
Java Components in BoxScript

Yi Liu and H. Conrad Cunningham

Department of Computer and Information Science, University of Mississippi, University, MS, 38677

{liuyi, cunningham}@cs.olemiss.edu

Abstract
Component-oriented software development has become an
important approach to building complex software systems.
This paper describes the component-oriented language
BoxScript whose design seeks to support the concepts of
components in a clean, simple, Java-based language. This
paper presents the key concepts and syntax of BoxScript
and how it supports compositionality and flexibility and
gives an example to illustrate its usage.

1. Introduction
Component-oriented programming is a programming

paradigm in which a software system can be built quickly
and reliably by assembling a group of separately developed
software components to form the system. The two most
important properties of component-oriented programming
are flexibility and compositionality. Flexibility allows
programmers to adapt a component-oriented system to
changing requirements by replacing, adding, or removing a
few components. A component-oriented application is built
by assembling components. This requires the selection of
suitable components and effective strategies for assembly.
The components should be compositional. That is, when
components are selected and assembled into a system, the
behavior of the system should be predictable based on the
behavioral specifications of the components. Strong
encapsulation of the internal details of components is
needed to provide the desired flexibility and
compositionality.

A component can be represented as shown in the diagram
in Figure 1. A component’s internal design and
implementation are strongly encapsulated and it exclusively
communicates with other components through its interfaces.
A required interface of a component can connect to a
provided interface of another component when the two
interfaces match each other. That leads to inter-component
dependencies being restricted to individual interfaces rather
than encompassing the whole component specification.

Component-oriented software development has become
an important approach to building complex software
systems. Object-oriented programming (OOP) languages
have been the predominant approach to the design of
component-oriented programming applications. However,
practice shows that OOP technology does not fully provide
the above properties and leaves unsatisfied some of the
needs for development of complex component-oriented
applications [14]. The main difficulties lie in the
implementation inheritance feature and composition
strategy of OOP languages. Implementation inheritance is
whitebox reuse [5]. A derived class is very tightly coupled
to its base classes and thus breaks the base class
encapsulation. This may also bring safety problems, e.g.,
the fragile base class problem [9]. In component-oriented
applications, if implementation inheritance is applied across
different components, then the strong encapsulation among
components is broken and any changes made to the base
class may cause unpredictable effects. The resulting
component is not compositional. The composition strategy
in OOP is awkward and inefficient because programmers
may need to build extra classes to accomplish composition.

There is a need for programming languages that can
provide safer composition strategies and cleaner component
concepts. This research is to design a component-oriented
programming language that should be easy for novices to
learn and should provide convenient syntactic support for
component concepts.

The initial motivation for this work arose from the
authors’ experience in a college class on component
programming [2]. For design, the class used methods
similar to the “UML Components” approach [1]. For the
programming projects, the class used the Enterprise
JavaBeans (EJB) component technology [13]. Although
EJB is a reasonable solution for commercial client/server
systems, the complexity of the EJB technology and its lack
of simple composition strategies means it is not ideal for
use in an academic course. The technology got in the way
of teaching the students how to “think in components”
cleanly. As a result of the experience in the class, the first
author undertook the design of a simple, component-
oriented language with features that support its use in
teaching. The language is named BoxScript. The prototype
of BoxScript is intended primarily for educational and
research purposes. However, a full implementation of these
ideas should also be useful for building real applications.

Component 1 Component 2

interface

inner
component

provided required provided

Figure 1. Components and Their Interconnections

This paper is organized as follows. Section 2 presents the
key concepts and syntax of BoxScript. Section 3 describes
the processing stages for building a box. Section 4 gives an
example to demonstrate the usage of BoxScript. Section 5
compares BoxScript with several existing component-
oriented programming languages and discusses its
properties. Section 6 suggests the possible future work and
Section 7 concludes the paper.

2. BoxScript
BoxScript is a Java-based, component-oriented program-

ming language whose design seeks to address component
concepts in a clean, simple language. The concept of
component is based on Figure 1 and the assumed method
for component specification is similar to the “UML
Components” approach [1].

