one of these sequences. Each element ei, i ≥ 0, of e is an ordered pair consisting of

a program dataspace Ds.ei and a set Sg.ei containing a single transaction chosen

from Tr.Ds.ei. (If Tr.Ds.ei = ∅, then Sg.ei = ∅.)

The transition relation predicate step expresses the semantics of the transac-

tions in TRS; the values of this predicate are derived from the query and action

parts of the transaction body. The predicate step(d, S, d′) is true if and only if the

transaction in set S is in dataspace d and the transaction’s execution can transform

dataspace d to a dataspace d′.

We define Exec to be the set of all execution sequences e, as characterized

above, which satisfy the following criteria:
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• Ds.e0 is a valid initial dataspace of the program.

• For i ≥ 0,
if Tr.Ds.ei 6= ∅ then step(Ds.ei,Sg.ei,Ds.ei+1);

otherwise Ds.ei = Ds.ei+1.

• e is fair, i.e.,

(∀ i, t : 0 ≤ i ∧ t ∈ Tr.Ds.ei :

(∃ j : j ≥ i : Sg.ej = {t} ∧ (∀ k : i ≤ k ≤ j : t ∈ Tr.Ds.ek))).

Terminating computations are extended to infinite sequences by replication of the

final dataspace.

Although we could use this formalism directly to reason about Swarm programs,

we prefer to reason with assertions about program states rather than with execution

sequences. The Swarm computational model is similar to that of UNITY [24];

hence, a UNITY-like assertional logic seems appropriate. However, we cannot use

the UNITY logic directly because of the differences between the UNITY and Swarm

frameworks.

In this dissertation we follow the notational conventions for UNITY in [24]. We

use Hoare-style assertions of the form {p} t {q} where p and q are predicates and t

is a transaction instance. Properties and inference rules are often written without

explicit quantification; these are universally quantified over all the values of the

free variables occurring in them. We use the notation p(d) to denote the evaluation

of predicate p with respect to dataspace d and the notation (p ∧ ¬q)(ei) to denote

the evaluation of the predicate p ∧ ¬q with respect to Ds.ei. Below we also use

the notation [t] to denote the predicate “transaction instance t is in the transaction

space.”

UNITY assignment statements are deterministic; execution of a statement from

a given state will always result in the same next state. This determinism, plus
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the use of named variables, enables UNITY’s assignment proof rule to be stated in

terms of the syntactic substitution of the source expression for the target variable

name in the postcondition predicate. In contrast, Swarm transaction statements

are nondeterministic; execution of a statement from a given dataspace may result

in any one of potentially many next states. This arises from the nature of the

transaction’s queries. A query may have many possible solutions with respect to

a given dataspace. The execution mechanism chooses any one of these solutions

nondeterministically—fairness in this choice is not assumed. Since the state of a

Swarm computation is represented by a set of tuples rather than a mapping of

values to variables, finding a useful syntactic rule is difficult.

Accordingly, we define the meaning of the assertion {p} t {q} for a given Swarm

program in terms of the transition relation predicate step as follows:

{p} t {q} ≡ (∀ d, d′ : step(d, {t}, d′) : p(d)⇒ q(d′) ).

Informally this means that, whenever the precondition p is true and transaction

instance t is in the transaction space, all dataspaces which can result from execution

of transaction t satisfy postcondition q. In terms of the execution sequences this

rule means

(∀ e, i : e ∈ Exec ∧ 0 ≤ i : p(ei) ∧ Sg.ei = {t} ⇒ q(ei+1) ).

Pictorially, we can represent the execution of transaction t where {p} t {q} is true

with the following diagram:

p ∧ [t]
t−→ q

As in UNITY’s logic, the basic safety properties of a program are defined in

terms of unless relations. The Swarm definition mirrors the UNITY definition:

p unless q ≡ (∀ t : t ∈ TRS : {p ∧ ¬q} t {p ∨ q} ).
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Informally, if p is true at some point in the computation and q is not, then, after

the next step, p remains true or q becomes true. (Remember TRS is the set of all

possible transactions, not a specific transaction space.) In terms of the sequences

this rule implies

(∀ e, i : e ∈ Exec ∧ 0 ≤ i : (p ∧ ¬q)(ei)⇒ (p ∨ q)(ei+1) ).

From this we can deduce

(∀ e, i : e ∈ Exec ∧ 0 ≤ i :

p(ei)⇒ (∀ j : j ≥ i : (p ∨ ¬q)(ej)) ∨
(∃ k : i ≤ k : q(ek) ∧ (∀ j : i ≤ j ≤ k : (p ∧ ¬q)(ej)) ) ).

In other words, either (1) p ∧ ¬q continues to hold indefinitely or (2) q holds

eventually and p continues to hold at least until q holds. Thus, where p unless q

is true, we can picture possible execution sequences corresponding to the cases (1)

and (2):

p −→ p −→ p −→ p −→ p −→ · · ·

p −→ p −→ p −→ q −→ ? −→ · · ·

Stable and invariant properties are fundamental notions of our proof theory.

Both can be defined easily as follows:

stable p ≡ p unless false

invariant p ≡ (INIT ⇒ p) ∧ (stable p)

Above INIT is a predicate which characterizes the valid initial states of the pro-

gram. A stable predicate remains true once it becomes true—although it may never

become true. Thus, where stable p is true, we can picture two possible execution

sequences:
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¬p −→ ¬p −→ p −→ p −→ p −→ · · ·

¬p −→ ¬p −→ ¬p −→ ¬p −→ ¬p −→ · · ·

Invariants are stable predicates which are true initially. Note that the definition of

stable p is equivalent to

(∀ t : t ∈ TRS : {p} t {p} ).

We also define constant properties such that

constant p ≡ (stable p) ∧ (stable ¬p).

We use the ensures relation to state the most basic progress (liveness) prop-

erties of programs. UNITY programs consist of a static set of statements. In con-

trast, Swarm programs consist of a dynamically varying set of transactions. The

dynamism of the Swarm transaction space requires a reformulation of the ensures

relation. For a given program in the Swarm subset considered in this dissertation,

the ensures relation is defined as follows:

p ensures q ≡ (p unless q) ∧
(∃ t : t ∈ TRS : (p ∧ ¬q ⇒ [t]) ∧ {p ∧ ¬q} t {q} ).

Informally, if p is true at some point in the computation, then (1) p will remain

true as long as q is false; and (2) if q is false, there is at least one transaction in

the transaction space which can, when executed, establish q as true. The second

part of this definition guarantees q will eventually become true. This follows from

the characteristics of the Swarm execution model. The only way a transaction

is removed from the dataspace is as a by-product of its execution; the fairness
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assumption guarantees that a transaction in the transaction space will eventually

be executed.

In terms of the execution sequences the ensures rule implies

(∀ e, i : e ∈ Exec ∧ 0 ≤ i :

p(ei)⇒ (∃ j : i ≤ j : q(ej) ∧ (∀ k : i ≤ k < j : p(ek)) ) ).

Where p ensures q and {p∧¬q}t{q} are true, we can picture a possible execution

sequence that establishes q as true:

p ∧ ¬q ∧ [t] −→ p ∧ ¬q ∧ [t]
t−→ q −→ ? −→ · · ·

The Swarm definition of ensures is a generalization of UNITY’s definition. If

(∀ t : t ∈ TRS : [t]) is assumed to be invariant, then the Swarm ensures definition

can be restated in a form similar to UNITY’s ensures.

The leads-to property, denoted by the symbol 7−→, is commonly used in Swarm

program proofs. The assertion p 7−→ q is true if and only if it can be derived by a

finite number of applications of the following inference rules:

• p ensures q
p 7−→ q

• p 7−→ q, q 7−→ r
p 7−→ r

(transitivity)

• For any set W ,
(∀ m : m ∈ W : p(m) 7−→ q)

(∃ m : m ∈ W : p(m)) 7−→ q
(disjunction)

In terms of the execution sequences, from p 7−→ q, we can deduce

(∀ e, i : e ∈ Exec ∧ 0 ≤ i : p(ei)⇒ (∃ j : i ≤ j : q(ej) ) ).

Informally, p 7−→ q means once p becomes true, q will eventually become true.

However, p is not guaranteed to remain true until q becomes true. Thus, where

p 7−→ q is true, we can picture a possible execution sequence:
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p −→ ? −→ ? −→ q −→ ? −→ · · ·

UNITY makes extensive use of the fixed-point predicate FP which can be de-

rived syntactically from the program text. Since FP predicates cannot be defined

syntactically in Swarm, verifications of Swarm programs must formulate program

postconditions differently—often in terms of other stable properties. However,

unlike UNITY programs, Swarm programs can terminate; a termination predicate

TERM can be defined as follows:

TERM ≡ (∀ t : t ∈ TRS : ¬[t]).

Other than the cases pointed out above (i.e., transaction rule, ensures, and

FP), the Swarm logic is identical to UNITY’s logic. The theorems (not involving

FP) developed in Chapter 3 of [24] can be proved for Swarm as well. We use the

Swarm analogues of various UNITY theorems in the proofs in the next chapter.

(The Appendix lists the theorems from [24] used in this dissertation.)
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7. TWO REGION LABELING EXAMPLES

This chapter applies the programming logic given in Chapter 6 to the verification

of two Swarm programs. The programs are two different solutions to the region

labeling problem—the Label1 and Label2 solutions given in Chapter 4. In this

chapter we “start from scratch.” We formally define the problem and correctness

criteria, elaborate the program data structures, and then state the programs and

argue that they satisfy the correctness criteria. (The presentation in this chapter

is based on [41] and [42].)

7.1. THE CORRECTNESS CRITERIA

A region labeling program receives as input a digitized image. Each point in

the image is called a pixel. The pixels are arranged in a rectangular grid of size N

pixels in the x-direction and M pixels in the y-direction. An xy-coordinate on the

grid uniquely identifies each pixel. Also provided as input to the program is the

intensity (brightness) attribute associated with each pixel. The size, shape, and

intensity attributes of the image remain constant throughout the computation.

The concepts of neighbor and region are important in this discussion. Two

different pixels in the image are said to be neighbors if their x-coordinates and their

y-coordinates each differ by no more than one unit. A connected equal-intensity

region is a set of pixels from the image satisfying the following property: for any

two pixels in the set, there exists a path with those pixels as endpoints such that

all pixels on the path have the same intensity and any two consecutive pixels are
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neighbors. For convenience, we use the term region to mean a connected equal-

intensity region.

The goal of the computation is to assign a label to each pixel in the image such

that two pixels have the same label if and only if they are in the same region.

Furthermore, we require the programs herein to label all the pixels in a region with

the smallest coordinates of a pixel in that region. As noted in previous chapters,

comparisons of pixel coordinates are in terms of the lexicographic ordering where,

for example, (x, y) < (a, b) ≡ x < a ∨ (x = a ∧ y < b).

Since the number of pixels in the image is finite, there are a finite number of

regions. Without loss of generality, we identify the regions with the integers 1

through Nregions. We define function R such that:

R(i) = {p : pixel p is in region i : p}

From the graph theoretic properties of the image, we see that the R(i) sets are

disjoint. We also define the “winning” pixel on each region, i.e., the pixel with the

smallest coordinates, as follows:

w(i) = (min p : p ∈ R(i) : p)

We represent the input intensity values for the pixels in the image by the array of

constants Intensity(p).

We define the predicates INIT and POST. INIT characterizes the valid initial

states of the computation, POST the desired final state, i.e., the state in which each

pixel is labeled with the smallest pixel coordinates in its region. More formally, we

define POST as follows:

POST ≡ (∀ i : 1 ≤ i ≤ Nregions : (∀ p : p ∈ R(i) : p is labeled w(i)))
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The key correctness criteria for a region labeling program are as follows:

1. the characteristics of the problem and solution strategy are represented faith-

fully by the program structures,

2. the computation always reaches a state satisfying POST,

3. after reaching a state satisfying POST, subsequent states continue to satisfy

POST.

In terms of our programming logic, we state the latter two criteria as the Labeling

Completion and Labeling Stability properties defined below. As we specify the

problem further, we elaborate the first criterion.

