
Concurrent Programming in the Shared Dataspace Paradigm

H. Conrad Cunningham

Department of Computer Science

WASHINGTON UNIVERSITY

Saint Louis, Missouri 63130

This research is concerned with the study of
concurrent programming languages which employ
the shared dataspace model [4], i.e., languages in
which the primary means for communication among
the concurrent components is a common, content-
addressable data structure called a shared data-
space. Such languages can bring together a variety
of programming styles (e.g., synchronous and asyn-
chronous, static and dynamic) within a unified com-
putational framework. We are investigating appro-
priate language constructs, programming techniques,
formal models, programming logics, and proof tech-
niques. The main vehicle for this investigation is a
language called Swarm [3].

Following the simple approach taken by the
UNITY [1] model, Swarm is based on a small num-
ber of constructs that we believe are at the core of a
large class of shared dataspace languages. The state
of a Swarm program consists of a dataspace, i.e., a
set of transaction statements and data tuples. Trans-
actions specify a group of dataspace transformations
that are executed concurrently.

Although actual implementations of Swarm can
overlap the execution of transactions, we have found
the following program execution model to be conve-
nient. The program begins executing with the spec-
ified initial dataspace. On each execution step, a
transaction is chosen nondeterministically from the
dataspace and executed atomically. This selection is
fair in the sense that each transaction in the data-
space will eventually be chosen. An executing trans-
action examines the dataspace and then, depending
upon the results of the examination, can delete tu-
ples (but not transactions) from the dataspace and
insert new tuples and transactions into the dataspace.

Upon a transaction’s execution, it is deleted from the
dataspace. Program execution continues until there
are no transactions in the dataspace.

Our results to date are highly encouraging. We
have defined the Swarm language and specified an
operational model based on a state-transition ap-
proach [3]. We are exploring the implications of the
shared dataspace approach and the Swarm language
design on algorithm development and programming
methodology. We are also developing an assertional
programming logic and devising proof techniques ap-
propriate for the dynamically structured Swarm lan-
guage. Colleagues are investigating implementation
issues and the use of the shared dataspace model as
a basis for a new approach to the visualization of the
dynamics of program execution [2]. Swarm is prov-
ing to be an excellent vehicle for investigation of the
shared dataspace model.

References

[1] K. M. Chandy and J. Misra. Parallel Program
Design: A Foundation. Addison-Wesley, Read-
ing, Massachusetts, 1988.

[2] G.-C. Roman and K. C. Cox. Declarative visuali-
zation in the shared dataspace paradigm. In Pro-
ceedings of the 11th International Conference on
Software Engineering, pages 34–43. IEEE, May
1989.

[3] G.-C. Roman and H. C. Cunningham. A shared
dataspace model of concurrency—Language and
programming implications. In Proceedings of
the 9th International Conference on Distributed
Computing Systems, pages 270–279. IEEE, June
1989.

[4] G.-C. Roman, H. C. Cunningham, and M. E.
Ehlers. A shared dataspace language supporting
large-scale concurrency. In Proceedings of the 8th
International Conference on Distributed Comput-
ing Systems, pages 265–272. IEEE, June 1988.