2.1 Key Concepts
A component is called a box in BoxScript. A box is a

blackbox entity; that is, it strongly encapsulates its internal
details while only exposing its interfaces. The user of a box
does not need to know its implementation details. A box, no
matter how small or large, has the functionality needed to
satisfy some requirements and can be used either
individually or as a part of a larger box. A box can be either
small enough so that it contains no other boxes or
composed from several smaller constituent boxes. Every
box has the ability to be composed with other boxes to form
a larger box.

The necessary units of code for building a box are a box
description, interfaces and their implementations,
configuration information, and box manager code. A box
description (a file with an extension of .box) gives
declarations for the features of the box. The configuration
information file gives the additional information that is not
included in the box description. The box manager code is a
Java class with the same name as the box that is generated
by the BoxScript compiler. The box manager code is for
concrete boxes only.

2.1.1 Interfaces
There are two types of interfaces in BoxScript. One is a

provided interface, which describes the operations that a
box implements and that other boxes may use. The other is
a required interface, which describes the operations that the
box requires and that must be implemented by another box.
A box has one or more provided interfaces and zero or
more required interfaces.

public interface DayCal
{
 public void setDay(int y, int m, int d);
 public int getWeekday();
 // 0 for Sunday, 1 for Monday and so on
}

Figure 2. Interface Daycal

In BoxScript, we use interface type to refer to a general
interface with method declarations, in particular, a Java
interface. Figure 2 shows an interface named DayCal. The
term interface handle refers to the interface as a way of
describing a specific feature of a box. An interface handle
has an interface type. Interface handles are specified in the
box description for the corresponding box. The provided
interfaces in a box are specified using the keyword
provided interface followed by interface type and
interface handle pairs. Similarly, required interfaces are
specified using the keyword required interface
followed by interface type and handle pairs.

2.1.2 Abstract box
An abstract box is a box that only contains the

descriptions of provided interfaces and required interfaces.
It does not include the implementations of the provided
interfaces. An abstract box should be implemented by
concrete boxes, i.e., atomic boxes or compound boxes.

All kinds of boxes, both abstract and concrete, must have
box descriptions. In BoxScript, an abstract box should have
a box description that declares the box as abstract,
gives the box name, and specifies its provided interface and
required interface descriptions. Figure 3 shows an abstract
box named DateAbs, which has one provided interface
DayCal. Declaration of interface DayCal is given in
Figure 2. Dc is the interface handle that is used in box
DateAbs for type DayCal.

abstract box DateAbs
{ provided interface DayCal Dc;
 //Dc is handle of interface DayCal
}

Figure 3. DateAbs.box

2.1.3 Atomic box
An atomic box is a basic element in BoxScript. An

atomic box does not contain other boxes. It must provide
implementations for its provided interfaces. For an atomic
box, the box description gives the box name and, if
appropriate, the name of the abstract box it implements. If it
implements an abstract box, it is said to be a variant of the
abstract box. Also, the atomic box describes its provided
and required (if there are any) interface types with the
interface handles corresponding to these types. Figure 4
shows the box description for atomic box Date that
implements the abstract box DateAbs.

box Date implements DateAbs
{ provided interface DayCal Dc; }

Figure 4. Date.box

An atomic box must provide the implementations of its
provided interfaces. By default, an implementation of a
provided interface is a Java class file that implements the
interface type and whose filename is formed by suffixing
Imp to the interface handle name. However, the

implementation of the interface type could be a Java class
with a file name other than what is described above. If an
implementation does not use a default file name, the
implementation file name needs to be specified in the
configuration information as a pair consisting of the
interface handle and the Java class file name that
implements the interface type of the handle. For example,
Figure 5 gives an implementation for the provided interface
DayCal of box Date shown in Figure 4. This
implementation takes a default name combined interface
handle Dc with suffix Imp.

