
Specification and Refinement of a Message Router

H. Conrad Cunningham and Yinxiu Cai
Department of Computer and Information Science

University of Mississippi
University, Mississippi 38677 USA

Abstract

This paper considers a variant of the message
router problem discussed during the Concurrency and
Distribution sessions of IWSSD-6. First, it presents a
high-level specification of the router as a reactive sys-
tem expressed in the UNITY logic. Second, it refines
the interface of the router using a new approach called
the reactive envelope heuristic. Third, it decomposes
the router into a grid of switches. In closing, the paper
analyzes the specification and refinement techniques
used in this study and proposes future research.

1 Introduction

A reactive program is a program that maintains an
on-going interaction with its environment throughout
execution (e.g., an operating system) [8]. Because of
the complexity of the interactions of the concurrent
components of the program and its environment, a re-
active program is notoriously difficult to “get right.”
At first glance a problem may seem easy to compre-
hend, but a closer examination reveals many chal-
lenges. This paper considers one such problem, the
specification and refinement of a message router [6].

First, consider a message router with M sender and
N receiver channels. One sender is connected to each
sender channel and one receiver to each receiver chan-
nel. From time to time a sender may send a message
to one of the receivers via the router—perhaps a dif-
ferent receiver for each message. A sender presents
one message at a time to the router. Likewise, the
router presents one message at a time to a receiver. A
message consists of two fields accessible to the router—
the receiver channel address and the data. The router
must not change the value of the data field but may
modify the address field during routing of the message.

Second, consider the following refinement. A mes-
sage now consists of a finite sequence of tokens. A
sender presents one token at a time to the router.
Likewise, the router presents one token at a time to

a receiver. Tokens are of three types. A header to-
ken marks the beginning of a message and identifies
the intended receiver’s channel address. A data token
carries data associated with the message. A trailer to-
ken marks the end of message. A message begins with
a header token, continues with zero or more data to-
kens, and ends with a trailer token. Neither data nor
trailer tokens carry any information that identifies the
receiver of the message. The router must not change
the value of the data. However, the router may modify
the address field of the header token during routing of
the message. The order of the tokens within a message
must be preserved by the router. Hence, the tokens of
multiple messages cannot be interleaved on the chan-
nels connected to the senders and receivers.

Third, consider the following refinement of the
token-level router. The router consists of an M × N
grid of switches. Each sender sends its messages to
a different row of the grid and each receiver receives
its messages from a different column. The tokens of a
message travel along a row until the destination col-
umn is encountered then travel along the column to-
ward the receiver.

The goal of this case study is to devise a specifica-
tion for the message router as an open system. That
is, it seeks a formulation that states the properties of
the router in terms of its interactions with its environ-
ment. When the correct functioning of the router de-
pends upon certain characteristics of the environment,
the specification must identify these assumptions and
state them precisely. A specification of this nature
should be easy to compose with other specifications.

The router problem poses several challenges that
this case study must address:

• devising a specification that is as “weak” as is
practical (i.e., allowing the designer to choose
among many possible implementation methods),

• stating the complex properties of the reactive sys-
tem in a concise and modular way,

• identifying the subtle assumptions the router
specification makes about its environment,



• refining the atomicity of the router’s interface,

• refining the router internally into the grid-like
composition of switching elements.

Before proceeding with the development of the spec-
ification and its refinements, we take a look at the
specification model and notation.

2 Specification model and logic

This case study adopts Chandy and Misra’s UNITY
model [4] as the notation and logic for specification.
A UNITY program is, in essence, a nondeterministic
program in Dijkstra’s Guarded Commands notation
[7] with the form

initialize variables ;
do g0 → a0 g1 → a1 · · · gn−1 → an−1 od

where

• n is a finite constant,

• ai (for 0 ≤ i < n) denotes an atomic, terminat-
ing, deterministic, multiple-assignment command
that accesses a fixed set of variables,

• the execution is fair in the sense that, if a guard
gi holds at some point in an infinite computation,
then there exists a later point at which either ai
is executed or gi no longer holds.

The union of two UNITY programs consists of a pro-
gram in which the initialization is formed by the union
of the two initializations and the do loop is formed by
the union of the two sets of guarded commands.

UNITY’s operational model represents a program
as the set of all maximal execution sequences of the
corresponding do program. A maximal execution se-
quence records the sequence of states corresponding
to a possible execution of the program. The transi-
tion from one state to the next corresponds to the
execution of an atomic action. These execution se-
quences are either infinite or end in a state in which
all guards of the do program are false. This opera-
tional model allows program properties to be stated
in terms of temporal logic [8].

