
Swarming over the Software Barrier

H. Conrad Cunningham
Department of Computer and Information Science

University of Mississippi
University, MS 38677 U.S.A.

Abstract

Swarm is a concurrent programming model which
integrates a Linda-like communication medium, the
shared dataspace, with a UNITY-like computational
model, proof system, and program structure. It gen-
eralizes the Linda tuple-space operations by provid-
ing more powerful dataspace queries. It generalizes
UNITY by permitting content-based access to data, a
dynamic set of statements, and the capability to con-
trol the execution mode (i.e., synchronous or asyn-
chronous) for arbitrary collections of program state-
ments.

1 Introduction

Although the parallel machines and networks that
have been developed in recent years offer the poten-
tial for enormous increases in computational power,
our capabilities for harnessing this power is still quite
primitive. We are bumping up against what Pe-
ter Denning has termed the “software barrier” [6].
This software barrier is made more formidable by
the fact that each parallel machine typically has its
own idiosyncratic programming languages and fea-
tures. David Gelernter (quoted in [7]) voices the com-
plaint that “programmers have been forced to accom-
modate themselves to the machines rather than vice
versa.” He suggests that researchers should imagine
new kinds of programs before they imagine new kinds
of machines.

With the goal of providing a practical, machine-
independent vehicle for programming parallel ma-
chines, Gelernter and his colleagues have put forth
the Linda communication model [3]. A salient (and
appealing) feature of Linda is it’s “tuple space”—a
common, content-addressable data structure. Concur-
rently executing processes communicate by inserting
tuples into, deleting tuples from, and examining tu-
ples in this tuple space. The tuple space also encom-
passes the processes themselves; they are viewed as
“live tuples” which are inserted into the tuple space

by their parent processes. Tuple space communication
thus enables a flexible, uncoupled relationship among
the data and processing components of the program.

Although their approach is quite different, Mani
Chandy and Jay Misra also seek to enable program-
mers who are mired in the details of programming
parallel machines to lift themselves up over the soft-
ware barrier. They argue that the fragmentation of
programming approaches along the lines of architec-
tural structure, application area, and programming
language features obscures the basic unity of the pro-
gramming task [4]. With the UNITY model, they seek
to unify seemingly disparate areas of programming
with a simple theory consisting of a model of compu-
tation and an associated proof system. The UNITY
approach separates the concern for functional correct-
ness of the program from the concern for efficient ex-
ecution of the program on a specific machine. The
programmer first develops a correct program from the
specifications, then transforms it to execute efficiently
on the chosen hardware.

We find aspects of both Linda and UNITY ap-
pealing. We like the flexible program/data structures
made possible by the Linda tuple space, but also want
the benefit of a proof system and program derivation
techniques. We like UNITY’s simple computational
model and proof system, but also want to be able to
handle more flexible and dynamic program and data
structures. Thus we sought to integrate the “desir-
able” features of Linda and UNITY into one model.
We call the resulting model Swarm, evoking the im-
age of a large, rapidly moving aggregation of small,
independent agents cooperating to perform a task.

2 Swarm

Swarm [5, 13] is a concurrent programming model
which combines a Linda-like communication medium,
the shared dataspace, with a UNITY-like computa-
tional model, proof system, and program structure.
It generalizes the Linda tuple-space operations by pro-
viding more powerful dataspace queries. It generalizes

UNITY by permitting content-based access to data, a
dynamic set of statements, and the capability to con-
trol the execution mode (i.e., synchronous or asyn-
chronous) for arbitrary collections of program state-
ments.

The statements in the Swarm notation are called
transactions. A transaction denotes an atomic trans-
formation of the dataspace. It is a set of concurrently
executed query-action pairs. Each query-action pair is
similar to a production rule in a language like OPS5
[2]. A query consists of a predicate over the dataspace;
an action specifies a group of deletions and insertions
of dataspace elements that are done when the query
is executed successfully. Instances of transactions are
created dynamically by an executing program. They
are represented in the dataspace by tuple-like entities.

The execution of a Swarm program is similar to
execution of a UNITY program. It begins execution
from a specified initial dataspace. On each execution
step a transaction is chosen nondeterministically from
the dataspace and executed atomically. This selec-
tion is fair in the sense that every transaction in the
dataspace at any point in the computation will eventu-
ally be chosen. An executing transaction examines the
dataspace and then, depending upon the results of the
examination, can delete tuples (but not transactions)
from the dataspace and insert new tuples and transac-
tions into the dataspace. Unless a transaction explic-
itly reinserts itself into the dataspace, it is deleted as
a by-product of its own execution. Program execution
continues until there are no transactions remaining in
the dataspace.

As a simple example, consider the program in Fig-
ure 1 for computing prime numbers using the sieve
algorithm. The program uses tuples of type num to
hold the candidate prime numbers and transactions of
type Sieve to filter nonprimes from the set of candi-
dates. The program begins execution with a dataspace
containing a num tuple and Sieve transaction for each
integer in the range 2 through N . If an executing
transaction finds a num tuple holding a multiple of
the transaction’s parameter value, then it deletes the
tuple (denoted by the † operation) and reinserts it-
self to search for more multiples; otherwise, the only
action taken is the deletion of the transaction itself
from the dataspace. Thus, when there are no more
nonprimes to delete, the program halts.