import java.util.*;
import java.io.*;
public class DcImp implements DayCal
{
 public DcImp(BoxTop myBox)
 { _box = myBox; }
 public int getWeekday(int y,int m,int d)
 throws IllegalArgumentException
 { year = y; month = m; day = d;
 if (!isValid())
 throw new
 IllegalArgumentException();
 return (toJulian() + 1) % 7;
 }
 private boolean isValid() {…}
 private int toJulian() {…}
 private BoxTop _box;
 private int year, month, day;
}

Figure 5. DcImp.java

An atomic box has a box manager that is generated by the
BoxCompiler. The box manager code includes a
constructor for the atomic box object and code that
instantiates the interface handle objects.

2.1.4 Compound box
A compound box is composed from atomic boxes or

other compound boxes. A compound box does not need to
develop implementations for its provided interfaces because
they exist in the boxes from which it is composed. The box
description for a compound box not only supplies the
information given in the atomic box, but also specifies three
additional pieces of information: the box names from which
this compound box is composed, the interface sources from
which the provided and required interfaces of this
compound box come, and the connection information that
describes how the boxes connect interfaces together to
compose this compound box. Detailed information on the
strategy for composition and the description of the
compound box are presented in Section 2.2.

In addition to a box descriptor and any necessary
configuration information file, a compound box has a box
manager that is generated during compilation. It has a
constructor for the compound box object and code that
instantiates the boxes that comprise it. It passes the

interface handle references from the constituent boxes to
the compound box.

2.1.5 Application
An application, or say, a system, is an executable box

that meets some particular requirements to fit a problem
domain. An application should expose no required
interfaces.

2.2 Composition in BoxScript
The composition process in BoxScript is illustrated in

Figure 6. Suppose we wish to compose Box1 and Box2
into a compound box Box1_2. (In the following, Box1
really means an instance of Box1 and Box2 means an
instance of Box2.) A provided interface of a box might
connect to a matching required interface of the other box,
such as P11 of Box1 connects to R21 of Box2 and P21 of
Box1 connects to R13 of Box2. In such a way, the boxes
are “wired” together. The required interfaces of both Box1
and Box2 would be required interfaces of Box1_2 except
for those satisfied by the other box. Similarly, the provided
interfaces of both Box1 and Box2 would be the candidate
provided interfaces of Box1_2. In Figure 6.b, required
interfaces R11 and R12 from Box1 and R22 from Box2 are
exposed to be required interfaces of Box1_2; provided
interfaces P11 from Box1 and P22 from Box2 are exposed
to be provided interfaces of Box1_2. Box1_2 does not
need to implement its provided interfaces since the
implementations are available from Box1 and Box2.

When components are composed, the composition must

follow the rules below:
i. All their provided interfaces are hidden unless explicitly

exposed by the compound box.
ii. A component box must expose every required interface

that is not wired to a provided interface of another box.

Box1 Box2

Required
Interfaces

Provided
Interfaces

Provided
Interfaces

Required
interfaces

 R11 R12 R13 R21 R22

P11

P12

P21

P22

Figure 6.a Box1 and Box2

Box1_2

Box1 Box2

Required
Interfaces

P11 P21

P12 P22

R11 R12 R22

Provided
interfaces

R13
R21

Figure 6.b Composition of Box1 and Box2

The compound box is the only type of box that needs
composition. Composition is specified in the box
description for the compound. Each constituent box of the
compound box has a box handle, which is a way of
describing the constituent box as a specific feature of
composition. As discussed in section 2.1.4, a compound
box should specify three additional pieces of information
about the participants in the composition: names for the
constituent boxes, sources of its provided interfaces and
required interfaces, and connection information.