This case study uses UNITY’s simple subset of tem-
poral logic [4] to specify the properties that a pro-
gram must be constructed to satisfy. For the purposes
here, we consider the logical relations initially, sta-
ble, invariant (abbreviated as inv), and 7−→ (read
“leads-to”). Informally, for arbitrary predicates p and
q on program states:

• initially p means that p must hold for the initial
state of every execution sequence. (The predicate
p must hold between the initialization and the
beginning of the do loop.)

• stable p means that, for any execution sequence,
if p holds for some state, then p must continue to
hold for all succeeding states of the sequence. (A
stable predicate is preserved by the actions in the
body of the do loop.)

• invariant p means that p must hold for all states
of all execution sequences. That is, both initially
p and stable p hold. (UNITY invariants are loop
invariants of the do loop.)

• p 7−→ q means that, if p holds for any state of
any execution sequence, q must also hold within
a finite number of steps in the execution sequence.

The annotation prop in P denotes that prop is a prop-
erty of program P considered in isolation and P Q
denotes the union of programs P and Q. A UNITY
conditional property specified a property of a reactive
program that is dependent upon properties of the pro-
gram’s environment. The specification

Hypothesis: Property List 1
Conclusion: Property List 2

means that the program must satisfy Property List 2
whenever Property List 1 holds.

3 Message-level router specification

The message router must transmit each message
appearing on any of the M sender channels to the
message’s destination on one of the N receiver chan-
nels. For example, we can picture a router with three
sender channels and four receiver channels as follows:

ROUTER

senders

receivers

-2

-1

-0

?
0

?
1

?
2

?
3

In the following, program R represents the router pro-
gram (the inside of the box), program E represents an
arbitrary environment for the router (the outside of
the box), and shared variables represent the interface



between R and E (the boundary of the box). The ac-
tual senders and receivers of messages are part of E
and are, hence, not explicitly specified.

The program variables send.i, for 0 ≤ i < M , and
recv.j, for 0 ≤ j < N , denote the channels on which
sender i may send a message and receiver j may re-
ceive a message, respectively. Each send.i and recv.j
holds a finite sequence of messages, with each message
having the format (s, r, (a, v)) such that:

• s and r are auxiliary fields denoting the sender
and receiver, respectively, for the message—an
implementation cannot access these fields.

• (a, v) is the actual message available to the
implementation—a is the intended receiver and
v is the data value carried by the message.

The send.i and recv.j channels are the only pro-
gram variables shared between programs R and E .
Program E may append one message at a time to the
tail of a send.i sequence and program R may remove
one message at a time from the head. Similarly, pro-
gram R may append one message at a time to the
tail of a recv.j sequence and program E may remove
one message at a time from the head. Program R can
initialize all sender and receiver channels. No other
references or updates are allowed.

As the router executes, it removes messages from
the send.i channels and eventually appends them to
recv.j channels. This message transmission must done
in a safe way, without misdelivering, corrupting, du-
plicating, losing, forging, or reordering the messages.
These requirements constrain the relationship between
a message and other messages that have been sent
or received on some channel. Similarly, the router’s
progress at some point can be measured in terms of
the messages sent and delivered up to that point.

Because of the constraints on access to the send.i
and recv.j variables, it is convenient to express the
specifications of the router in terms of the histories of
the changes to these variables. Thus, we introduce
the auxiliary variables send.i and recv.j. Initially,
send.i = send.i and recv.j = recv.j. Whenever a
message is appended to a send.i or recv.j sequence
the same message is appended to the corresponding
send.i or recv.j sequence. Removal of messages from
the head of send.i or recv.j does not change the as-
sociated send.i or recv.j . Hence, the values of send.i
and recv.j never decrease in length.

In addition to the access constraints, there are four
classes of properties in the router specification: ini-
tializations, delivery invariants, prefix invariants, and

eventual delivery properties. Each refinement has one
or more properties from each of these classes.

Initializations specify the initial values for the chan-
nels and other variables.

Delivery invariants state the structural properties
of the sequences of delivered messages. In gen-
eral, any message delivered on a receiver channel
j must have originated on some valid sender chan-
nel and must be destined for receiver j.

Prefix invariants state the structural relationship
between the sender and receiver channels. In gen-
eral, any two messages with different data fields
sent from sender i to receiver j must be deliv-
ered in the same relative order as sent. Messages
must not be lost, duplicated, or spontaneously
generated by the router. That is, the sequence
of messages delivered to receiver j from sender i
must be a prefix of the sequence of messages sent
by sender i to receiver j.

