
 1

COMPONENT SOFTWARE:
A NEW SOFTWARE ENGINEERING COURSE

H. Conrad Cunningham, Yi Liu, Pallavi Tadepalli, and Mingxian Fu

Department of Computer and Information Science
University of Mississippi

University, MS 38677 USA
{hcc,liuyi,pallavi,mfu}@cs.olemiss.edu

ABSTRACT

In recent years component-based software development has emerged as
an important new set of methods and technologies. This paper describes
a new course—Component Software—that focuses on component-
based design using technology-independent methods and component
implementation using Enterprise JavaBeans. The paper outlines the
approach and structure of the course. It also presents a case study used
in the course.

1. INTRODUCTION
In the early Twenty-First Century most software systems exist in highly

dynamic environments. Their requirements change frequently and they must be built
or modified on challenging development schedules. The software systems are large
and decentralized. They execute in a distributed fashion and the development and
maintenance of the software and data involved may be distributed among many groups
in the enterprise. In this context, software systems need to be modular and easy to
change; the development methods and technologies should support reuse of analysis,
design, and tested code. The software development community is approaching the
development of such distributed, enterprise- level software applications with
component-based methods and technologies. The idea is that a new software
application can be built quickly and reliably by assembling preexisting components
with a few new components. Furthermore, it should be possible to handle changes in
the requirements by replacing a small number of components.

To construct component-based software systems, software developers need a
range of knowledge and skills. First, they need to know how to analyze problems so
that they can identify, specify, and design effective components and component
architectures. Second, they need a firm grasp of appropriate programming concepts
and technologies, in particular use of object-oriented languages. Third, they need a
conceptual understanding of and a facility in use of appropriate component
technologies. As Clemens Szyperski has said, “Component Software Engineering is an
emerging technology about to take the software industry by storm” [9]. As computing
science educators, we need to help prepare our students for this storm by enabling
them to use and build software components and component-based applications.

This paper describes a Component Software course that addresses, in part, the

first and third of the above knowledge and skill needs. This course aims to present the
concepts and techniques for design and implementation of component-based software,
with a focus on technology- independent concepts and methods. The course assumes

 2

that the student has a solid background in object-oriented programming concepts such
as data abstraction, inheritance, composition, and polymorphism. In particular, the
course assumes that the student has a good working knowledge of the Java
programming language. The course uses a development approach similar to the UML
Components methodology [2] and uses the Enterprise JavaBeans (EJB) component
model and other Java 2 Enterprise Edition (J2EE) technologies [3] for examples and
practical exercises. The course thus emphasizes large-grained, distributed components
typically executing in a client-server architecture.

2. COURSE PRINCIPLES

The first guiding principle in the construction of this course is the separation
of concerns. There are at least two aspects of this principle that are applied here.

The first aspect is the separation of the product from the process. By this we
mean the separation of the specification, which describes “what” a component is
required to do, from the implementation, which describes “how” the specification is
realized (i.e., the algorithms, data structures, and program structures needed). The
methods taught are independent of the details of the implementing technologies. The
approach develops a sequence of system specification models and then maps the
design specification into a particular technology. The implementation details of a
component are hidden behind an interface that has been systematically developed from
the requirements.

The second aspect of the principle is the separation of the logic into

architectural layers with well-defined purposes. For example, we separate the
presentation logic (i.e. the user interface issues) from the business logic (i.e. the
application-specific data manipulations and processing). Carrying this further, we
divide presentation logic into layers for the management of the user interface elements
and for the user’s dialog with the system within an interactive session. We also divide
the business logic into layers for the application-specific system services and for more
general business services that are often related to the persistent data maintained. This
layering relationship in shown in Figure 1, which is adapted from Cheesman [2]. The
general concept is that several different applications (i.e. system services components)
can share access to a set of general business services components, that several
different user dialogs (e.g. interactive or batch) can use a system services component,
and that several different user interfaces (e.g. command line, GUI, Web, etc.) can use
a single user dialog component.