Consider the component box BuildCalendar shown in
Figure 7, BuildCalendar is composed from boxes Date
and Calendar, which extend abstract boxes DateAbs and
CalendarAbs, respectively. In this example, we use
abstract boxes DateAbs and CalendarAbs instead of
concrete boxes Date and Calendar in describing the
composition that forms BuildCalendar. A concrete
compound box gives the box names from which it is
composed in the declaration portion composed from. We
assign a box handle for each box, and the box handles help
describe other composition information. In
BuildCalendar, boxD and boxC are the box handles
for abstract boxes DateAbs and CalendarAbs,
respectively. Figure 7.a shows the box description for
abstract box BuildCalendarAbs. Figure 7.b shows the
box description for concrete compound box
BuildCalendar that implements BuildCalendarAbs.

abstract box BuildCalendarAbs
{ provided interface Display D;}

Figure 7.a BuildCalendarAbs.box

box BuildCalendar
 implements BuildCalendarAbs
{

composed from DateAbs boxD,
CalendarAbs boxC;

 // boxD is box handle for DateAbs,
 //boxC is box handle for CalendarAbs
provided interface Display D

from boxC.Dis;
connect boxC.DayC to boxD.Dc;

}

Figure 7.b BuildCalendar.box
Each interface of the concrete compound box is from one

of the boxes that compose it. In provided interface
and required interface declarations, after each
interface type and interface handle is given, the source of
the interface handle should be given as the description of
the abstract box name and the interface handle in that
abstract box. In BuildCalendar, interface handle D of
interface Display is from interface handle Dis in box
CalendarAbs (its handle is boxC).

The connect statement gives information on how the
boxes are wired. The syntax is to connect a required
interface handle of a box to a provided interface handle of
another box. In buildCalendar, the required interface

handle DayC of box handle boxC (i.e., boxC.DayC) is
connected to the provided interface handle Dc of box
handle boxD (i.e. boxD.Dc). The composition process is
illustrated in Figure 8. The full example is described in
Section 3.

A box is strongly encapsulated with only its interfaces
exposed. The behavior of a box remains unchanged unless
the state of the box is changed. The state of a box can only
be changed when an action on a provided interface method
is performed. The match of a provided interface to a
required interface guarantees that the results of calls to the
methods of a required interface are expected by the box
with no side effects. That means, the behavior changes of a
box are predictable.

2.3 Flexibility in BoxScript

BoxScript introduces the concept of variant to support
flexibility, especially to enable substitution of one
alternative implementation for another. An atomic or
compound box can be either an implementation of an
abstract box or a standalone box that has no related abstract
box. For the former case, all the implementations of an
abstract box are considered to be variants of the box; one
variant of a box can be substituted for another. For the latter
case, the atomic or compound box is considered to have no
variant; if the box is replaced by a newer version, the new
version must continue to use the same name. An abstract
box can extend another abstract box and the former one is
considered to be a variant of the latter one.

When one box is replaced by another box, the new one
should conform syntactically to the original one.

DayCal

 DateAbs CalendarAbs
provided
interfaces

required
interfaces

DayCal Display
Dc Dis

DayC

Figure 8.a DateAbs and CalendarAbs

provided
interfaces

BuildCalendar

DateAbs CalendarAbs

provided
interfaces

required
interfaces

DayCal Diaplay

DayCal

Dc Dis

DayC

Figure 8.b Composition

provided
interfaces

Display
D

provided
interfaces

boxD boxC

• Box B conforms to box A if and only if
(∀p: p ∈ provided interfaces(A):
 (∃q : q∈ provided interfaces (B) : q extends p)) and
(∀r: r ∈ required interfaces(B):
 (∃s : s∈ required interfaces (A) : s extends r)).

• Box interface x extends box interface y if and only if
 interface handle (x) = interface handle(y) and
 type (x) extends type(y) in Java.
That is, the provided interfaces of B should provide at least
the operations of A, and the required interfaces of B should
be at most as much as that of A. For example, BoxA has
provided interfaces Pa, Pb and Pc and required interfaces
Ra and Rb; BoxB has provided interfaces Pa, Pb, Pc and
Pd and required interface Ra. We say the BoxB conforms
to BoxA. In addition to conforming syntactically, the boxes
must conform semantically, which is discussed in [3].