Eventual delivery properties state that any mes-
sage sent will eventually be delivered to its desti-
nation. That is, progress eventually occurs.

Now we can turn our attention to the high-level
specification itself. The Message Router Initialization
property (shown below) states that program R must
initialize all sender and receiver channels to be empty,
denoted here by ε. We use the convention that all free
variables occurring in the statement of a property are
universally quantified over all possible values. For con-
venience, we restrict the quantifications of the sender
channels i and the receiver channels j to be over the
ranges 0 ≤ i < M and 0 ≤ j < N , respectively. The
scope of this implicit quantification is the entire prop-
erty being stated, including both the hypothesis and
conclusion of conditional properties.

Property 1 (Message Router Initialization)
initially send.i = ε ∧ recv.j = ε in R

Clearly, if the router is to deliver messages correctly,
it must make some assumptions about the activities on
its sender channels. If the assumptions are violated,
then the router may not be able to perform its task
correctly. For this case study, we opt for simplicity
and assume that only complete messages with valid
data fields and destination addresses may be sent on
any sender channel. The auxiliary sender and receiver
fields of the messages must also be set appropriately,
of course. We introduce the predicate send ok.i to



formalize this condition; it holds when the sequence
of messages send.i is a valid sequence of messages for
sender i to send. This predicate can be defined recur-
sively as a function on the message sequences.

The remaining properties of the message-level
router depend upon send ok.i holding for all sender
channels. The UNITY logic’s conditional properties
provide a formal means for making this dependence
explicit. In the hypothesis we state the assumed prop-
erties of the environment E and in the conclusion the
properties of the overall system R E that the router
must implement. For compactness in presentation, we
assume that the following properties are all condition-
als with the given conclusions and the hypothesis:

〈∀ k : 0 ≤ k < M :: stable send ok.k in E〉

We also implicitly include the access constraints on
the send.i and recv.j variables in the hypothesis.

The Message Delivery Invariant requires that, if ev-
ery sender sends a valid sequence of messages, then
the router must deliver a valid sequence of messages
to every receiver. This is a safety property; it does not
require the router to deliver any messages, but it does
require that any messages delivered be delivered cor-
rectly. We formalize this property with the recv ok.j
predicate. Like send ok.i, predicate recv ok.j holds
when the sequence of messages recv.j is a valid se-
quence of messages for receiver j to receive.

Property 2 (Message Delivery Invariant)
inv recv ok.j in R E

Another safety property is the Message Prefix In-
variant. This property requires that, if every sender
sends a valid sequence of messages, then the sequence
of messages that each receiver j receives from each
sender i corresponds exactly to the sequence that was
sent by i to j except that a few messages may be
in transit. This relationship can be expressed by
the sequence prefix relation v. In stating this prop-
erty, we also introduce the sequence filtering function
route.i.j.x defined on sequences of messages x that
have the format (s, r, (a, v)). Function route.i.j.x re-
turns the subsequence of x containing all messages
whose source field s and destination field r match i
and j, respectively. Since the address field a of a mes-
sage can change as it moves from a send.i to a recv.j,
we also define route so that it suppresses differences
among values for the field a.

Property 3 (Message Prefix Invariant)
inv route.i.j.recv.j v route.i.j.send.i in R E

Finally, we must ensure that the router eventually
does the work desired. The Eventual Message Delivery
property requires that, if every sender sends a valid
sequence of messages, all messages sent by sender i
and intended for receiver j will be delivered to receiver
j eventually.

Property 4 (Eventual Message Delivery)
route.i.j.send.i = x 7−→ route.i.j.recv.j = x

in R E

To prove that a program or refined specification
satisfies the specification for R, we may assume that
the environmental access constraints and hypothesis
hold. Then, given the program or refined specifica-
tion’s properties, we must then prove that the Con-
clusions of R’s properties and R’s variable access con-
straints are satisfied.

4 Token-level router specification

The task is now to specify the token-level router so
that it satisfies the message-level specification. This
presents an interesting challenge. In the message-level
specification a message is a single entity that can be
written to (or read from) the interface variables as one
atomic operation. However, in the token-level refine-
ment a message becomes a sequence of entities, each
of which must be sent or received as a separate oper-
ation. The refinement of the atomicity of the inter-
face requires that actions in both the router and in its
environment be broken up into sequences of actions.
Because we seek to specify the router as a reactive sys-
tem, we scrupulously avoided specifying any progress
properties for the environment at the message level.
But now we must pay more attention to the part of
the environment that interacts with the router.