The second guiding principle of the course is the use and adaptation of

standard notations and methods. We adopt well-known object-oriented analysis and
design methods and adapt them to the development of component-based system.
These include domain analysis, use case analysis, business type modeling, interaction
modeling, and design by contract. We also adopt standard notations such as the
Unified Modeling Language (UML) [4], Object Constraint Language (OCL) [10],
Java, and Enterprise JavaBeans (EJB) [1, 3].

The third guiding principle of the course is a focus on the development of

software families. Instead of developing single applications, we emphasize the
definition of frameworks or software product lines. Such a framework separates the
common functionality of the family (sometimes called the frozen spots) from the
variable aspects of the family (sometimes called the hot spots). In component-based

 3

applications, the framework consists of the overall architecture and a set of common
components. The hot spots are represented by points at which custom components
can be plugged into the system.

3. COURSE STRUCTURE

The course is about component methods and technologies. To be successful,
students must learn how to subdivide large systems into reusable and replaceable
components. The course is divided into three parts: component concepts and
requirements definition, specification, and component implementation.

3.1 Component Concepts and Requirements Definition Phase
The component concepts and requirements definition part of the course takes

about four weeks in a typical three-credit semester course. Its objective is to introduce
students to the basic component concepts and the methods and artifacts of the
requirements definition phase. Requirements definition involves analysis of the
problem domain and capture of user requirements for a new system.

First, the course introduces the basic component concepts. Readings for
students include selected chapters from Cheesman [2] and Heineman [5]. This study
examines a layered architecture that is used throughout the remainder of the course
(Figure 1). At the end of this study, the students should be able to answer the
following questions: What is component? Why do we need components? What are the
basic elements of a component model? What are the differences between a component
and an object? What are the characteristics of a component? What are the component
design layers?

After introducing these concepts, the course then examines the two steps of the
requirements definition phase—domain modeling and use case modeling. Domain
modeling seeks to build a conceptua l model of the proposed system’s problem area; it

User Interface
Creates what a user can see and interact with.
Handles presentation logic.

User Dialog
User logic for each session.
Transient state within the session.
Can sometimes be used with multiple user interfaces.

Business Services
Components correspond to stable, shared business types.
Operations can be combined with others in a transaction.
Usually have persistent state (associated databases).

System Services
Operations are new transactions.
Can be used with a variety of user dialogs or batch.
Components correspond to business systems.
No dialog or user-related state.

Sy
st

em

 A
pp

lic
at

io
n

Server Part

 Client Part

Figure 1. Architectural Layers

 4

often begins with a grammatical analysis of the system’s description in an effort to
discover the candidate “classes” (the nouns) and their relationships [8]. Next, the
course looks at how to specify the user’s view of the system functionality in terms of
use cases [2]. Many use cases are identified by analyzing the business processes of the
system; others are found by analyzing how the various concepts and relationships in
the domain model are created, deleted, or updated. A success scenario captures the
primary sequence of interactions of some user role for some major event. For this
event, sequences of interactions resulting from errors or user choices are captured in
alternative scenarios. Collectively, the scenarios for an event form a use case. The
example used in this study is a “course registration system” described in the next
section.

Students are given several assignments during the course. The assignments are
all related to a case study of a “library circulation management system” which is
analyzed, designed, and built by student project groups. The assignments are designed
to satis fy the objectives of each part incrementally. Since most students are familiar
with the library circulation process, they should be able to carry out the assignments
without spending excessive time in learning the problem domain.

The first assignment is to develop a domain model and a use case model for the
library system by using the given requirement description. The course briefly
examines UML as a notation for expressing the domain and use case models. A UML
tool such as Rational Rose is used to complete the assignments.

3.2 Specification Phase

In the second four weeks of the semester, the course examines the specification
phase. The objective of this part of the course is for students to learn to divide a
system into components and to generate a component architecture and a set of
component specifications. The textbook used here is Cheesman [2]. After completion
of this study, the students should be able to apply the specification methods to the
library system assignments.

The component specifications provide an external view of a component’s
functionality. There are three stages of the specification phase—component
identification, component interaction, and component specification.