Property 1 (Labeling Completion) INIT 7−→ POST

Property 2 (Labeling Stability) stable POST

In this chapter we specify two different programs to solve the region labeling

problem. The programs differ on how the required progress is achieved.

The first program, RegionLabel1, uses a static set of transactions. Each trans-

action is “anchored” to a pixel in the image; the transactions are reinserted upon

their execution. Each transaction “pulls” a smaller label from a neighboring pixel

to its own pixel. Eventually a region’s winning label propagates throughout the

region.

The second program, RegionLabel2, uses a dynamic set of transactions. Each

transaction “carries” a pixel’s label to a neighbor; the transaction does not reinsert

itself. New transactions are created whenever a label changes. As before, a region’s

winning label eventually propagates throughout the region.
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7.2. THE DATA STRUCTURES

To develop a programming solution to the region labeling problem, we need

to define data structures to store the information about the problem. In Swarm,

data structures are built from sets of tuples (and transactions). Thus we define

the tuple types has intensity and has label: tuple has intensity(P, I) associates

intensity value I with pixel P ; tuple has label(P,L) associates label L with pixel

P . These types are defined over the set of all pixels in the image.

To simplify the statement of properties and proofs, we implicitly restrict the

values of variables that designate region identifiers and pixel coordinates. If not

explicitly quantified, region identifier variables (e.g., i) are implicitly quantified over

the set of region identifiers 1 through Nregions, and pixel coordinate variables (e.g.,

p and q) over all the pixels in the image. Because of this simplification, we do not

prove any properties of areas “outside” of the image.

Each pixel p can have only one intensity attribute; this value is constant and

equal to Intensity(p) throughout the computation. In terms of the Swarm pro-

gramming logic, the program must satisfy the Intensity Invariant defined below. In

this invariant the “#” operator denotes the operation of counting the number of

elements satisfying the quantification predicate.

Property 3 (Intensity Invariant)

invariant (# b :: has intensity(p, b)) = 1∧
has intensity(p, Intensity(p))

The first conjunct of this invariant guarantees that only one intensity attribute is

associated with each pixel, i.e., there is a single has intensity tuple for each pixel

p. The second conjunct guarantees the constancy of the attribute.

Only one label (has label tuple) can be associated with each pixel. This label

is the coordinates of some pixel within the same region. We also require a pixel’s
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label to be no larger than the pixel’s own coordinates. These three requirements

are captured in the Labeling Invariant stated below.

Property 4 (Labeling Invariant)

invariant (# q :: has label(p, q)) = 1 ∧
(p ∈ R(i) ∧ has label(p, l)⇒ l ∈ R(i) ∧ w(i) ≤ l ≤ p)

Both solutions to the region labeling problem exploit the Labeling Invariant

to achieve the desired postcondition: initially every pixel is labeled with its own

coordinates; each label is decreased toward the w(i) for the region i around the

pixel.

We can now restate the predicate POST in terms of the data structures as

follows:

POST ≡ (∀ i : 1 ≤ i ≤ Nregions : (∀ p : p ∈ R(i) : has label(p, w(i)) ) )

For convenience we define the function excess on regions such that excess(i) is

the total amount the labels on region i exceed the desired labeling (all pixels in the

region labeled with the “winning” pixel). More formally,

excess(i) = (Σ p, l : p ∈ R(i) ∧ has label(p, l) : l − w(i) )

where the “Σ” and“−” operators denote component-wise summation and subtrac-

tion of the coordinates.

Using excess, the predicate POST can be restated

POST ≡ (∀ i : 1 ≤ i ≤ Nregions : excess(i) = 0)

where 0 denotes the coordinates (0,0).

Given the definition of excess, we can derive a region-oriented corollary of the

Labeling Invariant, the Region Labeling Invariant.
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Property 5 (Region Labeling Invariant)

invariant 0 ≤ excess(i) ≤ (Σ p : p ∈ R(i) : p− w(i) )

¶ Proof of the Region Labeling Invariant. This assertion follows from the

Labeling Invariant and the definition of excess.

We consider a region labeling program which uses the tuple types has intensity

and has label to be correct if it satisfies the Labeling Completion, Labeling Stability,

Intensity Invariant, and Labeling Invariant properties. For each of the two programs

given in the following sections we prove these properties. The proofs of these

properties require us to define and prove additional properties.

7.3. A STATIC SOLUTION

Chapter 4 presents a region labeling program which expresses a static, asyn-

chronous computation. This program, RegionLabel1, is identical to the Swarm

program given in Figure 3.4 except that Label1 transactions are substituted for the

Label transactions in the figure. The Label1 transaction type is defined as follows:

[P : Pixel(P ) ::
Label1(P ) ≡

ρ, λ1, λ2 :
has label(P, λ1)†, has label(ρ, λ2), R neighbors(P, ρ), λ1 > λ2

→ has label(P, λ2)
‖ true → Label1(P )

]

The has intensity and has label tuple types and the Pixel and R neighbors pred-

icates are defined in Figure 3.4. The predicate Pixel(P ) is true for every pixel P

in the image and false otherwise. The predicate R neighbors(P,Q) is true if and

only if pixel P and pixel Q are neighbors in the image (as described previously)

and have equal intensity attributes.
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The RegionLabel1 program is initialized as follows:

[P : Pixel(P ) ::
has label(P, P ), has intensity(P, Intensity(P )), Label1(P )

]

The initialization section establishes the initial dataspace for the execution of

the program. Initially, for each pixel P in the image, the dataspace contains a

has label(P, P ) tuple and a Label1(P ) transaction. A has intensity tuple also

associates the proper intensity value with each pixel.

As noted earlier, verifying the correctness of RegionLabel1 requires the proof of

the Intensity Invariant, Labeling Invariant, Labeling Stability, and Labeling Com-

pletion properties. In proving these, we introduce and prove other properties.

¶ Proof of the Intensity Invariant. Prove

(# b :: has intensity(p, b)) = 1 ∧ has intensity(p, Intensity(p))

is invariant. Clearly the assertion holds at initialization. No transaction deletes or

inserts has intensity tuples. Hence, the invariant holds for the program.

Since the Regional Labeling Invariant is a corollary of the Labeling Invariant

(as proved earlier), the proof for the Labeling Invariant below also establishes the

Region Labeling Invariant for RegionLabel1.

¶ Proof of the Labeling Invariant. For convenience, we rewrite the invariant

assertion as three conjuncts:

(# q :: has label(p, q)) = 1 ∧
(p ∈ R(i) ∧ has label(p, l)⇒ l ∈ R(i)) ∧
(p ∈ R(i) ∧ has label(p, l)⇒ w(i) ≤ l ≤ p)

Initially each pixel p is uniquely labeled p, hence the first conjunct holds. For the

initial dataspace the left-hand-side (LHS) of the implications in the second and
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third conjuncts are false for p 6= l; for p = l both the LHS and the RHS (right-

hand-side) are true. Thus the assertion holds initially. We prove the stability of

each conjunct separately.

(1) Consider the first conjunct of the invariant assertion. No transaction deletes

a has label(p, ∗) tuple without inserting a has label(p, ∗) tuple, and vice versa.

Thus the number of tuples has label(p, ∗) remains constant.

(2) Consider the second conjunct of the invariant. Any transaction which

changes pixel p’s label sets it to the value of a neighbor’s label in the same region.

(3) Consider the third conjunct of the invariant. Any transaction which changes

a pixel’s label sets the label to a smaller value. Suppose a pixel’s label is decreased

below the region’s w(i). This introduces a contradiction because of part 2 and the

definition of w(i) as the minimum pixel coordinates in the region. Therefore, all

three conjuncts are stable.

To prove the stability of the “winning” label assignment for the image as a

whole (the Labeling Stability property), we first prove the stability of the “winning”

label assignment for individual pixels. This more basic property is the Pixel Label

Stability property shown below.

Property 6 (Pixel Label Stability) stable p ∈ R(i) ∧ has label(p, w(i))

¶ Proof of Pixel Label Stability. No transaction increases a label. By the

Labeling Invariant no transaction decreases the label of a pixel in region i below

w(i).

Given the Pixel Label Stability property we can now prove the Labeling Stability

property.

¶ Proof of Labeling Stability. We must prove the property stable POST .

The stability of the assertion excess(i) = 0, for any region i, follows from the Pixel
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Label Stability property for each pixel in the region, the unless Conjunction The-

orem from [24], and the definition of excess. Applying the Conjunction Theorem

again for the regions in the image, we prove the stability of POST.

The remaining proof obligation for RegionLabel1 is the Labeling Completion

property, a progress property using leads-to. We use the following methodology:

(1) focus on the completion of labeling on a region-by-region basis, (2) find and

prove an appropriate low-level ensures property for pixels in a region, (3) use the

ensures property to prove the completion of labeling for regions, and (4) combine

the regional properties to prove the Labeling Completion property for the image.

The following definition is convenient for expression of the properties in this

proof:

BOUNDARY (i, p, q) = p ∈ R(i) ∧ q ∈ R(i) ∧ neighbors(p, q) ∧
(∃ l,m : l > m : has label(p, l) ∧ has label(q,m))

The predicate BOUNDARY (i, p, q) is true if and only if p and q are neighboring

pixels in region i such that p’s label is greater than q’s.

To prove Labeling Completion, we first seek to prove a Regional Progress prop-

erty, excess(i) ≥ 0 7−→ excess(i) = 0. We can prove this by induction using the

simpler property 0 < excess(i) = k 7−→ excess(i) < k. This, in turn, we can prove

using the Incremental Labeling property defined below. The Incremental Labeling

property guarantees that, whenever BOUNDARY (i, p, q) ∧ excess(i) > 0, there is

a transaction in the dataspace which will decrease excess(i).

Property 7 (Incremental Labeling)

BOUNDARY (i, p, q) ∧ 0 < excess(i) = k ensures excess(i) < k
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From the definition of ensures given in Chapter 6, we must prove:

1. LHS unless RHS (where LHS and RHS denote the left- and right-hand-

sides of the ensures relation);

2. when LHS ∧ ¬RHS, there is a transaction in the transaction space which

will, when executed, establish the RHS (if not already established).

¶ Proof of Incremental Labeling (unless part). All transactions either

leave the labels unchanged or decrease one label by some amount. Hence, the

unless property

BOUNDARY (i, p, q) ∧ 0 < excess(i) = k unless excess(i) < k

holds for the program.

The proof of the existential part of the ensures needs an additional property,

the Static Transaction Space invariant. The Static Transaction Space invariant

guarantees there is always a Label1 transaction “anchored” on every pixel in the

image.

Property 8 (Static Transaction Space) invariant Label1(p)

¶ Proof of the Static Transaction Space Invariant. Initially the prop-

erty holds. Every transaction always reinserts itself and never creates any other

transactions.

Given the Static Transaction Space invariant, we can now prove the existential

part of the Incremental Labeling property.

¶ Proof of Incremental Labeling (exists part). We must show there is a

t ∈ TRS such that

(PRE ⇒ [t]) ∧ {PRE} t {excess(i) < k}
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where PRE is

BOUNDARY (i, p, q) ∧ 0 < excess(i) = k.

By the Static Transaction Space invariant, a Label1(p) transaction is in the trans-

action space. Execution of this transaction establishes excess(i) < k.

Thus the Incremental Labeling property holds for RegionLabel1. We now use

this property to prove labeling completion for each region in the image. More

formally, we prove the Regional Progress property defined below.

Property 9 (Regional Progress) excess(i) ≥ 0 7−→ excess(i) = 0

The proof of the Regional Progress property needs an additional property, the

Boundary Invariant. The Boundary Invariant guarantees that, when excess(i) > 0,

there exist neighbor pixels in the region which have unequal labels.

Property 10 (Boundary Invariant)

invariant excess(i) > 0⇒ (∃ p, q :: BOUNDARY (i, p, q))

¶ Proof of the Boundary Invariant. For single pixel regions excess(i) = 0

holds invariantly; hence the Boundary Invariant holds.