To specify the token-level refinement, we apply the
reactive envelope heuristic. We specify a token-level
router TR with the functionality given in the prob-
lem description and enclose TR in another program, a
reactive envelope, that makes TR “look like” message-
level program R to the message-level environment E .
The reactive envelope captures the changed environ-
mental assumptions required by the token-level router
and provides a framework for proving that the token-
level router satisfies the message-level specification.
For convenience, we divide the reactive envelope into
a sending envelope SE and a receiving envelope RE.

Thus the task becomes refinement of the message-
level program R into the union SE TR RE. We
assign the send.i variables to the interface between E



and SE and the recv.j variables to the interface be-
tween RE and E ; reactive envelope programs SE and
RE retain message-level program R’s access to these
variables. We postulate new variables tsend.i to rep-
resent the token send channels and assign them to the
SE -to-TR interface with access constraints like those
upon the send.i. Similarly, we postulate new vari-
ables trecv.j to represent the token receive channels
and assign them to the TR-to-RE interface with ac-
cess constraints like those upon the recv.j. Program
TR can initialize all tsend.i and trecv.j channels. As
at the message level, tsend.i and trecv.j represent the
history sequences for tsend.i and trecv.j respectively.

The new variables tsend.i and trecv.j hold se-
quences of tokens of the format (s, r, (d, v)) where
• s and r are auxiliary fields denoting the sender

and receiver channels, respectively, for the mes-
sage of which the token is a part,

• (d, v) is the actual token available to the
implementation—d is the designator for the to-
ken (one of the constants HDR, DAT, or TRL)
and v is the value carried by the token.

The data component v of a header token encodes the
intended receiver for the message; the data component
of a trailer token has an arbitrary value.

First, let us examine the requirements for the token-
level router program TR. As at the message level, we
give an initialization, a delivery invariant, a prefix in-
variant, and an eventual delivery property. The Token
Router Initialization is straightforward.

Property 5 (Token Router Initialization)

initially tsend.i = ε ∧ trecv.j = ε in TR

Although the specification of TR must be stated in
terms of sequences that have different characteristics,
the delivery and prefix invariants for TR are almost
identical to those of the message-level router R. The
different characteristics of the sequences can be hidden
in the definitions of the operators on those sequences.

The message-level specification assumes that only
complete messages with valid destination addresses
and data fields will be sent on any sender channel;
at the token level a “complete message” becomes a se-
quence of tokens. Thus we define predicate tsend ok.i
to hold when the sequence of tokens tsend.i is well-
formed: all tokens originate from sender i, tokens in
the sequence appear in the prescribed header-data-
trailer pattern, all header tokens give valid destination
addresses, and the auxiliary fields are set properly for
that channel and message destination. The message

at the tail may not yet be complete. Similarly, we de-
fine predicate trecv ok.j to hold when trecv.j is well-
formed: all tokens are destined for receiver j, tokens
in the sequence appear in the prescribed header-data-
trailer pattern, and the auxiliary fields are set prop-
erly. These predicates can be defined recursively as
functions on the token sequences.

Again for compactness in presentation, we assume
that the following properties of TR are all conditionals
with the given conclusions and the hypothesis:

〈∀ k : 0 ≤ k < M :: stable tsend ok.k in F 〉

F represents the environment of program TR. In this
system F = SE RE E .

The Token Delivery Invariant requires that, if ev-
ery sender sends a valid sequence of tokens, then the
router must deliver a valid sequence of tokens to ev-
ery receiver. Here valid includes, of course, that the
sequences of tokens delivered corresponds to a struc-
turally correct sequence of messages. That is, there is
no interleaving of the tokens of the messages delivered.

Property 6 (Token Delivery Invariant)
inv trecv ok.j in TR F

The Token Prefix Invariant requires that, if every
sender sends a valid sequence of tokens, then the se-
quence of tokens that each receiver j receives from
each sender i corresponds exactly to the sequence that
was sent from i to j except that a few tokens may be
in transit. To aid in specifying this property, we define
the sequence filtering function route′.i.j.x. Function
route′.i.j.x returns the subsequence of x containing
all tokens whose source field s and destination field r
match i and j, respectively. Like route, route′ sup-
presses differences among the values of the address
fields of the header tokens.