The goal of the component identification stage is to create an initial set of
interfaces and component specifications hooked together into a first-cut component
architecture [2]. The component identification stage takes the domain model and the
use case model as inputs. For each use case, an initial system interface is defined. The
operations on the interface are the major steps in the use case. From the domain model,
the course shows how to transform the conceptual domain model into a business type
model that gives design information. A key step in this process is the identification of
the core business types; these are the concepts that emerge as being independent
business-related entities as we analyze the type model. For each core type, the
specification method defines a business interface to manage the core type and its
related subordinate concepts. The initial component architecture thus consists of the
system interfaces and business interfaces and their relationships.

After the study of component identification, the students are given the
assignment to build the business type model and the initial component architecture of

 5

the library system based on the domain model and use case model constructed
previously.

The next stage is the component interaction stage, which is to determine how
the components work together to deliver the required functionality [2]. The approach
is to decide how to implement the operations on the system interfaces by sequences of
interactions with the various business interfaces. This helps the designer discover what
operations are needed on the business interfaces defined in the business type model.

The final stage is component specification. In this stage, the detailed
specification of the operations and constraints takes place [2]. It specifies the
interactions between the component object performing the operation and other
component objects that are required to complete the operation. It is also necessary to
specify the constraints that need to apply to the operations. An interface information
model is introduced to enable the definition of these interactions and constraints. The
general approach taken is design by contract [2, 7]. In this approach preconditions and
postconditions are defined to give the meaning of the various operations on an
interface in terms of the information model. Invariants can also be defined to give the
constraints on the integrity of the interface information model. The course briefly
introduces the OCL as a notation for expressing those constraints [10].

The component specification stage completes the specification of the system.
The component architecture consists of a set of system and business interface
specifications and how these interfaces interact with each other.

While introducing these three stages, the instructor uses a “course registration
system” as a case study to analyze how to build a business concept model, select core
types to build business type model, and define the system interfaces and interface
information model for the each system interface. Typically all system interfaces will
be collected into one system-level component and each business interface will define a
separate component ; however, business interfaces may need to be combined onto one
component or refactored into several components to achieve an appropriately sized
component to meet the pragmatic requirements of the system.

At the end of this part of the course, the instructor gives the students the third
assignment, which is to complete the operations of the business interfaces and refine
the component architecture of the library system.

3.3 Component Implementation

In the previous two parts of the course, students learned how to design a
component in theory. In this part, students are required to implement the components
they designed by using a particular technology. There are several component
technologies, the primary ones being Microsoft’s COM+, the CORBA Component
Model, and Sun’s Enterprise JavaBeans (EJB) [2].

For this course, the instructor uses EJB as the implementation technology.
The students are required to master the fundamentals of the EJB technology
sufficiently to map the component architecture designed previously to EJB. The
textbook used in this part is Deitel [3].

 6

Enterprise JavaBeans is a software component model for developing and
deploying enterprise-wide business applications. Enterprise beans are deployed and
executed in an EJB container, which exists on an EJB application server. The beans
are reusable and shareable components on a server that can be remotely accessed by a
client program. EJB is thus suitable for building distributed, reusable systems [1].

The course introduces the three types of enterprise beans: session beans, entity
beans, and message-driven beans. Students are required to know the basic structure of
each bean and in which circumstances each bean type can be used.

EJBs are a part of Sun’s Java 2 Enterprise Edition (J2EE) platform, which is
designed to provide a multilayer distributed application model [6]. The architecture of
J2EE is shown in Figure 2 (which is adapted from Kassem [6]).

The course uses the course registration system case study. This case study

uses HTML in a browser, JavaServer Pages (JSP) and JavaBeans in a Web container,
and Enterprise JavaBeans in an EJB container. The case study uses the Java DataBase
Connectivity (JDBC) library to access a relational database. Cloudscape is used as the
database system.