To support flexibility, in the composition of a compound
box, the constituent boxes that are composed to form it are
shown as abstract box names in the box description. The
abstract box name allows the ability to plug in different
variants of the constituent boxes. Consider the example in
Figures 3, 4 and 7. When the compound box
BuildCalendar is executed, the concrete boxes Date
and Calendar that implement the abstract boxes
(DateAbs and CalendarAbs) should be accessed. So, we
introduce a configuration file to indicate which concrete
box is used for each abstract box in the compound box
specification. In the configuration file, there is a pair for
matching each box handle with the concrete box that is
used. In this example, boxD (the box handle of DateAbs)
and Date would be a pair, the former is the box handle that
denotes the abstract box and the latter is the concrete box
that the compound box accesses when executing. When a
new version of Date, say DateNew, is substituted for
Date, no box source files other than the configuration file
needs to be changed: pair boxD and Date should be
changed into pair boxD and DateNew.

3. Box Processing Stages
There are five stages for building a box: editing, locating,

compiling, shipping and executing.
After being edited, a box should be placed into a

directory structure called a warehouse as shown in Figure
9. This is the locating stage. The warehouse directory has
subdirectories boxes, interfaces and datatypes. The
directory boxes is a multi-layer structure. The top layer
holds the abstract box packages and box packages that do
not extend any abstract boxes. Each box has a directory
whose name is the same as its box name. An abstract box’s
directory stores its box description. A variant of an abstract
box is in a subdirectory of the abstract box directory. The
directory of an atomic box stores its box description, the
implementation of the provided interfaces and the
configuration file if it has one. The directory of a compound

box stores the box description and configuration file. The
directory interfaces holds the interface types and
directory datatypes holds the utility data types that are
used in the boxes. Data types refer to the types that are not
standard Java data types but which are defined by the users
for certain purposes. In particular, these may be user-
defined types for parameters passed to or values returned
from operations on an interface.

The stage after locating is compiling. Every box must be
processed by the BoxScript compiler, called BoxCompiler.
Figure 10 shows the relationship between the BoxCompiler
and the Java compiler. BoxCompiler takes the box
description and other necessary files as input, checks the
syntax and interface conformity, and generates the box
manager code for the concrete boxes.

When a BoxScript application is ready to be executed, it

needs to be copied into a directory that the user chooses.
We call this process shipping. The tool for shipping is
called BoxShipper. On shipping, BoxShipper detects
changes in the box’s directory. If any changes are detected,
the box is re-compiled. BoxShipper bundles the necessary
files for the application into a Java archive (jar) file and
stores it into the appointed directory. The separation of the
storage and the execution locations of an application
ensures that the modification of the source code does not
effect the execution of a previously compiled version.

After the application is shipped into the appointed
directory, the boxes of that application reach their last
processing stage – executing. The application cannot be
modified while it is running. If any changes occur, such as
the substitution of a new version of a box for the old one,
the application should be ceased first and then replaced by
the new version.

4. Example
This section uses a simple example of displaying a

calendar to illustrate the use of BoxScript. To display a
calendar for a certain month or months in a given range, we
need to do two things: calculate the day of the week for
each day in a month and display each month in a group of
days with the weekdays illustrated. We can decompose the
system into two boxes, one for calculating the day of the
week for a given date, the other for displaying the calendar
for a given interval. We design these as atomic boxes. To

warehouse_root

interfaces boxes

Figure 9. Directory Structure
 datatypes

Box
code

BoxCompiler Java
code

Java
Compiler

Figure 10. BoxCompiler and Java Compiler

allow variants of boxes, we assign each an abstract box,
calling the first DateAbs and the second CalendarAbs.

Box DateAbs (shown in Figure 3) has one provided
interface DayCal (shown in Figure 2). DayCal has two
methods: setDay() for setting a particular date and
getWeekday()for getting the weekday for the day that
was set by the setDay() method. The concrete box that
implements DateAbs is called Date and is shown in
Figure 4. Since Date is an atomic box, it needs to provide
the implementation of its provided interfaces. The
implementation (shown in Figure 5) uses a default file name
DcImp, which is combined with Dc, the interface handle of
DayCal in Date and a suffix Imp.