Consider multi-pixel regions. Initially excess(i) > 0. Because of the Pixel

Label Stability property, the invariance of has label(w(i), w(i)) is clear. When

excess(i) > 0, because of the definition of excess and the Labeling Invariant, there

must be some pixel x in region i which has a label greater than w(i). Thus along

any neighbor-path from x to w(i) within region i, there must be two neighbor pixels,

p and q, which have unequal labels.

¶ Proof of Regional Progress. Since excess(i) = 0 7−→ excess(i) = 0 is

obvious, only excess(i) > 0 7−→ excess(i) = 0 remains to be proven.
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From the Incremental Labeling progress property we know

BOUNDARY (i, p, q) ∧ 0 < excess(i) = k ensures excess(i) < k.

Because of the Boundary Invariant, we also know

excess(i) > 0⇒ (∃ p, q :: BOUNDARY (i, p, q)).

Using the disjunction rule for leads-to (third part of the definition) over the set of

neighbor pixels p and q in region i, we deduce

0 < excess(i) = k 7−→ excess(i) < k

which can be rewritten as

excess(i) > 0 ∧ excess(i) = k 7−→
(excess(i) > 0 ∧ excess(i) < k) ∨ excess(i) = 0.

The function excess(i) is a well-founded metric. Thus, using the induction principle

for leads-to [24], we conclude the Regional Progress property.

Given the Regional Progress and Labeling Stability properties, the proof the

Labeling Completion property is straightforward.

¶ Proof of Labeling Completion. Prove the assertion INIT 7−→ POST .

Clearly,

INIT ⇒ (∀ i :: excess(i) ≥ 0).

Hence, for each region i,

INIT ensures excess(i) ≥ 0.

From the Regional Progress property,

excess(i) ≥ 0 7−→ excess(i) = 0.



- 83 -

The Labeling Stability property, the Completion Theorem for leads-to [24], and the

transitivity of leads-to allow us to conclude INIT 7−→ POST .

The proof of program RegionLabel1 is now complete. We have shown the

program satisfies the required properties.

7.4. A DYNAMIC SOLUTION

This section states a dynamic solution to the region labeling problem and verifies

its correctness. Unlike RegionLabel1, the contents of the transaction space vary

during the computation. The progress proof must take this into account. This

program also terminates; thus we can illustrate a method for proving termination

of Swarm programs.

The Swarm program RegionLabel2 is like RegionLabel1 except that transac-

tions of type Label2 replace the transactions of type Label1. Transaction type

Label2 is defined as follows:

[P,L : Pixel(P ), P ixel(L) ::
Label2(P,L) ≡

[ ‖ δ : P = L, neighbors(P, δ) ::
ι : has intensity(P, ι), has intensity(δ, ι)

→ Label2(δ, P )
]

‖
λ : has label(P, λ)†, λ > L

→ has label(P,L)
‖

[ ‖ δ : δ 6= L, neighbors(P, δ) ::
λ, ι : has label(P, λ), λ > L,

has intensity(P, ι), has intensity(δ, ι)
→ Label2(δ, L)

]
]
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Each Label2(P,L) transaction consists of three groups of subtransactions. In the

first and third groups we use the Swarm subtransaction generator feature. These

groups include a subtransaction for each δ 6= L such that neighbors(P, δ).
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The RegionLabel2 program is initialized as follows:

[P : Pixel(P ) ::
has label(P, P ), has intensity(P, Intensity(P )), Label2(P, P )

]

A Label2(P, P ) transaction is created initially for each pixel P .

Verifying the correctness of RegionLabel2 requires the proof of the same four

properties as RegionLabel1: the Intensity Invariant, Labeling Invariant, Labeling

Stability, and Labeling Completion properties.

¶ Proof of the Intensity Invariant. Similar to the proof of the Intensity

Invariant for RegionLabel1.

Because Label2 transactions “carry” the neighbor’s label as a parameter rather

than examining both has label tuples, the proof of the Labeling Invariant requires

a similar property defined for Label2 transactions, the Transaction Label Invariant

shown below.

Property 11 (Transaction Label Invariant)

invariant p ∈ R(i) ∧ Label2(p, l)⇒ l ∈ R(i) ∧ w(i) ≤ l

¶ Proof of the Transaction Label Invariant. The only transactions existing

initially are the Label2(p, p) transactions for each pixel p. Thus the LHS of the

implication is false for p 6= l; for p = l both the LHS and the RHS are true. Thus

the invariant holds initially. A transaction Label2(p, l) can only create transactions

of the form Label2(q, l) where q is a neighbor of p. Thus the invariant is preserved.

¶ Proof of the Labeling Invariant. The proof is similar to the Labeling

Invariant proof for RegionLabel1 except the Transaction Label Invariant is used to

prove the stability of the second and third parts of the invariant.
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¶ Proof of Labeling Stability. Similar to the proof of the Labeling Stability

property for RegionLabel1.

So far the proofs of the properties have been almost identical to the correspond-

ing proofs for RegionLabel1. The remaining proof obligation is the Labeling Com-

pletion progress property. We follow the same methodology as with RegionLabel1.

To prove Labeling Completion, we first seek to prove

excess(i) ≥ 0 7−→ excess(i) = 0.

However, a stronger formulation of this property may be easier to prove. Ini-

tially there does not exist any transaction which can change a label anywhere in

the region. The Label2(p, p) transactions initiate the label propagation from each

pixel p. However, once transaction Label2(w(i), w(i)) has executed for each region,

there are transactions in the transaction space that decrease excess(i). More-

over, Label2(w(i), w(i)) is never regenerated by the computation (because of the

δ 6= P restriction in the transaction definition). Thus we seek to prove the prop-

erty ¬Label2(w(i), w(i)) ∧ excess(i) ≥ 0 7−→ excess(i) = 0. We can prove this

property using the D-Incremental Labeling ensures property defined later.

We evoke the following metaphor to set up the proof for the D-Incremental

Labeling property. An area of w(i)-labeled pixels grows around the w(i) pixel

for each region; at the boundary of this growing area is a wavefront of Label2

transactions labeling pixels with w(i).

The following definition is convenient for expression of the properties that follow:

BOUNDARY (i, p, q) = p ∈ R(i) ∧ q ∈ R(i) ∧ neighbors(p, q) ∧
has label(p, w(i)) ∧
(∃ l : l > w(i) : has label(q, l))
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The predicate BOUNDARY (i, p, q) is true if and only if p and q are neighboring

pixels in region i such that p is labeled with the winning pixel and q has a greater

label.

The D-Incremental Labeling ensures property guarantees that, when the as-

sertion excess(i) > 0 is true under appropriate conditions, there is a transaction in

the dataspace which will decrease excess(i).

Property 12 (D-Incremental Labeling)

¬Label2(w(i), w(i)) ∧ BOUNDARY (i, p, q) ∧ 0 < excess(i) = k

ensures excess(i) < k

As with RegionLabel1, we divide the proof into an unless-part and an exists-part.

¶ Proof of the D-Incremental Labeling Property (unless part). All

transactions either leave the labels unchanged or decrease one label by some amount.

No transaction creates a Label2(w(i), w(i)) transaction. Hence, LHS unless RHS

holds for the program.

To prove the existential part of the D-Incremental Labeling property, we need to

show there exists a transaction in the transaction space which, when executed, will

decrease excess(i). We evoke the wavefront metaphor described above. The Trans-

action Wavefront invariant guarantees the existence of Label2(∗, w(i)) transactions

along the boundary of the wavefront.

Property 13 (Transaction Wavefront)

invariant ¬Label2(w(i), w(i)) ∧ BOUNDARY (i, p, q)⇒ Label2(q, w(i))

To prove this property, we need to prove (1) the wavefront gets started and (2)

the wavefront remains in existence until the region is completely labeled with w(i).

More formally, we state these concepts as the Startup and Boundary Stability

properties defined below.
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Property 14 (Startup)

Label2(w(i), w(i)) unless (BOUNDARY (i, p, q)⇒ Label2(q, w(i)))

¶ Proof of the Startup Property. To prove this property, we must show

{LHS ∧ ¬RHS} t {LHS ∨RHS}

is true for all transactions t ∈ TRS. (LHS and RHS are the left- and right-hand-

sides of the unless assertion.) The precondition can only be true for p = w(i)

and q a neighbor of w(i) because of the Winning Label Initiation invariant (proved

below). Label2(w(i), w(i)) creates Label2(q, w(i)), thus establishing the RHS of

the unless assertion. All other transactions leave Label2(w(i), w(i)) true.

In the proof above we needed to know that when Label2(w(i), w(i)) transac-

tions exist the wavefront has not been started; this is the Winning Label Initiation

property.

Property 15 (Winning Label Initiation)

invariant Label2(w(i), w(i)) ∧ p ∈ R(i) ∧ p 6= w(i)

⇒ ¬has label(p, w(i)) ∧ ¬Label2(p, w(i))

¶ Proof of Winning Label Initiation. The invariant is trivially true for

single pixel regions. Consider multi-pixel regions. Both the LHS and RHS are

true initially. Label2(w(i), w(i)) falsifies the LHS. No transaction can make the

LHS true.

Property 16 (Boundary Stability)

stable BOUNDARY (i, p, q)⇒ Label2(q, w(i))

¶ Proof of Boundary Stability. We need to prove (∀ t : t ∈ TRS : {I} t {I})

where I is the implication in the property definition. We need only consider cases

in which I is true as the precondition.
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For pixels p and q which are not equal-intensity neighbors or for single pixel

regions, BOUNDARY (i, p, q) is always false. Thus I is always true and, hence, the

stable property holds.

Let p and q be neighbor pixels in a multi-pixel region. There are the two cases

to consider.

(1) LHS of I false. In this case, only transactions which make the LHS true

can violate the property. Because of the Labeling Invariant and Pixel Label Sta-

bility properties, the only transaction that can make BOUNDARY (i, p, q) true

is Label2(p, w(i)). This transaction creates Label2(q, w(i)), thus establishing the

RHS of the implication.

(2) Both LHS and RHS of I true. Only transactions which falsify the RHS can vi-

olate the property. The only transaction that can falsify the RHS is Label2(q, w(i)).

This transaction also changes the label of q to w(i), thus falsifying the predicate

BOUNDARY (i, p, q).

¶ Proof of the Transaction Wavefront Invariant. We must show the

assertion ¬Label2(w(i), w(i))∧BOUNDARY (i, p, q)⇒ Label2(q, w(i)) is invariant.

The property holds initially because INIT ⇒ Label2(w(i), w(i)). From the Startup

property, we know

Label2(w(i), w(i)) unless (BOUNDARY (i, p, q)⇒ Label2(q, w(i))).

From the Boundary Stability property we know

(BOUNDARY (i, p, q)⇒ Label2(q, w(i))) unless false.

Using the Cancellation Theorem for unless [24], we conclude the invariant, i.e.,

Label2(w(i), w(i)) ∨ (BOUNDARY (i, p, q)⇒ Label2(q, w(i)))

unless false.
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¶ Proof of the D-Incremental Labeling Property (exists part). We

must show there is a transaction t ∈ TRS such that

(PRE ⇒ [t]) ∧ {PRE} t {excess(i) < k}

where PRE is

¬Label2(w(i), w(i)) ∧ BOUNDARY (i, p, q) ∧ 0 < excess(i) = k.

Because of the Transaction Wavefront invariant, we know Label2(q, w(i)) is in the

transaction space. Execution of this transaction establishes excess(i) < k.

Thus the D-Incremental Labeling property holds for program RegionLabel2. As

with RegionLabel1, we now use this property to prove labeling completion for each

region in the image. More formally, we prove the D-Regional Progress property

defined below.

Property 17 (D-Regional Progress)

¬Label2(w(i), w(i)) ∧ excess(i) ≥ 0 7−→ excess(i) = 0

The proof of the D-Regional Progress property needs an additional property,

the D-Boundary Invariant. The D-Boundary Invariant guarantees the existence of

the boundary between the completed (labeled with w(i)) and uncompleted areas.

Property 18 (D-Boundary Invariant)

invariant excess(i) > 0⇒ (∃ p, q :: BOUNDARY (i, p, q))

¶ Proof of the D-Boundary Invariant. Similar to the proof of the Boundary

Invariant for RegionLabel1.