Like UNITY, the Swarm proof system uses an as-
sertional programming logic which relies upon proof
of program-wide properties, e.g., global invariants and
progress properties [5]. We define the Swarm logic in
terms of the same logical relations as UNITY (un-

program Prime (N : 2 ≤ N)
tuple types

[i : 2 ≤ i ≤ N :: num(i)]
transaction types

[i : 2 ≤ i ≤ N ::
Sieve(i) ≡

j : num(j)†, i < j, j mod i = 0
−→ Sieve(i)

]
initialization

[i : 2 ≤ i ≤ N :: num(i), Sieve(i)]
end

Figure 1: Computing Prime Numbers

less, stable, invariant, ensures, and leads-to), but
must reformulate several of the concepts to accommo-
date Swarm’s distinctive features. We define a proof
rule for transaction statements to replace UNITY’s
well-known rule for multiple-assignment statements,
redefine UNITY’s ensures relation to handle the cre-
ation and deletion of transaction statements, and re-
place UNITY’s use of fixed-point predicates with other
methods for determining program termination. We
have constructed our logic carefully so that most of
the theorems developed for UNITY can be directly
adapted to the Swarm logic.

A specification for the prime number program in
Figure 1 can be given in terms of two properties: a
progress property stated using the relation leads-to
and a safety property stated using the relation stable.
Let Post represent the desired postcondition for the
program, the predicate

〈∀ i :: num(i) ≡ 2 ≤ i ≤ N ∧ prime(i) 〉

where prime(i) denotes true when i is a prime num-
ber and false otherwise. (Post means that the tuple
num(i) exists if and only if i is a prime number in the
range 2 through N .) From any point during its execu-
tion, the program must eventually make Post true. In
the Swarm programming logic this can be stated as

true leads-to Post.

Once achieved, the program must remain in a state
satisfying this postcondition, i.e.,

stable Post.

Although the set of transactions in the dataspace
(usually) changes as a program executes, the set
of query-action pairs within a transaction is static.
The notion of dynamically constructing “transac-
tions” from arbitrary sets of query-action pairs seemed
to be an appealing extension of the Swarm concept.
We incorporated this capability into Swarm by means
of the synchrony relation feature [13, 14]. The syn-
chrony relation is a symmetric relation on the set of
possible transactions in the program. This relation
may be examined and modified by the program in the
same way that other parts of the dataspace (i.e., data
tuples and transactions) can be. To accommodate the
synchrony relation, we extend the program execution
model in the following way: whenever a transaction
is chosen for execution, all transactions in the data-
space which are related to the chosen transaction by
(the closure of) the synchrony relation are also chosen;
all of the transactions that make up this set, called a
synchronic group, are executed as if they comprised a
single transaction. We have generalized the program-
ming logic to handle synchronic groups as the atomic
statements [14].

By enabling asynchronous program fragments to
be coalesced dynamically into synchronous subcom-
putations (i.e., dynamic partial synchrony [16]), the
synchrony relation provides an elegant mechanism for
structuring concurrent computations. This unique
feature facilitates a programming style in which the
granularity of the computation can be changed dy-
namically to accommodate structural variations in
the input. This feature also suggests mechanisms for
the programming of a mixed-modality parallel com-
puter, i.e., a computer which can simultaneously ex-
ecute asynchronous and synchronous computations.
Perhaps architectures of this type could enable both
higher performance and greater flexibility in algorithm
design.

3 Discussion

Swarm emerged in its current form in late 1988
as a part of this author’s collaboration with his doc-
toral advisor, Catalin Roman. Previously we had been
experimenting with the Shared Dataspace Language
(SDL) [15], a CSP-like [9] language in which processes
communicate through a Linda-like [3] tuple space. Be-
coming dissatisfied with the complexity of SDL, we
sought a simpler notation and a better formal foun-
dation for our shared dataspace research. We became
intrigued with the UNITY [4] programming model and

decided to adopt its approach for our new research ve-
hicle. By merging the shared dataspace concepts from
SDL into a UNITY-like computational model, we con-
structed a new model and notation that was somewhat
reminiscent of production rule languages like OPS5 [2].
Because of the dynamic structure of the programs, we
decided to call the new model and notation Swarm.

Many of the elements of Swarm have appeared
in other languages designed for parallel execution.
Like Swarm programs, programs in the Associons [11]
model manipulate sets of tuples. In this notation pro-
grams consist of a sequence of deterministic “closure”
statements which add new tuples to the set while their
guards are true. The recent work on the GAMMA
model [1] is similar in spirit to Associons. However,
GAMMA differs in that programs manipulate bags of
entities with a nondeterministic “Γ” operator. The
GAMMA model also provides a program derivation
methodology. In both Associons and GAMMA the
parallelism is implicit—hidden in the powerful clo-
sure and Γ operators. On the other hand, Swarm’s
synchrony relation allows a program to modify the
structure of its parallelism explicitly to conform to the
structure of its data or other aspects of its operating
environment.