Box CalendarAbs, which is shown in Figure 12, has
one provided interface Display and one required interface
DayCal. The interface Display is shown in Figure 11.
Display takes the time range from the user and displays
the calendar. Display uses DayCal to calculate the day of
week for each date. The atomic box that implements
CalendarAbs is called Calendar, which is illustrated in
Figure 13. Figure 14 gives the implementation of the
provided interface Display, supplied by box Calendar.
The implementation is named DisImp, which is a default
name that combines Dis, the interface handle of Display
in Calendar, and suffix Imp. In DisImp, class
InterfaceName that is used by method generateSeq is
a public class provided by BoxScript. Method
getRequiredItf enables a program to get the interface
reference by its interface handle name.

public interface Display
{ //display a single month calendar
 //according to input year and month
 public void displayCalendar(int year,

 int month);
 //display months of a calendar
 // according to input years and months
 public void displayCalendar(int year1,
 int month1, int year2, int month2);
}

Figure 11. Display.java
abstract box CalendarAbs
{ provided interface Display Dis;
 required interface DayCal DayC;
}

Figure 12. CalendarAbs.box
box Calendar implements CalendarAbs
{ provided interface Display Dis;
 required interface DayCal DayC;
}

Figure 13. Calendar.box

The calendar system BuildCalendar is composed
from DateAbs and CalendarAbs. The composition is
illustrated in Figure 8. The box description of
BuildCalendar and its abstract box
BuildCalendarAbs are shown in Figure 7.

5. Discussion
The concepts of component-oriented programming are

not simple. Most of the commercial languages for building
component software introduce complicated environments,
which make the component-oriented programming even
more complicated. C# [4] is probably the first commercial
component-oriented programming language. Component
Pascal [11] is a dialect of Oberon 2. It combines object
orientation with modules in a language whose syntax is
similar to Pascal. However, the component concepts in both
C# and Component Pascal are different from the one shown
in Figure 1, which we assume here. Jiazzi [8] and
ComponentJ [12] are two extensions to Java that are built
upon the component model shown in Figure 1. However,
Jiazzi’s scripting language provides explicit names for the
composite components in a connection; there is thus no
support for flexibility [7]. ComponentJ gives provided and
required interface specifications and gives the method
implementations of the provided interfaces in the
component definition. However, the method
implementations make the component definition crowded;
moreover, the user of the component does not necessarily
know the detailed implementations of the provided
interface.

BoxScript is built upon a clear concept of component and
provides a simple language syntax. It supports the
requirements for flexibility and compositionality of
component-oriented programming. Boxes in BoxScript,
being separated by boundaries, are strongly encapsulated.
The possible changeable aspects (secrets) of a component
should be designed to be inside a box. Implementation
inheritance is not allowed across box boundaries. Under
such a design, when a change occurs, only the boxes that
hold the affected secrets would need to be changed. Any
box that is modified should keep its interface unchanged.
Also, boxes that allow variants are described by abstract
boxes. The configuration files give matching pairs of
abstract boxes and concrete boxes that are really being
used. When a new version of a box comes, only the
configuration file needs to be modified by replacing the old
box package by this new package. The implementation code
for the box should not need to change. Thus, no changes
should be needed in the other boxes in that application. In
BoxScript, three kinds of information participate in
composition: interfaces, box descriptions of the boxes to be
composed, and configuration file. No additional work is
needed to compose boxes. Meanwhile, the rules guarantee
the composition to be safe.