¶ Proof of the D-Regional Progress Property. The progress property

excess(i) = 0 7−→ excess(i) = 0 is obvious, thus the only remaining proof obliga-

tions is

¬Label2(w(i), w(i)) ∧ excess(i) > 0 7−→ excess(i) = 0.



- 91 -

From the D-Incremental Labeling progress property we know

¬Label2(w(i), w(i)) ∧ BOUNDARY (i, p, q) ∧ 0 < excess(i) = k

ensures excess(i) < k.

Because of the D-Boundary Invariant we also know

excess(i) > 0⇒ (∃ p, q :: BOUNDARY (i, p, q))

Using the disjunction rule for leads-to over the set of neighbor pixels p and q in

region i, we deduce

¬Label2(w(i), w(i)) ∧ 0 < excess(i) = k 7−→ excess(i) < k.

Since ¬Label2(w(i), w(i)) is stable, we can rewrite the assertion above as

¬Label2(w(i), w(i)) ∧ excess(i) > 0 ∧ excess(i) = k 7−→
(¬Label2(w(i), w(i)) ∧ excess(i) > 0 ∧ excess(i) < k) ∨ excess(i) = 0.

The metric excess(i) is well-founded. Thus, using the induction principle for leads-

to, we conclude the D-Regional Progress property.

Given the D-Regional Progress and Labeling Stability properties, the proof the

Labeling Completion property is straightforward.

¶ Proof of Labeling Completion. Prove the assertion INIT 7−→ POST .

Clearly,

INIT ⇒ (∀ i :: excess(i) ≥ 0 ∧ Label2(w(i), w(i)) ).

Hence, for each region i,

INIT ensures excess(i) ≥ 0 ∧ Label2(w(i), w(i)).
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From the transaction definition, it is easy to see

Label2(w(i), w(i)) ensures ¬Label2(w(i), w(i)).

Hence,

Label2(w(i), w(i)) ∧ excess(i) ≥ 0 ensures

excess(i) = 0 ∨ (¬Label2(w(i), w(i)) ∧ excess(i) > 0).

From the D-Regional Progress property,

¬Label2(w(i), w(i)) ∧ excess(i) ≥ 0 7−→ excess(i) = 0.

The Cancellation Theorem for leads-to [24]

Label2(w(i), w(i)) ∧ excess(i) ≥ 0 7−→ excess(i) = 0.

The Labeling Stability property, the Completion Theorem for leads-to [24], and the

transitivity of leads-to allow us to conclude INIT 7−→ POST .

Above we have shown program RegionLabel2 satisfies the four criteria for cor-

rectness of region labeling programs. However, we can also prove this program

terminates. We define the termination predicate TERM as follows:

TERM ≡ (∀ p, l :: ¬Label2(p, l))

Since we have already established the Labeling Completion property, we need only

prove POST 7−→ TERM . Again we can prove this leads-to property using an

ensures property, the Transaction Flushing property below.

Property 19 (Transaction Flushing)

POST ∧ Label2(p, l) ∧ 0 < (# q,m :: Label2(q,m)) = k

ensures (# q,m :: Label2(q,m)) < k
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¶ Proof of the Transaction Flushing Property. By the Transaction Label

Invariant, we know:

q ∈ R(i) ∧ Label2(q,m)⇒ m ∈ R(i) ∧ w(i) ≤ m

The POST predicate means all Label2 transactions will fail. Thus the RHS of the

ensures property is established.

¶ Proof of Termination. POST 7−→ TERM . The Transaction Flushing

property and the disjunction rule for leads-to allow us to deduce

POST ∧ 0 < (# q,m :: Label2(q,m)) = k

7−→ (# q,m :: Label2(q,m)) < k.

The count of the transactions in the transaction space is a well-founded metric,

thus we deduce POST 7−→ TERM by induction.
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8. A GENERALIZED LOGIC

Chapter 6 presented a programming logic for the subset of Swarm without the

synchrony relation feature. In this chapter we generalize the logic to handle the

synchrony relation.

As with the subset Swarm logic, this logic is built upon the formal model given

in Chapter 5, where we model a Swarm dataspace as a triple consisting of a finite

tuple space, a finite transaction space, and a synchrony relation. The synchrony

relation, which can be modified dynamically during program execution, is a sym-

metric, irreflexive relation on the set of possible transactions TRS. We let SR

denote the set of all possible synchrony relations. At any point in a computation,

a synchronic group is any nonempty intersection of the transaction space with an

equivalence class of the reflexive transitive closure of the synchrony relation. The

subtransactions making up the transactions of a synchronic group are executed as

if they were part of the same transaction.

We define the set SG to be the set of all possible synchronic groups of a program.

More formally,

SG = (∪R, ρ : R ∈ SR ∧ ρ ∈ C(Rτ ) : Fs(ρ) )

where Rτ denotes the reflexive transitive closure of relation R, C(Rτ ) the set of

equivalence classes of equivalence relation Rτ , and Fs(ρ) the set of all finite subsets

of set ρ.

The transition relation predicate step expresses the semantics of the synchronic

groups in SG; the values of this predicate are derived from the query and action
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parts of the transaction body. The predicate step(d, S, d′) is true if and only if the

set of transactions S is a synchronic group of dataspace d and the group’s execution

can transform dataspace d to a dataspace d′.

We model the execution of a Swarm program as a set of execution sequences.

Each element of an execution sequence is a pair consisting of a dataspace and a

synchronic group of that dataspace. The first dataspace in a sequence is a valid

initial dataspace; each successive dataspace is a result of the transformation of the

previous element’s dataspace by execution of the element’s synchronic group. All

execution sequences must be fair, i.e., a transaction in the transaction space at any

point in the computation must eventually be executed. Terminating computations

are extended to infinite sequences by replication of the final dataspace.

The generalized logic we define for Swarm programs with synchronic groups uses

the same basic elements as the logic given in Chapter 6: a synchronic group rule;

the unless relation; stable, invariant, and constant assertions defined in terms

of unless; the ensures relation; and the leads-to relation 7−→ defined in terms of

ensures. Here we define the synchronic group rule and the unless and ensures

relations. The other elements of the logic are the same as given in Chapter 6.

We define a basic “Hoare triple” for synchronic groups in terms of the transition

relation predicate step. For any S ∈ SG,

{p} S {q} ≡ (∀ d, d′ : step(d, S, d′) : p(d)⇒ q(d′) ).

Informally this means that, whenever the precondition p is true and S is a syn-

chronic group of the dataspace, all dataspaces which can result from execution of

group S satisfy postcondition q.

A key difference between this logic and the previous logic is the set over which

the properties must be proved. For example, the previous logic required that, in
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proof of an unless property, an assertion be proved for all possible transactions,

i.e., over the set TRS. On the other hand, this generalized logic requires the proof

of an assertion for all possible synchronic groups, i.e., over the set SG.

For the synchronic group logic, we define the logical relation unless as follows:

p unless q ≡ (∀S : S ∈ SG : {p ∧ ¬q} S {p ∨ q} ).

If synchronic groups are restricted to single transactions, this definition is the same

as the definition given for the earlier subset Swarm logic.

In UNITY-style logics the ensures relation is used to define the most basic

progress properties of programs. We want to define the ensures relation such

that p ensures q means that “if p is true at some point in the computation, p

remains true as long as q is false, and eventually q becomes true.” [24] The UNITY

and subset Swarm logics require “the existence of one statement that establishes q

starting from a state in which p∧¬q holds.” [24] The fairness assumption guarantees

that this statement will eventually be executed.

Our first proposal for a definition of ensures is the same type of straightforward

generalization we used with unless. We propose the definition

p ensures q ≡ (p unless q) ∧
(∃S : S ∈ SG : (p ∧ ¬q ⇒ [S]) ∧ {p ∧ ¬q} S {q} )

where we interpret [S] to mean “S is a synchronic group of the dataspace.” With

this definition we require that, when p∧¬q is true, there exists a synchronic group

S in the dataspace which will establish q when executed from a state in which p∧¬q

holds. Because of the fairness criterion, any transaction t in S must eventually be
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chosen, and thus S will eventually be executed. (Remember that fairness is stated

in terms of transactions not in terms of synchronic groups.)

Because of the dynamic nature of synchronic group structures (i.e., synchronic

groups can “go away” without being executed), the above definition seems un-

necessarily restrictive. Many leads-to properties are difficult to prove in terms of

ensures properties defined in this way. A less restrictive definition of ensures,

which still captures the essence of the UNITY-like notion of basic progress, would

be more useful. Thus we define the ensures relation in the following way:

p ensures q ≡ (p unless q) ∧
(∃ t : t ∈ TRS : (p ∧ ¬q ⇒ [t]) ∧

(∀S : S ∈ SG ∧ t ∈ S : {p ∧ ¬q} S {q} ) ).

With this definition we require that, when p∧¬q is true, there exists a transaction

t in the transaction space such that all synchronic groups which can contain t will

establish q when executed from a state in which p∧¬q holds. Because of the fairness

criterion, transaction t will eventually be chosen for execution, and hence one of the

synchronic groups containing t will be executed. Instead of requiring that we find

a single “statement” which will eventually be executed and establish the desired

state, this rule requires that a group of “statements” (i.e, set of synchronic groups)

be found such that each will establish the desired state and that one of them will

eventually be executed. If synchronic groups are restricted to single transactions,

this definition is the same as the definition for the subset Swarm logic.

Other than the cases pointed out above (i.e., synchronic group rule, unless and

ensures definitions), this Swarm logic is the same as the subset Swarm logic given

in Chapter 6 and as UNITY’s logic (without FP predicates). The theorems (not
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involving FP) developed in Chapter 3 of [24] can be proved for the generalized

Swarm logic as well. We use the Swarm analogues of various UNITY theorems in

the proofs in the next chapter.
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9. ANOTHER REGION LABELING EXAMPLE

In this chapter we state an unbounded region labeling program and verify its

correctness using the generalized Swarm programming logic outlined in Chapter 8.

This program, a variant of one proposed by Fulcomer and Roman [130], uses the

synchronic group feature of Swarm.

9.1. A PROGRAM

In this chapter we again address the problem of labeling the equal-intensity

regions of a digital image, but we change the problem specification somewhat from

that given in Chapters 4 and 7. Here we address an “unbounded” variant of the

problem. The image to be processed is arranged on a grid with M rows and an

infinite number of columns. We identify the pixels by coordinates with x-values

1 or larger and y-values in the range 1 through M . Although the full image is

assumed to extend to the right without bound, the length of each equal-intensity

region, i.e., the number of columns intersected by the region, is assumed to be finite

and bounded, but of unknown value. For convenience, we let the constant MaxLen

designate this value for the image to be processed (but do not allow a program to

use this constant directly).

We desire a program which labels the regions of unbounded images of this type.

The program must not use an unbounded amount of space: the number of tuples

and transactions existing at any point during the computation must be bounded

above by some constant; the values of all integers used in the program must also

be bounded above (and below).
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To keep the number of tuples and transactions bounded, we adopt a sliding

window metaphor for our solution to the problem. The window is a contiguous

group of columns from the image. At any point in the computation, the window

contains all pixels currently being processed. The program stores information about

these pixels in the dataspace. The computation begins with the leftmost (smallest

x-coordinate) column of the image in the window. As a computation proceeds, the

window expands to the right—the column of the image immediately to the right of

the window is inserted into the window when the pixels in that column are “needed.”

The program needs the new column when some region extends across all columns of

the window. The window also contracts from the left—the leftmost column of the

window is deleted when all pixels in the column have been “completed.” A pixel

is complete when all pixels in its region have been labeled with the region’s label.

(As before, we use the smallest coordinates of a pixel in the region as the region’s

label.) The window thus slides across the image from left to right; the maximum

width of the window is MaxLen + 1.

For the size of the numbers used by the program to be bounded, the program

cannot use the absolute coordinate system of the full image. Thus, for the pixels

in the window, we adopt a new coordinate system—the program addresses pixels

relative to the leftmost column of the window. When the program expands the

window, all information inserted into the dataspace concerning the new pixels must

use window-relative x-coordinates. When the program contracts the window, it

must also modify all information concerning the pixels in the window to reflect the

new coordinate system base.