The important issue in the implementation part is how to map the application
architecture layers to EJB. There are several possible mappings. The instructor chose
a hierarchical mapping approach as shown in Figure 3. Entity beans operate as
business objects and represent data in the database. In the example, entity beans are
used to encapsulate database tables. Session bean are used to perform the various
processes of the business. Statele ss session beans, which provide business methods but
do not maintain conversational states, are used to implement the managers for the
business components and system components. Stateful session beans, which involve
many interactions with clients, can be used to implement the user dialog software level,
in which conversational state would be stored. Alternatively, the user dialog could be
implemented with Web container code such as JSP scripts or servlets.

Students are not only required to know how to map the architecture to EJB and
to code EJB programs but also need to be familiar with the deployment process in the
EJB development environment. The course exercises use the J2EE deploytool and the
Cloudscape database.

Browser

Web Container EJB Container

EIS
Resources

JSP Pages
Servlets
XML
JavaMail

Enterprise Beans
JMS
JTA
JDBC (or connectors)

HTML
HTTP
XML

Figure 2. J2EE Architecture

 7

As a fourth assignment, the student project groups are given three weeks to
implement the library system by mapping their earlier designs to EJB.

4. CASE STUDY

A course registration system for a college is used as a case study throughout
the course. With this system, a student may register for classes. Once given access,
the student may select a term and then build a personal class schedule from among the
classes offered that term. A student may add and delete classes from the schedule. The
system passes the information about the student's schedule to the tuition billing system.
An instructor may use the registration system to print a listing of the students in his or
her class. The administrator may maintain student and instructor lists and course
information.

After analyzing the requirements, the domain model and the use case model

are built. Following the specification workflow, business type model is created during
the component identification stage. The business type model for the course registration
system is shown in Figure 4. From the business type model, by interaction modeling
and component specification, the final component architecture can be specified as
shown in Figure 5.

Dialog Software

System Components

Business Components

<<Session EJB>>
MakeSchedule

<<Session EJB>>
Course Reg System

<<Session EJB>>
PersonMgr

<<Entity EJB>>
Person

<<Entity EJB>>
Student

<<database>>
Person

…

Figure 3. Architecture Mapping to EJB

 8

Student
name : String
id : String
dept : String
email : String
major[4] : String

<<type>> Instructor

name : String
id : String
dept : String
email : String

<<type>>

Student Schedule
schuduleRef : String

<<type>> Instructor Schedule

instruScheduleRef : String

<<type>>

Section
sectionNo: int
courseID : int
termNo : int
classroom : String
year : int

<<type>>

*

*

1

*

*

1

*

*

*

*

*

1

*

1
0..1

1 0..1

*

*

1

Person
name : String
id : String
dept : String
username : String
password : String
role[3] : String

<<core>> IPersonMgt
<<interface>>

Term
termNo: int
term:String

<<core>>
ITermMgt

<<interface>>

Course
courseNo : String
courseName : String
courseID : int

<<core>>

ICourseMgt
<<interface>>

IBilling

IBilling

IPersonMgt

ITermMgt

ICourseMg
t

IMakeASchedul

IUpdateSchedule

IGetInstructorInfo

IAdministrator

ILogin

<<comp spec>>

Registration System

 <<comp spec>>
 Billing System

Figure 5. Component Architecture for Course Registration System

Figure 4. Business Type Model for Course Registration System

 9

5. EXPERIENCES AND CONCLUSION
This course was offered by the first author for the first time in the Fall 2002

semester to a group of 25 graduate students at the University of Mississippi. At the
end of the semester, the instructor gave the students an anonymous survey. Of the 24
students responding, 9 reported being “very satisfied” with the overall course, 4
“somewhat satisfied”, and 10 “satisfied”. In terms of relevance to their future careers,
7 considered the course “very relevant”, 8 “somewhat relevant”, and 8 “relevant”. On
their knowledge of component design methods, 12 considered their knowledge
“excellent” and 11 “good”. On their knowledge of the EJB technologies, 9 considered
their knowledge as “excellent”, 11 “good”, and 3 “marginal". The students also gave
suggestions and comments about the course. Most of the student feedback focused on
the difficulty of learning the necessary EJB programming and use of the deploytool in
the short time at the end of the semester.