The three main programming units of BoxScript are box
descriptions, interfaces and implementations of the
interfaces. BoxScript separates an interface from its
implementations. Originally designed for an educational
purpose, BoxScript adapts its interfaces and interface
implementations to a Java style that is familiar to students.

public class DisImp implements Display
{ private BoxTop _box;
 DayCal d; //required interface
 public DisImp(BoxTop myBox)
 { _box = myBox;
 InterfaceName name =

new InterfaceName("DayC");
 d =(DayCal)_box.getRequiredItf(name);
 }
 public void displayCalendar(int year, int month)
 { setDate(year,month, 0,0);
 generateSeq(year, month);
 display(year,month);
 }
 public void displayCalendar
 (int year1,int month1,int year2,int month2)
 { setDate(year1,month1,year2,month2);
 processCalendar(year1,month1,year2,month2);
 }
 private void generateSeq(int y, int m)
 { int i = 0, weekday;
 int totaldays = getDays(y,m);
 ClearDateArr();
 weekday = d.getWeekday(y,m,1);
 dateArr[i][weekday] = 1;
 for(int t = 2; t <= getDays(y,m); t++)
 { dateArr[i][weekday] = t;

 if (weekday == 6)
 { i++; weekday = 0;}
 else

 weekday ++;
 }
 }
 private void display(int y, int m)
 { System.out.println
 ("\n" + y + " " + monthStr(m)+ "\n");
 for (int i = 0; i < WEEKS; i++)
 { if (! ((i == WEEKS-1)
 && dateArr[i][0] == 0))
 System.out.println("Sun" + "\t" +
 "Mon" + "\t" + "Tue" + "\t" +
 "Wed" +"\t" + "Thu" + "\t" +
 "Fri" + "\t" + "Sat");
 for (int j = 0; j < WEEKDAYS; j++)
 if (dateArr[i][j] == 0)
 System.out.print(" \t");
 else
 System.out.print
 (dateArr[i][j] + "\t");
 System.out.println();
 }
 }
 private void processCalendar
 (int y1, int m1, int y2, int m2)
 { int startY = y1, endY = y2;
 int startM = m1, endM = m2;
 int yy, mm;
 if (y2 < y1)
 { startY = y2; endY = y1;
 startM = m2; endM = m1;
 }
 if ((y2 == y1) && (m2 <m1))
 { startM = m2; endM = m1; }
 // print the first year
 if (startY != endY)
 for (mm = startM; mm <= 12; mm++)
 { generateSeq(startY, mm);
 display(startY, mm);
 }
 else
 { for (mm = startM; mm <= endM; mm++)
 { generateSeq(startY, mm);
 display(startY, mm);
 }
 return;
 }

 for (yy = startY+1; yy <= endY - 1; yy++)
 { for (mm = 1; mm <= 12; mm ++)
 { generateSeq(yy, mm);
 display(yy, mm);
 }
 }
 // print the last year
 for (mm = 1; mm <= endM; mm ++)
 { generateSeq(endY, mm);
 display(endY, mm);
 }
 }
 private void setDate
 (int y1, int m1, int y2, int m2)
 throws IllegalArgumentException
 { year1 = y1; month1 = m1;
 year2 = y2; month2 = m2;
 dateArr = new int [WEEKS][WEEKDAYS];
 if (!isValid())
 throw
 new IllegalArgumentException();
 }
 private boolean isValid()
 { boolean mark = false;
 if (year2!=0)
 mark = month2 > 0 && month2 <= 12;
 else
 mark = month2 == 0;
 return year1 > 0 && month1 > 0
 && month1 <= 12 && mark;
 }
 private int getDays(int y, int m)
 { switch (m)
 { case 1: case 3: case 5: case 7:
 case 8: case 10: case 12:
 return 31;
 case 4: case 6: case 9: case 11:
 return 30;
 }
 if ((y % 4) == 0)
 return 29;
 return 28;
 }
 private String monthStr(int m)
 { switch (m)
 { case 1: return "January";
 case 2: return "February";
 case 3: return "March";
 case 4: return "April";
 case 5: return "May";
 case 6: return "June";
 case 7: return "July";
 case 8: return "August";
 case 9: return "September";
 case 10: return "October";
 case 11: return "November";
 case 12: return "December";
 }
 return null;
 }
 private void clearDateArr()
 { for (int i = 0; i < WEEKS; i++)
 for (int j = 0; j < WEEKDAYS; j++)
 dateArr[i][j] = 0;
 }

 private static final int WEEKS = 6;
 private static final int WEEKDAYS = 7;
 private int year1, year2;
 private int month1, month2;
 private int day1, day2;
 private int dateArr [][];
}