Figure 9.1 shows a Swarm program, Unbounded, which uses this sliding window

strategy for labeling the regions of an unbounded region. The program header,

definitions, and tuple types are quite similar to those given for RegionLabel in
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program Unbounded(M,Lo,Hi , Intensity :
M ≥ 1, Lo ≤ Hi , Intensity(ρ : Pixel(ρ)),
[∀ ρ : Pixel(ρ) :: Lo ≤ Intensity(ρ) ≤ Hi ] )

definitions
[P,Q ::

Pixel(P ) ≡ [∃ c, r : P = (c, r) :: c ≥ 1, 1 ≤ r ≤M ] ;
neighbors(P,Q) ≡

Pixel(P ), P ixel(Q), P 6= Q,
[∃x, y, a, b : P = (x, y), Q = (a, b) :: a− 1 ≤ x ≤ a+ 1, b− 1 ≤ y ≤ b+ 1] ;

R neighbors(P,Q) ≡
neighbors(P,Q), [∃ ι :: has intensity(P, ι), has intensity(Q, ι)] ;

on left(P ) ≡ Pixel(P ), [∃ r :: P = (1, r)] ;
on right(P ) ≡ Pixel(P ), [∃ c, r : final(c) :: P = (c, r)] ;
ONE ≡ (1, 0)

]
tuple types

[P,L, I, C : Pixel(P ), P ixel(L),Lo ≤ I ≤ Hi , C ≥ 1 ::
has label(P,L) ;
has intensity(P, I) ;
final(C)

]
transaction types

[P,Next : Pixel(P ),Next > 1 ::
Label(P ) ≡ · · · ;
Expand(Next) ≡ · · · ;
Contract(P ) ≡ · · ·

]
initialization

[P : on left(P ) ::
has intensity(P, Intensity(P )), has label(P, P ),Label(P ),Contract(P ) ] ,

[P,Q : on left(P ), neighbors(P,Q), on left(Q), Intensity(P ) = Intensity(Q) ::
Label(P ) ∼ Label(Q) ] ,

[P,Q : on left(P ), neighbors(P,Q), on left(Q) :: Contract(P ) ∼ Contract(Q) ] ,
Expand(2), final(1)

end

Figure 9.1: An Unbounded Region Labeling Program in Swarm
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Figure 3.4. Since the number of columns is not fixed, we drop program parameter

N and change the definition of predicate Pixel appropriately. We add predicates

on left and on right to identify pixels on the left and right boundaries of the

window, respectively. We also add tuple type final to record the x-coordinate of

the rightmost column of the window.

Program Unbounded uses three transaction types—Label, Expand, and Contract.

The transactions of type Label carry out the labeling of the pixels of the image;

transactions of type Expand and Contract implement the window expansion and

contraction operations of the sliding window strategy. Note that the computation

begins with the window positioned over a single column—the first column of the

image. Figures 9.2, 9.3, and 9.4 show the details of these transaction definitions.

To organize the computation, we take advantage of the synchronic group feature

of Swarm. For instance, we use a synchronic group to contract the window. The

program creates a Contract transaction for each pixel in the window, either at

initialization or when a new column is brought into the window by an Expand

transaction, and links all of these transactions together into a synchronic group.

When executed, this group simultaneously decrements the x-coordinates for all

information recorded for each pixel in the window.

The program also uses synchronic groups of Label transactions to carry out the

labeling of the regions and to detect when the labeling of a region is complete.

The program creates a Label transaction for each pixel of the window, either at

initialization or when a new column is brought into the window by an Expand

transaction, and links the transactions for neighboring pixels of the same intensity

into the same synchronic group. When one of these Label synchronic groups is

executed, it either changes the labels of one or more pixels to a lower value or,



- 103 -

Label(P ) ≡
ρ, λ1, λ2 : has label(P, λ1)†, R neighbors(P, ρ), has label(ρ, λ2), λ2 < λ1

−→ has label(P, λ2)
‖ on right(P ) −→ skip
‖ OR −→ Label(P )
‖ ι, λ : NOR, has intensity(P, ι)†, has label(P, λ)† −→ skip
‖ NOR −→ [ ρ : neighbors(P, ρ) :: (Label(P ) ∼ Label(ρ))† ]

Figure 9.2: Unbounded Region Labeling—Label Transaction

when it detects that labeling of the region is complete, deletes all information

concerning the region from the dataspace.

Now we take a closer look at the details of the transaction definitions. A

Label(P ) transaction consists of five subtransactions. The first two subtransac-

tions involve local queries, i.e., they do not use the special global predicates OR,

NOR, AND, or NAND. (See Chapter 3.) If pixel P has a neighbor pixel (in

the same region) which has a smaller label, then the first subtransaction relabels

P to the neighbor’s label. The second subtransaction succeeds when pixel P is on

the right boundary of the window. This test is part of the detection strategy for

labeling completion. A region is not yet complete if there can exist more pixels

in the region that have not yet been input. The remaining three transactions use

the special global predicates OR and NOR. The third subtransaction’s query suc-

ceeds when any of the local subtransactions of any transaction in the synchronic

group succeeds; it reinserts the Label(P ) transaction. Gradually the smallest label

will propagate throughout the region during the successive executions of the Label

transactions on a region. The fourth and fifth subtransaction queries can succeed

when none of the local subtransactions in the synchronic group succeeds. In this
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Expand(Next) ≡
ρ, λ, c : on right(ρ), has label(ρ, λ), on left(λ), final(c)†

−→
[ r, τ : 1 ≤ r ≤M, τ = (c+ 1, r) ::

has intensity(τ, Intensity((Next , r))),
has label(τ, τ),
Label(τ),
[ δ : neighbors(τ, δ), δ ≤ (c+ 1,M),

Intensity(τ) = Intensity(δ) ::
Label(τ) ∼ Label(δ) ] ,

Contract(τ),
[ δ : neighbors(τ, δ), δ ≤ (c+ 1,M) ::

Contract(τ) ∼ Contract(δ) ] ,
f inal(c+ 1),
Expand(Next + 1)

]

Figure 9.3: Unbounded Region Labeling—Expand Transaction

case the region has been completely labeled and all information about the region

can be deleted. (In its current form this program does not generate any “output.”)

Only one Expand transaction exists at any point in the computation; it is not

in a synchronic group with any other transaction. The Expand(Next) transaction

simulates an input operation—bringing the Next column of pixels from the “input”

array Intensity into the dataspace—and builds appropriate synchronic groups of

Label and Contract transactions. The input of a new column is enabled when

there exists some region which spans the width of the window; Expand detects

this situation by testing for a pixel on the right boundary of the window which is

labeled by a pixel’s coordinates from the left boundary of the window. (Note that

the value of the Next argument of the Expand transaction grows without bound

during a computation. In a sense, Next is an “auxiliary variable” needed because
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Contract(P ) ≡
ι : on left(P ), has intensity(P, ι) −→ skip

‖ OR −→ Contract(P )
‖ c : NOR, final(c)†

−→ final(c− 1),Contract(P )
‖ ι : NOR, has intensity(P, ι)†

−→ has intensity(P −ONE , ι)
‖ λ : NOR, has label(P, λ)†

−→ has label(P −ONE , λ−ONE ),Label(P −ONE )
‖ [‖ ρ : neighbors(P, ρ) ::

NOR, (Label(P ) ∼ Label(ρ))†
−→ Label(P −ONE ) ∼ Label(ρ−ONE ) ]

Figure 9.4: Unbounded Region Labeling—Contract Transaction

the Swarm notation, as defined in Chapter 3, does not have a true input operation.

Thus we do not consider it to be a violation of our “bounded values” requirement.)

A Contract(P ) transaction contracts the window when the leftmost column has

been completely processed; it consists of one local and several global subtransac-

tions. The local subtransaction succeeds when pixel P is on the left boundary of the

window and the dataspace contains tuples associated with P . If the local subtrans-

action fails for all pixels in the window, then the leftmost column of the window

is empty. All pixels in the column have been completely processed; thus the entire

window can be shifted one column to the right. The global subtransactions accom-

plish this shifting by decrementing by one column the pixel coordinates recorded

in tuples and synchrony relation links. The first and second global subtransactions

also keep the window contraction activity alive by reinserting the Contract(P )

transaction.
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9.2. THE CORRECTNESS CRITERIA

In Chapter 7 we identified three key criteria for the correctness of a region

labeling program:

• the characteristics of the problem and solution strategy are represented faith-

fully by the program structures,

• the computation always reaches a state in which every pixel p is labeled with

the coordinates of the smallest pixel in the region containing p,

• after reaching such a state for a pixel, its label does not change as the com-

putation proceeds.

Because of the unbounded nature of the image for the current problem, we consider

the above criteria with respect to finite prefixes of the image. We also impose an

additional criterion:

• the program must not use an unbounded amount of resources.

Below we elaborate the first criterion as a set of integrity invariants. The remaining

criteria are formalized as the Labeling Completion, Labeling Stability, and Bounded

Window properties respectively.

Although at any point in the computation the program only has access to a nar-

row window imposed upon the image, we find the use of the full unbounded image

to be convenient in reasoning about the program. In the statement of properties we

use pixel coordinates with respect to the beginning of the full image and identify

the regions of the image with integers beginning with 1. We define R(i) to be the

set of pixels in region i; w(i) to be the “winning” pixel for region i—the pixel with

smallest coordinates. For convenience, we also define left(i) and right(i) to be the
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leftmost and rightmost column numbers of region i. Unless otherwise stated we as-

sume that free variables occurring in property assertions are universally quantified

implicitly over all valid values of the appropriate type, e.g., p and q over all pixels

in the full image, i and j over all regions, c and d over all columns, and b over all

intensity values.

We augment the program with auxiliary statements and data structures to cap-

ture additional information about history of the computation. The auxiliary vari-

able base always points to the column immediately to the left of the current window.

The variable is initialized to zero; it is incremented by one each time the Contract

synchronic group shifts the window one column. The variable last always points

to the rightmost column of the window. The variable is initialized to one; it is

incremented by one whenever the Expand transaction brings another column into

the dataspace.

To complement the Intensity array, we add a pix label array; both of these

arrays are indexed by the absolute pixel coordinates. Whenever a Label transaction

changes a has label tuple for a pixel, the corresponding pix label array element is

changed to the corresponding label value. The pix label array is not changed upon

deletion of the has label tuple.

Formally, we relate the values of the tuples in the dataspace to the auxiliary

structures with the Window Intensity, Window Label, and Window Boundary in-

variants. In addition, the Window Integrity invariant requires that the window be

at least one column wide. For pixel coordinates p in the full image, the notation p′

denotes the expression p− (base, 0).

Property 20 (Window Intensity)

invariant (#n :: has intensity(p′, n)) ≤ 1 ∧
(has intensity(p′, b)⇒ Intensity(p) = b)
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Property 21 (Window Label)

invariant (# t :: has label(p′, t)) ≤ 1 ∧ (has label(p′, l′)⇒ pix label(p) = l)

Property 22 (Window Boundary)

invariant final(c) ≡ (c = last− base)

Property 23 (Window Integrity)

invariant 0 ≤ base < last

In addition to the Window properties, we constrain a pixel’s label to be the

coordinates of some pixel within the same region. Moreover, we require the label

to be no larger than the pixel’s own coordinates. We formalize this constraint as

the Labeling Invariant.

Property 24 (Labeling Invariant)

invariant p ∈ R(i) ∧ pix label(p) = l ⇒ l ∈ R(i) ∧ w(i) ≤ l ≤ p

To faithfully represent the problem, the labeling of all pixels to the left of the

window must be complete and the associated tuples must be deleted. We formalize

this requirement, in a slightly stronger way, as the Completion Invariant.