The instructor noted that several of the groups abandoned their designs in a
crash effort to get something working. Part of this was a result of problems learning
the technology while trying to use it to build a small system in the last few stressful
weeks of a semester. However, part of the difficulty was a result of designs that were
unrealistic with respect to the actual implementation technology.

Based on the student suggestions and the experiences from teaching, the
instructor is considering the movement of the introduction of the basic EJB technology
to the first part of the course. It is also likely that one to two small EJB assignments
will be given to help the students learn to use EJBs. Students will then be familiar
with the technology before beginning the final project and their designs will be better
informed by a practical understanding of the implementation technology. A possible
negative consequence of this is that the students will design to the EJB functionality
rather than to the more general concept of component used in most of the course and
that the general design methods will be pushed too late in the semester.

Because of lack of classroom time, the instructor gave little attention to several
topics originally intended to be included. The design by contract methods and OCL
were only discussed superficially. There was no direct discussion of product line
(framework) methods. There was also no discussion of the Web container
technologies such as JSP. The instructor hopes to reorganize the content to give more
attention to framework design and design by contract methods. The plan to include
the JSP technologies was unrealistic and will not likely be pursued in a future offering
of the course.

In summary, this course was designed to enable advanced undergraduate and
graduate students to grasp the concepts of components and the design and
implementation of component software. This objective was reasonably well
accomplished at the end of the semester. The course brought students a new
perspective on software engineering.

ACKNOWLEDGEMENTS
 The development of this course is supported, in part, by a grant from Acxiom
Corporation titled “The Acxiom Laboratory for Software Architecture and Component
Engineering (ALSACE).” It is also supported by the Department of Computer and
Information Science and the School of Engineering at the University of Mississippi.

 10

REFERENCES
[1] D. Blevins. “Overview of the Enterprise JavaBeans Component Model,” in G. T.

Heineman and W. T. Councill (editors), Component-Based Software
Engineering: Putting the Pieces Together, Addison Wesley, 2001.

[2] J. Cheesman and J. Daniels. UML Components: A Simple Process for Specifying
Component-Based Software, Addison Wesley, 2001.

[3] H. M. Deitel, P. J. Deitel, and S. E. Santry. Advanced Java 2 Platform: How to
Program, Prentice-Hall, 2002.

[4] M. Fowler and K. Scott. UML Distilled, Second Edition, Addison Wesley, 1999.
[5] G. T. Heineman and W. T. Councill (editors). Component-Based Software

Engineering: Putting the Pieces Together, Addison Wesley, 2001.
[6] N. Kassem and the Enterprise Team. Designing Enterprise Applications with the

Java 2 Platform, Enterprise Edition, Addison Wesley, 2001.
[7] Y. Liu and H. C. Cunningham. “Software Component Specification Using

Design by Contract,” Proceeding of the SouthEast Software Engineering
Conference, Tennessee Valley Chapter, National Defense Industry
Association, April 2002.

[8] D. Rosenberg and K. Scott. Use Case Driven Object Modeling with UML: A
Practical Approach, Addison Wesley, 1999.

[9] C. Szyperski. Component Software: Beyond Object-Oriented Programming,
Addison Wesley, 1998.

[10] J.Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling
with UML, Addison Wesley, 1999.

BIOGRAPHIES
 H. Conrad Cunningham is Chair and Associate Professor of Computer and
Information Science at the University of Mississippi. His professional interests
include concurrent and distributed computing, programming methodology, and
software architecture. He has a BS degree in mathematics from Arkansas State
University and MS and DSc degrees in computer science from Washington
University in St. Louis.

 Yi Liu is a PhD student at the University of Mississippi with an interest in
software engineering and artificial intelligence. She has a Master’s degree in
computer science from Nanjing University in China.

 Pallavi Tadepalli is a PhD student at the University of Mississippi with an
interest in software engineering. She has a BE degree from the Government College
of Engineering in India and is a candidate for the MS degree in computer science from
the University of Mississippi.

 Mingxian Fu is a part-time Research Associate at the University of Mississippi
with an interest in software and Web-based development. She has a BS degree in
mathematics from Yunnan University in China and a recent MS degree in computer
science from the University of Mississippi.