Figure 14. DisImp.java

The syntax of box description is simple enough for
novices to master. It avoids the issues that are irrelevant to
the component view and platforms that would make the
language unnecessarily complicated. BoxScript also
delegates some code generation, which is needed for boxes
but probably too complicated for most users to write, to the
BoxCompiler. So, as far as the usage of the language is
concerned, BoxCompiler provides a simple and friendly
environment for building components.

6. Future Work
The prototype of BoxScript is under implementation and

it is scheduled to be evaluated in a graduate course during
the 2005 Spring semester. There are several areas for future
work. First, to keep the language clean in thought and
simple in use, the prototype of BoxScript does not support
distributed components. However, future development will
seek to extend the model to handle distributed computing
issues. Second, future work will seek to integrate BoxScript
with techniques and tools such as those associated with the
Java Modeling Language (JML) [6] to enable use of design-
by-contract techniques.

7. Conclusion
BoxScript is a component-oriented programming

language that is easy for novices to learn and provides
convenient syntactic support for component concepts. It
supports compositionality and flexibility in component-
oriented systems and encourages good practices for
component-oriented development. BoxScript gives a simple
Java-based language syntax and a clean working
environment. BoxScript should be a language that is
suitable for both education of and use by novices for
component-oriented programming. It can help them learn
component concepts and skills thoroughly and apply them
effectively.

Acknowledgments
This work was supported, in part, by a grant from

Acxiom Corporation titled “The Axiom Laboratory for
Software Architecture and Component Engineering
(ALSACE).”

References
[1] J. Cheesman and J. Daniels. UML Components: A

Simple Process for Specifying Component-Based
Software, Addison Wesley, 2001.

[2] H. C. Cunningham, Y. Liu, P. Tadepalli, and M. Fu.
“Component Software: A New Software Engineering
Course,” Journal of Computing Sciences in Colleges,
Vol. 18, No. 6, pp. 10-21, June 2003.

[3] H. C. Cunningham, Y. Liu, and P. Tadepalli. “Toward
Specification and Composition of BoxScript
Components,” In Proceedings of the Workshop on
Specification and Verification of Component-based
Systems (SAVCBS), pp. 114 -117, November 2004.

[4] H. M. Deitel and P. J. Deitel. C#: How to Program,
Prentice Hall, 2003.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995.

[6] G. T. Leavens and Y. Cheon. “Design by Contract with
JML,” draft paper, Iowa State University, August 2004.

[7] C. Lüer. Environments for Deployable Components.
Technical Report #02-15, Dept. of Information and
Computer Science, University of California, Irvine, May
2002.

[8] S. McDirmid, M. Flatt, and W. C. Hsieh. “Jiazzi: New
age Components for Old-fashioned Java,” In Proceedings
of the 16th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp.
211-222, 2001.

[9] L. Mikhajlov and E. Sekerinski. The Fragile Base Class
Problem and Its Solution, Technical Report 117, Turku
Centre for Computer Science, Turku, Finland, June
1997.

[10] H. Mössenböck and N. Wirth. “The Programming
Language Oberon-2,” Structured Programming, Vol.
12, pp. 179–195, 1993.

[11] Oberon Microsystems, Inc. Component Pascal
Language Report, May 1997.

[12] J. C. Seco. “ComponentJ in a NutShell,”
http://ctp.di.fct.unl.pt/~jcs/bibIndex/papers/ComponentJ
.pdf. Last accessed: 24 Jan 2004.

[13] I. Singh, B. Stearns, M. Johnson, and the Enterprise
Team. Designing Enterprise Applications with the
J2EETM Platform, Second Edition. Addison Wesley,
2002.

[14] J. Udell. “Componentware,” BYTE, pp. 46-56, May
1994.