Property 25 (Completion Invariant)

invariant p ∈ R(i) ∧ col(p) ≤ base ⇒ reg gone(i)

In the above assertion, col(p) denotes the column, or x-coordinate, of pixel p and

reg gone(i) asserts that region i has its final labeling and the associated tuples have

been deleted. Formally,

reg gone(i) ≡ (∀ p : p ∈ R(i) : pix gone(p) ∧
col(p) < last ∧ pix label(p) = w(i) )

where pix gone(p) ≡ (∀ b, l :: ¬has label(p′, l) ∧ ¬has intensity(p′, b) ).
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The four Window invariants and the Labeling and Completion invariants com-

prise the first correctness criterion—the faithfulness of the program structures to

the problem.

The second criterion for correctness of the program is the Labeling Completion

property. This progress property asserts that, when the computation is begun in

a valid initial state, it will eventually reach a state in which labeling of any finite

prefix of the image will be finished.

Property 26 (Labeling Completion)

INIT ∧ C > 0 7−→ base ≥ C

The third criterion for correctness of the program is the Labeling Stability prop-

erty. This safety property asserts that, once a pixel is labeled with the winning pixel

for its region, the pixel’s label will not change as the computation proceeds.

Property 27 (Labeling Stability)

stable p ∈ R(i) ∧ pix label(p) = w(i)

The fourth criterion for correctness is the Bounded Window property. This

property asserts that the window is at most one column wider than the maximum

length for individual regions.

Property 28 (Bounded Window)

invariant last− base ≤ MaxLen + 1

This property does not fully capture all of the “bounded resource” requirement

given informally in the previous section, but it does capture the essence of the

requirement and is, hence, sufficient for our purposes here.
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9.3. INVARIANCE PROOFS

In the programming logic, unless properties must be proved with respect to the

set of all possible synchronic groups of a program. To simplify this proof process,

we can specify properties which characterize the actual structures of the synchronic

groups that can arise during a computation. Once these synchronic group properties

have been verified, we can use them in the proofs of other properties.

The unbounded region labeling program has three types of transactions—Label,

Expand, and Contract. One or more transactions of a single type are combined to

form a synchronic group. Groups consisting of different types of transactions are

not allowed by the program. This notion is formalized as the Synchronic Group

Integrity invariant.

Property 29 (Synchronic Group Integrity)

invariant ¬(Label(p) ∼ Expand(c))∧
¬(Expand(c) ∼ Contract(q))∧
¬(Contract(q) ∼ Label(p))

At any point during the computation there exists a single Expand transaction.

It is associated with the column of the image immediately to the right of the

window—the next column to be inserted. This transaction comprises a single ele-

ment synchronic group. We formalize this property as the Expand Group invariant.

Property 30 (Expand Group)

invariant (# c :: Expand(c)) = 1 ∧ Expand(last+ 1)

The Contract Group invariant specifies the structure of the synchronic groups

involving Contract transactions. At any point during the computation there exists

a single synchronic group of this type. The group includes one transaction for each

pixel visible in the window.



- 111 -

Property 31 (Contract Group)

invariant (∀ p : base < col(p) ≤ last : Contract(p′) ) ∧
(∀ p, q : Contract(p′) ∧ Contract(q′) :

Contract(p′) ≈ Contract(q′) )

The structures of the Label groups are more complex. The portion of an un-

finished region visible in the window may be divided into one or more subregions

by the right boundary of the window. At any point during the computation, for

each unfinished subregion there exists a synchronic group which exactly covers the

subregion. (There is a Label(p) transaction for each pixel p of the subregion; no

additional transactions are part of the group.) The Label Group invariant formally

characterizes the structures of this type of synchronic group.

Property 32 (Label Group)

invariant

(∀ p, q : p ∈ R(i) ∧ q ∈ R(i) :

¬reg gone(i) ∧ neighbors(p, q) ∧ col(p) ≤ last ∧ col(q) ≤ last

≡
Label(p′) ∧ Label(q′) ∧ (Label(p′) ∼ Label(q′)) )

The predicate neighbors(p, q) is true if and only if p and q are adjacent pixels in

the full image.

There are two proof obligations in proof of an invariant: showing that the

initial state satisfies the property and showing that all synchronic groups preserve

the property. Once the synchronic group invariants above have been proven, they

can be used as theorems in the proofs of other properties.

We do not prove all of the invariants here, but most of the proofs are not difficult.

Below we sketch three of the more interesting proofs—for the Window Integrity,

Completion, and Bounded Window invariants. For these proofs, we assume that
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the Window Label, Window Intensity, Labeling, and synchronic group invariants

have already been proven.

The invariant proofs below are simplified by the Region Data invariant. This

invariant states that, for all unfinished regions, there exist data tuples for all pixels

visible in the window.

Property 33 (Region Data)

invariant (∀ p : p ∈ R(i) ∧ col(p) ≤ last :

(∃ b, l :: has intensity(p′, b) ∧ has label(p′, l) ) )

≡ ¬reg gone(i)

¶ Proof of the Region Data Invariant. Let LHS and RHS refer to the

left- and right-hand sides of the equivalence assertion. From the definition of

reg gone(i), LHS ⇒ ¬reg gone(i). Thus we must show ¬LHS ⇒ reg gone(i)

is invariant.

The assertion holds initially. Because of the Window Label and Window In-

tensity invariants, Contract groups preserve the property. The Expand transaction

creates new data tuples for each new pixel made visible in the window, thus pre-

serving the property. Since last is nondecreasing, a finished region cannot revert

to an unfinished state. A Label group which removes the data tuples for a region

could violate the invariant. However, the tuples for the pixels in the region can

only be removed when the entire region is in the window and all pixels are labeled

with w(i); in this case the group establishes reg gone(i).

In any computation of the program, the rightmost column of the window is

never empty, i.e., there are tuples associated with its pixels. This observation is

central to the proof of the Window Integrity invariant. For convenience, we define

col gone(c) ≡ (∀ p : col(p) = c : pix gone(p) ).
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¶ Proof of the Window Integrity Invariant. Prove 0 ≤ base < last

is invariant. Clearly the property holds initially. Since no group can decrease

either base or last, the lower bound obviously holds. Now consider the stability of

base < last. Note that base < last unless col gone(last).

col gone(last)

≡ { definition of col gone }
(∀ i, p : p ∈ R(i) ∧ col(p) = last : pix gone(p) )

≡ { Region Data invariant }
(∀ i, p : p ∈ R(i) ∧ col(p) = last : reg gone(i) )

⇒ { definition of reg gone }
(∀ i, p : p ∈ R(i) ∧ col(p) = last : col(p) < last )

≡ false.

Thus base < last is invariant.

The Contract group increases base only when the next column is empty. This

is the key observation needed for proving the Completion Invariant.

¶ Proof of Completion Invariant. Prove the assertion p ∈ R(i) ∧ col(p) ≤

base⇒ reg gone(i) is invariant. Note that

p ∈ R(i) ∧ col(p) ≤ base ∧ pix gone(p) ⇒ reg gone(i)

is invariant because of the Region Data and Window Integrity invariants. Thus, to

prove the Completion Invariant, it is sufficient to show that

p ∈ R(i) ∧ col(p) ≤ base⇒ pix gone(p)

is invariant.

The property holds initially. Since base < last is invariant and c ≤ last ∧

col gone(c) is stable, only groups which increase base, i.e., the Contract group,
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can violate the property. But base can only be incremented from states in which

col gone(base+ 1) is true. Thus the property is preserved.

The Bounded Window property is a consequence of the bound on the length

of individual regions and the enabling condition for expansion of the window, i.e.,

a label from the leftmost column of the window must have propagated to the

rightmost column of the window. For convenience, we define

enabled(i, c, d) ≡ (∃ p, q : p ∈ R(i) ∧ q ∈ R(i) ∧
col(p) = d ∧ col(q) = c+ 1 : has label(p′, q′) ).

¶ Proof of Bounded Window Invariant. Prove last− base ≤ MaxLen + 1

is invariant. The property holds initially. Clearly

last ≤ base+MaxLen+1 unless (∃ i :: enabled(i, base, base+Maxlen+1)).

But

enabled(i, base, base+ Maxlen + 1)

≡ { definition of enabled }
(∃ p, q : p ∈ R(i) ∧ q ∈ R(i) ∧ col(p) = base+ Maxlen + 1 ∧

col(q) = base+ 1 : has label(p′, q′) )

⇒ {Window Label and Labeling Invariants,

maximum region length exceeded }
false.

Thus last ≤ base+ MaxLen + 1 is invariant.

9.4. PROGRESS PROOF

The Labeling Completion property asserts that any execution of the unbounded

region labeling program will actually label the regions. Specifically, the property
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guarantees that any finite prefix of the columns of the full image will eventually

be labeled and the associated data tuples deleted. In terms of the sliding window

metaphor, the window will eventually slide to the right of any arbitrary prefix of

the full image. Because of the Completion Invariant, we can conclude that the

portion of the image to the left of the window has been labeled as desired. In our

programming logic, we state the Label Completion property as

INIT ∧ C > 0 7−→ base ≥ C.

We use the following approach for this progress proof. To show that the window

eventually slides past a finite prefix, we show that the left boundary of the window

will always eventually advance one column. For the left boundary to advance past

a column, all pixels in that column must be finished, i.e., labeled with the winning

label and the associated data tuples removed. Because of the Completion Invariant,

we only need to consider left-anchored regions, regions which begin in the leftmost

column of the window and extend to the right. These regions will eventually be

completed and all pixels removed.

To show that labeling of a left-anchored region will eventually finish, we must

prove:

• if the region extends beyond the right boundary of the window, eventually all

missing columns will be inserted into the window,

• if the region is completely contained within the window, it will eventually be

labeled and deleted.

If the region extends beyond the right boundary, then eventually a Label synchronic

group will propagate a label from the left boundary across to the right boundary.

This enables the input of the next column. Eventually a left-anchored region will
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be completely within the window. The same label propagation mechanism will then

eventually complete the labeling and remove the region from the dataspace.

Below we sketch a proof of the Labeling Completion property. For pedagogical

reasons, we proceed in a top-down fashion. We first outline how a higher level leads-

to property can be proved using other leads-to, ensures, and unless properties,

then we address each unproven property in a similar fashion. To keep track of the

outstanding proof obligations, we will periodically present the properties requiring

proof in a box as shown below.

Properties to prove: Labeling Completion.

¶ Proof of Labeling Completion. To show that the window eventually slides

past a finite prefix, we show that the left boundary of the window will always even-

tually advance one column.

The Labeling Completion property is proved by an induction needing a simpler

“one-step” property:

Property 34. base = c 7−→ base = c+ 1

Properties to prove: 34.

¶ Proof of Property 34. For the left boundary of the window to advance

past a column, all pixels in that column must be labeled with the winning pixel and

deleted from the dataspace. All pixels in the column will eventually be labeled and

deleted.

Consider two cases for the leftmost column of the window: col gone(c+ 1) and

¬col gone(c+ 1). Note that base = c unless base = c+ 1.

(1) Case col gone(c+ 1). This case is covered by the following property:

Property 35. base = c ∧ col gone(c+ 1) ensures base = c+ 1
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(2) Case ¬col gone(c + 1). First, using the leads-to property below and the

unless property noted above, apply the Progress-Safety-Progress (PSP) Theorem

[24], then apply the Cancellation Theorem for leads-to [24] using case (1).

Property 36. base = c ∧ ¬col gone(c+ 1) 7−→ col gone(c+ 1)

Properties to prove: 35, 36.

As an ensures, property 35 has two proof obligations. Let LHS and RHS refer

to the left- and right-hand sides of the ensures assertion. (1) We must show LHS

unless RHS. (2) We must also show that, whenever LHS ∧ ¬RHS is true, there

exists a transaction in the dataspace such that execution of any synchronic group

containing that transaction will always establish RHS as true.

¶ Proof of Property 35. The left boundary of the window will be advanced

when the leftmost column has been processed and all pixels removed.

Prove the assertion base = c ∧ col gone(c+ 1) ensures base = c+ 1.

(1) Unless part. Clearly base = c unless base = c + 1 and stable c + 1 ≤

last∧ col gone(c+ 1). Since base < last by the Window Integrity invariant, we can

conclude

base = c ∧ col gone(c+ 1) unless base = c+ 1

using the Simple Conjunction Theorem for Unless [24].