Swarm has proven to be an excellent research vehi-
cle. We have defined the Swarm programming nota-
tion and specified a formal operational model based on
a state-transition approach [13]. To facilitate formal
verification of Swarm programs, we have developed
an assertional programming logic and devised proof
techniques appropriate for the dynamic structure of
Swarm [5, 14]. The Swarm ideas have motivated an
exploration of new approaches to algorithm develop-
ment and programming methodology [13, 16] and to
program refinement [10].

Swarm continues to stimulate new ideas. In a re-
lated effort, colleagues are investigating the use of the
shared dataspace model as a basis for a “declarative”
approach to the visualization of the dynamics of con-
current program execution [12]. The Swarm notation
and logic are also being applied to the design and ver-
ification of production rule systems [8]. We also be-
lieve Swarm has considerable potential as a concep-
tual framework for software engineering. To realize
this potential, however, the Swarm theory and meth-
ods need to be extended to aid systematic develop-
ment of large programs. With this in mind, we have
recently begun to study program composition and re-
finement, derivation of programs from specifications,
and transformations of programs toward various pro-
cessor architectures.

4 Conclusion

This paper began with a discussion of a “software
barrier”—an intellectual and technological obstacle
obstructing our path toward the full exploitation of
the power of parallel computers. Swarm, in its current
form, is not a magic bulldozer which will push aside
the barrier. However, we do believe that Swarm has
been, and still is, a good reconnaissance vehicle. Per-
haps, by exploring the barrier further, we will find that
there are convenient paths over, around, or through
the barrier—or maybe our intensive study of the bar-
rier will reveal that it is merely a figment of our (lack
of) imagination.

Acknowledgements

We thank the two anonymous referees and Catalin
Roman of Washington University in St. Louis for their
helpful suggestions concerning this paper.

References

[1] J.-P. Banâtre and D. Le Métayer. The GAMMA
model and its discipline of programming. Science
of Computer Programming, 15:55–77, 1990.

[2] L. Brownston, R. Farrell, E. Kant, and N. Martin.
Programming Expert Systems in OPS5: An In-
troduction to Rule-Based Programming. Addison-
Wesley, Reading, Massachusetts, 1985.

[3] N. Carriero and D. Gelernter. Linda in con-
text. Communications of the ACM, 32(4):444–
458, April 1989.

[4] K. M. Chandy and J. Misra. Parallel Program
Design: A Foundation. Addison-Wesley, Read-
ing, Massachusetts, 1988.

[5] H. C. Cunningham and G.-C. Roman. A UNITY-
style programming logic for a shared dataspace
language. IEEE Transactions on Parallel and
Distributed Systems, 1(3):365–376, July 1990.

[6] P. J. Denning. Editorial: Parallel computing
and its evolution. Communications of the ACM,
29(12):1163–1167, December 1986.

[7] K. A. Frenkel. Introduction: Special issue
on parallelism. Communications of the ACM,
29(12):1168–1169, December 1986.

[8] R. F. Gamble, G.-C. Roman, and W. E. Ball.
Formal verification of pure production system
programs. In Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI-91),
pages 329–334, July 1991.

[9] C. A. R. Hoare. Communicating sequential pro-
cesses. Communications of the ACM, 21(8):666–
677, August 1978.

[10] Y. Liu and A. K. Singh. Parallel programming:
Achieving portability through abstraction. In
Proceedings of the 11th International Conference
on Distributed Computing Systems (ICDCS-11),
May 1991.

[11] M. Rem. Associons: A program notation with
tuples instead of variables. ACM Transactions on
Programming Languages and Systems, 3(3):251–
262, July 1981.

[12] G.-C. Roman and K. C. Cox. A declarative ap-
proach to visualizing concurrent computations.
Computer, 22(10):25–36, October 1989.

[13] G.-C. Roman and H. C. Cunningham. Mixed
programming metaphors in a shared dataspace
model of concurrency. IEEE Transactions on
Software Engineering, 16(12):1361–73, December
1990.

[14] G.-C. Roman and H. C. Cunningham. The syn-
chronic group: A concurrent programming con-
cept and its proof logic. In Proceedings of the 10th
International Conference on Distributed Comput-
ing Systems, pages 142–149. IEEE, May 1990.

[15] G.-C. Roman, H. C. Cunningham, and M. E.
Ehlers. A shared dataspace language supporting
large-scale concurrency. In Proceedings of the 8th
International Conference on Distributed Comput-
ing Systems, pages 265–272. IEEE, June 1988.

[16] G.-C. Roman, J. Y. Plun, and C. D. Wilcox. Dy-
namic partial synchrony. Technical Report 90–36,
Washington University, Department of Computer
Science, St. Louis, Missouri, October 1990.