(2) Exists part. Because of the Window Integrity and Contract Group invari-

ants, we know there exists a pixel P , P = (c+ 1, 1), such that

base = c ∧ col gone(c+ 1) ⇒ Contract(P ).
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Because of the Synchronic Group Integrity and Contract Group invariants, it is easy

to see that all synchronic groups containing Contract(P) establish base = c+1 when

the precondition base = c ∧ col gone(c+ 1) is true.

Properties to prove: 36.

¶ Proof of Property 36. The unfinished pixels in the leftmost column of the

window are in regions which begin in that column and extend to the right. Labeling

of these regions will eventually be completed and all pixels removed.

Prove the assertion base = c ∧ ¬col gone(c + 1) 7−→ col gone(c + 1). Consider

two cases for a region i which intersects column c+1: left(i) ≤ c and left(i) = c+1.

(1) Case left(i) ≤ c. Because of the Completion Invariant and definition of

reg gone,

base = c ∧ left(i) ≤ c ⇒ (∀ p : p ∈ R(i) ∧ col(p) = c+ 1 : pix gone(p)).

The Implication Theorem for leads-to [24] allows the “⇒” to be replaced by a

“7−→”.

(2) Case left(i) = c+ 1. The following property is the essence of this case.

Property 37. base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 7−→ reg gone(i)

Because of property 37, the definition of reg gone, and Implication Theorem, we

can deduce

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 7−→
(∀ p : p ∈ R(i) ∧ col(p) = c+ 1 : pix gone(p) ).

Since col(p) ≤ last ∧ pix gone(p) is stable and base < last is invariant, we apply

the Completion Theorem [24] over the regions intersecting column c+ 1 to deduce

base = c ∧ ¬col gone(c+ 1) 7−→ col gone(c+ 1)).
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Properties to prove: 37.

For convenience, we define excess(i) to be the total amount the labels on region

i exceed the desired labeling (all pixels in the region labeled with the “winning”

pixel). More formally,

excess(i) = (Σ p : p ∈ R(i) : pix label(p)− w(i) )

where the “Σ” and“−” operators denote component-wise summation and subtrac-

tion of the coordinates. We use excess as to measure the amount of labeling work

remaining to be done on a region.

¶ Proof of Property 37. To show that a left-anchored region eventually is

finished, we must prove: (a) if the region extends beyond the right boundary of the

window, then eventually all missing columns will be inserted into the window; (b)

if the region is completely contained within the window, then it will eventually be

labeled completely with the winning pixel and all pixels deleted.

Prove the assertion

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 7−→ reg gone(i).

Consider three cases for the state of left-anchored regions:

• right(i) < last ∧ excess(i) = 0

• right(i) < last ∧ excess(i) > 0,

• right(i) ≥ last

Note that base = c ∧ ¬col gone(c + 1) ∧ left(i) = c + 1 unless reg gone(i) and

stable right(i) < last.

(1) Case right(i) < last ∧ excess(i) = 0. This case is covered by the following

ensures property:
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Property 38.

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1∧
right(i) < last ∧ excess(i) = 0

ensures reg gone(i)

(2) Case right(i) < last∧excess(i) > 0. First apply the PSP Theorem [24] using

the leads-to property below and the conjunction of unless and stable properties

noted above, then apply the Cancellation Theorem for leads-to [24] using case (1).

Property 39.

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1∧
right(i) < last ∧ excess(i) > 0

7−→ excess(i) = 0

(3) Case right(i) ≥ last. First apply the PSP Theorem [24] using the leads-to

property below and the unless property noted above, then apply the Cancellation

Theorem for leads-to [24] using the disjunction of cases (1) and (2).

Property 40.

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) ≥ last

7−→ right(i) < last

Properties to prove: 38, 39, 40.

¶ Proof of Property 38. If the region is labeled with the winning pixel, it will

eventually be deleted.
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Prove the assertion

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1∧
right(i) < last ∧ excess(i) = 0

ensures reg gone(i).

(1) Unless part. Consider the synchronic groups allowed by the synchronic

group invariants. Clearly Expand and Contract groups and Label groups for regions

other than i preserve the LHS of the ensures. The Label group on region i will

establish reg gone(i) as true for the given precondition.

(2) Exists part. Because of the Window Integrity and Label Group invariants,

we know

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) < last

⇒ Label(w(i)).

Because of the Synchronic Group Integrity and Label Group invariants, it is easy

to see that all synchronic groups containing Label(w(i)) establish reg gone(i) when

the precondition excess(i) = 0 is true.

Properties to prove: 39, 40.

¶ Proof of Property 39. If the region is completely contained within the

window, the winning pixel’s label is gradually propagated throughout the region.

Prove the assertion

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1∧
right(i) < last ∧ excess(i) > 0

7−→ excess(i) = 0.
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Note that

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1∧
right(i) < last ∧ excess(i) > 0

unless excess(i) = 0.

First, apply the PSP Theorem [24] using the ensures property below and the

unless property noted above, then apply the Induction Principle for leads-to [24].

Property 41.

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1∧
right(i) < last ∧ 0 < excess(i) = k

ensures excess(i) < k

Properties to prove: 41, 40.

¶ Proof of Property 41. A Label synchronic group will propagate the label of

the winning pixel to other pixels in the region.

Prove the assertion

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1∧
right(i) < last ∧ 0 < excess(i) = k

ensures excess(i) < k.

Note that the following is invariant:

excess(i) > 0 ⇒
(∃ p, q : p ∈ R(i) ∧ q ∈ R(i) ∧ neighbors(p, q) :

pix label(p) < pix label(q) ).
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(1) Unless part. Consider the synchronic groups allowed by the synchronic

group invariants. Clearly Expand and Contract groups and Label groups for regions

other than i preserve the LHS of the ensures. Because of the Region Data, Window

Label, and “neighbor label” (noted above) invariants, a Label synchronic group on

region i will decrease excess(i).

(2) Exists part. Because of the Label Group and Window Integrity invariants,

Label(w(i)) is true. Any synchronic group containing this transaction, i.e., a Label

group on region i, will decrease excess(i) as argued above.

Properties to prove: 40.

¶ Proof of Property 40. If the region extends beyond the right boundary of

the window, missing columns will gradually be inserted into the window.

Prove the assertion

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) ≥ last

7−→ right(i) < last.

Note that the following is true:

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) ≥ last

unless right(i) < last.

First, apply the PSP Theorem [24] using the leads-to property below and the unless

property noted above, then apply the Induction Principle for leads-to [24].

Property 42.

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) ≥ last ∧ last = d

7−→ last = d+ 1
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Properties to prove: 42.

¶ Proof of Property 42. If the region extends beyond the right boundary, then

eventually a Label synchronic group will propagate a label from the left boundary

across to the right boundary. This enables the input of the next column.

Prove the assertion:

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) ≥ last ∧ last = d

7−→ last = d+ 1.

Note that

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) ≥ last ∧ last = d

unless last = d+ 1.

Consider two cases, whether or not insertion of a new column is enabled:

• (∃ j :: enabled(j, c, d) )

• (∀ j :: ¬enabled(j, c, d) ).

(1) Case (∃ j :: enabled(j, c, d) ). First, using the ensures below, apply the

leads-to disjunction rule over the regions j such that left(j) = c + 1. Next apply

the Ensures Conjunction Theorem [24] using the unless noted above, then weaken

the consequence to last = d+ 1 to deduce this case.

Property 43.

base = c ∧ ¬col gone(c+ 1) ∧ last = d ∧ enabled(j, c, d)

ensures last = d+ 1
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(2) Case (∀ j :: ¬enabled(j, c, d) ). First apply the PSP Theorem [24] using

the leads-to property below and the unless property noted above, then apply the

Cancellation Theorem for leads-to [24] using case (1).

Property 44.

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1∧
right(i) ≥ last ∧ last = d ∧ (∀ j :: ¬enabled(j, c, d) )

7−→ (∃ j :: enabled(j, c, d) )

Properties to prove: 43, 44.

¶ Proof of Property 43. If a pixel at the right boundary of the window

is labeled with a pixel from the left boundary, then the next column is eventually

inserted into the window.

Prove the assertion:

base = c ∧ ¬col gone(c+ 1) ∧ last = d ∧ enabled(j, c, d)

ensures last = d+ 1.

(1) Unless part. Consider the synchronic groups allowed by the synchronic

group invariants. Since ¬col gone(c+ 1), the Contract groups preserve the LHS of

the ensures. Since a Label synchronic groups can only decrease labels, pixels coor-

dinates from the leftmost column of the window are less than pixels from all other

columns, and regions can only be deleted when they are completely visible in the

window, all Label groups on all regions preserve the LHS. The Expand transaction

will establish the RHS when the LHS holds as a precondition.

(2) Exists part. Because of the Expand Group invariant, Expand(last+1) is

in the dataspace. Because of the Synchronic Group Integrity and Expand Group
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invariants, any synchronic group containing this transaction will establish the RHS

as argued above.

Properties to prove: 44.

The portion of an unfinished region visible in the window may be divided into

one or more (maximal) connected subregions by the right boundary of the window.

For convenience, we define Wexcess(i, d) to be the total amount the labels on the

visible portions of region i, when the right window boundary is at column d, exceed

the desired labeling—all pixels in each visible subregion labeled with the minimum

pixel for the subregion. More formally,

Wexcess(i, d) = (Σ p : p ∈ R(i) ∧ col(p) ≤ d : pix label(p)− cw(i, d, p) )

where cw(i, d, p) is the coordinates of minimum pixel in the subregion of region i

containing pixel p when the all pixels to the right of column d are ignored. We use

Wexcess to measure the amount of labeling work that can be done on the visible

subregions without inserting a new column on the right.

¶ Proof of Property 44. Gradually a Label synchronic group will propagate

a label from the left boundary across to the right boundary—thus enabling the input

of the next column.

Prove the assertion:

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1∧
right(i) ≥ last ∧ last = d ∧ (∀ j :: ¬enabled(j, c, d) )

7−→ (∃ j :: enabled(j, c, d) ).
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Note that

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) ≥ last ∧ last = d∧
(∀ j :: ¬enabled(j, c, d) ) ∧Wexcess(i, d) > 0

unless (∃ j :: enabled(j, c, d) ).

First, apply the PSP Theorem [24] using the ensures property below and the

unless property noted above, then apply the Induction Principle for leads-to [24].

Property 45.

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) ≥ last ∧ last = d∧
(∀ j :: ¬enabled(j, c, d) ) ∧ 0 < Wexcess(i, d) = k

ensures Wexcess(i, d) < k ∨ (∃ j :: enabled(j, c, d) )

Properties to prove: 45.

¶ Proof of Property 45. A Label synchronic group will propagate the label of

the smallest pixel in a subregion to other pixels in the subregion.

Prove the assertion:

base = c ∧ ¬col gone(c+ 1) ∧ left(i) = c+ 1 ∧ right(i) ≥ last ∧ last = d∧
(∀ j :: ¬enabled(j, c, d) ) ∧ 0 < Wexcess(i, d) = k

ensures Wexcess(i, d) < k ∨ (∃ j :: enabled(j, c, d) ).

(1) Unless part. Consider the synchronic groups allowed by the synchronic

group invariants. Since no region is enabled, the Expand transaction will preserve

the LHS of the ensures. Since ¬col gone(c+ 1), the Contract groups also preserve

the LHS. Since region i intersects the column c + 1, no Label group on a region
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other than i can falsify the LHS without “enabling.” Any Label group on region i

will decrease Wexcess(i, d) when the LHS holds as a precondition.

(2) Exists part. Because of the Label Group and Window Integrity invariants,

there is a Label transaction associated with a pixel on each subregion of region i.

Any synchronic group containing this transaction, i.e., a Label group on a subregion

of i, will establish the RHS as argued above.

Properties to prove: none.
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10. CONCLUSIONS

In this dissertation we introduced the Swarm approach. We informally specified

the Swarm notation and presented a formal operational model and an axiomatic

programming logic. We briefly explored the implications of Swarm on program-

ming styles by presenting a series of variant solutions to a simple, but non-trivial,

problem—labeling the equal intensity regions of a digital image. We also illus-

trated use of the programming logic by verifying the correctness of three of the

region labeling programs.

What has this research contributed to the theory and practice of concurrent

programming? In this chapter we address this question.

The Swarm model reduces both communication and computation to a single

mechanism—the atomic execution of transactions. Most programming language

models have separate mechanisms to specify communication and computation, e.g.,

message send and receive commands for communication and various control con-

structs for computation. In Swarm a single construct, the transaction, specifies

both communication and computation activities. As a result, many of the low-level

concerns about synchronization and mutual exclusion are subsumed into the model.

Specification and verification of programs are thus simplified.

The Swarm model unifies key aspects of several paradigms into a single frame-

work. Many different computational paradigms have been put forward—shared

variables, production rules, static and dynamic networks of communicating pro-

cesses, asynchronous (e.g., CSP) and synchronous (e.g., systolic array and data

parallel programs) systems of processes, and so forth. The Swarm mechanisms
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enable various approaches to computation to be combined readily within a single

program. A Swarm program’s general structure is very close to that of produc-

tion rule systems. The subtransactions within a transaction (synchronic group)

are executed synchronously, but the transactions (synchronic groups) themselves

are executed asynchronously with respect to each other. Transactions can ma-

nipulate the tuple space in many different patterns—treating tuples as variables,

as messages, or as parts of (Linda-like) distributed data structures. This multi-

paradigmatic nature of Swarm gives a program designer more flexibility than does

computational models with fixed paradigms; the designer can chose program and

data structures appropriate to the problem and his chosen solution strategy.

Swarm’s synchrony relation is an elegant new language construct for dynamically

organizing concurrency. Sometimes programmers want to organize the concurrency

in a program to match the structure of the program’s “input” data. These data

may be sparse, loosely structured, or unbounded in some manner. Sometimes

programmers may also want to alter the structure of the concurrency as a result

of a previous subcomputation. The dynamically modifiable synchrony relation,

in conjunction with dynamically created transaction instances, provides a simple

mechanism for achieving such program structures. For example, in Chapter 4 we

show a program which uses the synchrony relation to organize a synchronic group

of transactions on each equal-intensity region of an image. In Chapter 9 we use

synchronic groups to advantage in structuring the computation for an image which

is unbounded in one dimension.

The Swarm programming logic is the first axiomatic proof system for a shared

dataspace “language.” To our knowledge, no axiomatic-style proof systems have

been published for Linda, production rule languages, or any other shared dataspace

language. Taking advantage of the similarities between the Swarm and UNITY
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computational models, we have developed a programming logic for Swarm which is

similar in style to that of UNITY. The Swarm logic uses the same logical relations

as UNITY, but the definitions of the relations have been generalized to handle

the dynamic nature of Swarm, i.e., dynamically created transactions and the syn-

chrony relation. The most challenging problem was the formulation of appropriate

definitions for the ensures relation.

In our opinion, Swarm is a promising approach to computation. Regardless of

Swarm’s ultimate place in the pantheon of programming models and languages,

we believe the results from this work can impact other research efforts in the pro-

gramming language and artificial intelligence communities—Linda, UNITY, and

rule-based languages in particular. However, more work—both theoretical and

pragmatic—is needed before we can assess Swarm’s long-term impact on concur-

rent programming.
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11. FUTURE WORK

We believe that we have made significant progress toward our research goals,

but, like most research efforts, new “questions” arise from the process of “answer-

ing” the old questions. In this chapter we examine possible future directions for

research. We organize these ideas into four categories: exploration, extension, ex-

ploitation, and exportation.

11.1. EXPLORATION

Although we have developed several Swarm programs as a part of this and

related research, our programming experience with the Swarm notation is still lim-

ited. We have found the region labeling problem examined in this dissertation to

be an excellent motivating example for the development of Swarm, but we need

to study and formulate programming solutions and correctness proofs for many

additional problems. The Swarm approach enables many interesting programming

styles, e.g., the combination of synchronous and asynchronous processing within

the same program, the dynamic organization of concurrency, and the several vari-

ations of Gelernter’s worker metaphor. These and other programming styles need

to be further explored and elaborated. The Swarm programming logic was useful

for verification of the region labeling programs; with new examples we can further

study its usability and develop new techniques for verification of Swarm programs.

The foundations of the Swarm model and programming logic also need to be ex-

plored further. In this research our focus has been on programming. We wanted to

define the Swarm notation and propose a means for reasoning about the correctness
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of programs written therein. Because of the necessity to limit the scope of this re-

search, we were not able to address the theoretical foundations of Swarm in great

detail. The Swarm programming logic should be studied in relation to existing

frameworks such as UNITY and temporal logic. The issues of soundness and com-

pleteness should be addressed more formally. Since, for the most part, our model

and logic treats subtransactions as indivisible units, a finer-grained model, which

specifies the semantics of subtransactions in terms of its constituent elements, would

provide a better understanding of Swarm and, perhaps, give insight into methods

for implementing transactions.

During the design of Swarm, we were faced with decisions concerning which

constructs to include and how to formulate those we did include. Several of our

choices were rather arbitrary. With the insight we have gained from this research,

the exploration of other alternatives may now be profitable. Important alternatives

include:

• allowing the explicit deletion of transactions,

• eliminating the automatic deletion of transactions after their execution—

particularly in the case of unsuccessful queries,

• making the tuple space a bag (multiset) instead of a set,

• supporting infinite tuple spaces.

11.2. EXTENSION

The synchrony relation and the nature of the transaction space enable Swarm

programs to organize computations dynamically. However, the notation presented
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in this dissertation does not have built-in facilities for abstraction or program com-

position. It has a relatively flat structure. Perhaps Swarm should be extended to

integrate concepts such as the multiple tuple spaces of recent versions of Linda. Or

perhaps additional structuring constructs are needed, e.g., sets, subprograms, or

arbitrary relations among dataspace elements.

The work of other programming logic researchers should also be adapted to

Swarm. For example, the theory of program union and superposition in UNITY

[24] and of refinement and projection in Event Predicates [64] should not be difficult

to incorporate into a Swarm programming logic.

Another aspect of Swarm that can be extended is its formal model. The model

given in Chapter 5 is sequential in the sense that synchronic groups are executed

atomically in some sequence. Following the lead of the Action Systems [66] re-

searchers, models incorporating more “realistic” notions of overlapped execution

should be formulated and their impact upon proofs studied. These concurrent

models can provide insight into various parallel implementation issues.

11.3. EXPLOITATION

Full exploitation of the Swarm model as a programming vehicle will, of course,

require design and implementation of programming languages based on the model.

Several Swarm-related implementation efforts are underway. A colleague has devel-

oped a simple transaction system package which executes on the Ncube hypercube

[43, 44]. A version of this package is also being developed for the Apple Macintosh

personal computer. Using this package as a base, a subset of Swarm will be im-

plemented. Our group is also investigating the design of a special architecture for

execution of Swarm-like programs. These efforts need to be continued.
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A more substantial implementation effort should be started. The design of a

practical programming language and the engineering of an efficient parallel im-

plementation will require a significant investment. The most important challenge

seems to be the development of efficient and reliable algorithms for distributed im-

plementations of the dataspace operations. This work can build on the results from

current prototyping efforts, theoretical studies of the concurrent model, and the

efforts of other researchers.

In the meantime, a sequential simulator for the Swarm notation would be useful.

For example, an interpreter for a Swarm-like language should not be difficult to im-

plement in Prolog. Although such an implementation would not exhibit parallelism,

it would enable the example Swarm programs to be executed. Instrumentation of

the interpreter could also gather useful statistics concerning execution of Swarm

programs.

11.4. EXPORTATION

The ideas arising from the Swarm research can potentially be exported to other

contexts. From the standpoint of its computational model and programming logic,

the UNITY notation is closely related to Swarm. Currently UNITY programs

consist of a static set of assignment statements. Perhaps the Swarm programming

logic can provide some insight into the formulation of a programming logic for a

version of UNITY with a dynamic statement set or with a feature similar to the

synchrony relation. Also, as far as we know, axiomatic proof systems do not exist

for either Linda or rule-based languages. Again the Swarm programming logic

may provide insight into the development of proof systems for these languages, or,
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perhaps, the Swarm research will suggest useful modifications of the semantics of

such languages.

In research recently begun, the Swarm logic is serving as the basis for a new

approach to the visualization of the dynamics of program execution. Roman and

Cox are developing a proof-based declarative visualization paradigm [45, 46]. In

contrast to the imperative approach to program visualization, in which the pro-

grammer must instrument his program with appropriate calls to a visualization

package, the declarative approach uses an externally defined mapping from the

program’s state to a visual display. This research is being conducted in the context

of shared dataspace programs. This work seems to have considerable potential.

The Swarm concepts, in conjunction with the declarative visualization tech-

niques, may also be useful in development of the formal methods, algorithms, and

methodologies for runtime monitoring of security violations in computing systems.

A key part of this work would be the extension of the Swarm model and program-

ming logic to include the semantics of information flow in the shared dataspace

[131]. This provides a means for formally stating information flow policies and

reasoning about them.

* * * * *

The line of research reported in this dissertation is interesting and, we believe,

has made a useful contribution to the field of concurrent programming. However,

neither Swarm nor any of the other current approaches solves all of the problems

of concurrent programming. Much more remains to be done.
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THEOREMS FROM THE UNITY LOGIC

This appendix lists several theorems for the UNITY programming logic from

Chandy and Misra’s book [24]. The Swarm analogues of many of these theorems

are used in the proofs in this dissertation.

Theorems about Unless

1. Reflexivity and Antireflexivity

p unless p,

p unless ¬p

2. Consequence Weakening

p unless q , q ⇒ r
p unless r

3. Conjunction and Disjunction

p unless q ,
p′ unless q′

(p ∧ p′) unless (p ∧ q′) ∨ (p′ ∧ q) ∨ (q ∧ q′) , {conjunction}
(p ∨ p′) unless (¬p ∧ q′) ∨ (¬p′ ∧ q) ∨ (q ∧ q′) {disjunction}

4. Simple Conjunction and Simple Disjunction

p unless q ,
p′ unless q′

p ∧ p′ unless q ∨ q′ , {simple conjunction}
p ∨ p′ unless q ∨ q′ {simple disjunction}

5. Cancellation

p unless q ,
q unless r

p ∨ q unless r
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Theorems about Ensures

1. Reflexivity

p ensures p

2. Consequence Weakening

p ensures q , q ⇒ r
p ensures r

3. Impossibility

p ensures false
¬p

4. Conjunction

p unless q ,
p′ ensures q′

p ∧ p′ ensures (p ∧ q′) ∨ (p′ ∧ q) ∨ (q ∧ q′)

5. Disjunction

p ensures q
p ∨ r ensures q ∨ r

Theorems about Leads-To

1. Implication Theorem

p ⇒ q
p 7−→ q

2. Impossibility Theorem

p 7−→ false
¬p
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3. General Disjunction Theorem

For any set W :

(∀m : m ∈ W : p(m) 7−→ q(m) )

(∃m : m ∈ W : p(m)) 7−→ (∃m : m ∈ W : q(m))

4. Cancellation Theorem

p 7−→ q ∨ b , b 7−→ r
p 7−→ q ∨ r

5. Progress-Safety-Progress (PSP) Theorem

p 7−→ q , r unless b

p ∧ r 7−→ (q ∧ r) ∨ b

6. Completion Theorem

For any finite set of predicates pi, qi, 0 ≤ i < N :

(∀ i :: pi 7−→ qi ∨ b ) ,
(∀ i :: qi unless b )

(∧ i :: pi) 7−→ (∧ i :: qi) ∨ b

7. Induction Principle

For W , a well-founded set under the relation ≺, and M , a function (called a

metric) from the program states to W :

(∀m : m ∈ W : p ∧ M = m 7−→ (p ∧ M ≺ m) ∨ q

p 7−→ q

Note: In applying the induction rule, the set of program states on which the

metric M is defined may be limited to those satisfying p ∧ ¬q.
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