Property 7 (Token Prefix Invariant)
inv route′.i.j.trecv.j v route′.i.j.tsend.i in TR F

In expressing TR’s eventual delivery property, we
must again consider the consequences of the atomicity
refinement. In the message-level router, a message is
a single entity sent or received as an atomic action.
Neither is the case at the token level. The tsend ok.i
hypothesis of the above safety properties ensures that
the message is broken up into tokens correctly, but
getting the progress properties of the token router cor-
rect may require, in addition, that we constrain how
the send actions are broken up.

Suppose that a message’s header token is sent by
the environment but the corresponding trailier token



is never sent—either there is an infinite sequence of
data tokens or there is an infinite pause in sending to-
kens. What consequence does this have for TR? Since
TR cannot take back tokens once they are delivered,
clearly it must not deliver any of the tokens of a mes-
sage that will never be completed. The delivery of any
of the tokens would cause the receiver channel to be
blocked forever. Because the tokens of messages can-
not be interleaved, it would not be possible to deliver
messages to that receiver from any other sender.

To prevent such a blockage from occurring, we ei-
ther need to constrain the behavior of TR or of its
environment. Two approaches seem feasible:
• have the token router wait until a message’s

trailer has been accepted before it starts to de-
liver any of the message’s tokens,

• assume that the environment will not attempt to
send incomplete messages.

Which approach is better? Both approaches seem
to lead to a refinement of the message-level specifi-
cation. Both approaches require the assumption that
all messages consist of a finite number of tokens. The
first approach, however, requires that the token router
buffer tokens until an entire message has been sent.
Thus the router must have a buffer for each sender
channel that is long enough to handle the longest mes-
sage to be sent on that channel. In a realistic imple-
mentation this means we would be required to place an
explicit bound on the size of messages. Although the
second approach does not seem to require as much in-
ternal buffering, it does require that the senders (part
of the environment) be constrained from sending any
incomplete messages—the send of a header will even-
tually be followed by the send of a trailer. Because
it seems to lead to a simple design that can handle
messages of unbounded length, we choose the second
approach. The reactive envelope programs must then
capture what this decision means for the environment.

Accordingly, we make the Eventual Token Deliv-
ery property conditional upon a second environmental
hypothesis. We state this hypothesis in terms of the
function partial on sequences like tsend.i and trecv.j.
Function partial.x returns the sequence of tokens cor-
responding to the incomplete message, if any, at the
tail of sequence x. The additional hypothesis is

〈∀ k, l : 0 ≤ k < M ∧ 0 ≤ l < N ::
partial.(route′.k.l.tsend.k) 6= ε 7−→
partial.(route′.k.l.tsend.k) = ε in TR F 〉

The Eventual Token Delivery property requires
that, if every sender sends a sequence of tokens cor-
responding to a valid sequence of messages, all tokens

sent by sender i and intended for receiver j will be
delivered to receiver j eventually.

Property 8 (Eventual Token Delivery)
route′.i.j.tsend.i = x 7−→
route′.i.j.trecv.j = x in TR F

With the specification of TR complete, we turn our
attention to the reactive envelope programs SE and
RE . The purpose of the reactive envelope is to make
TR “behave like” the message-level router program R
in interactions with its environment E and vice versa.
The reactive envelope should allow us to prove that
SE TR RE satisfies the specification for R.

The sending envelope program SE accepts valid se-
quences of messages from E and delivers the corre-
sponding sequences of message tokens to TR. This
is straightforward to state given a function unpack
with an appropriate recursive definition. Function
unpack.x must map each element of message sequence
x to a token sequence beginning with a header token
to carry the destination address, followed by a finite
number of data tokens to carry the message’s value,
and ending with a trailer token. We assume that every
message’s value can be represented as a finite sequence
of data tokens.

The specification for SE has one property from each
of the four classes identified above. Again for com-
pactness in presentation, we assume that the following
properties (except initialization) are all conditionals
with the given conclusions and the hypothesis:

stable send ok.i in G, initially tsend.i = ε in G

Let G represent the environment of program SE. In
this system G = TR RE E.

Property 9 (Sending Envelope Initialization)
initially send.i = ε in SE

Property 10 (Message Sending Invariant)
inv tsend ok.i in SE G

Property 11 (Message Sending Prefix Inv)
inv tsend.i v unpack.send.i in SE G

Property 12 (Eventual Message Sending)
send.i = x 7−→ tsend.i = unpack.x in SE G

The specification for program RE is symmetrical
to that of SE . We assume that the following proper-
ties (except initialization) are all conditionals with the
given conclusions and the hypothesis:



inv trecv ok.j in H

Here we let H represent the environment of program
RE. That is, H = SE TR E.

Property 13 (Receiving Envelope Init)
initially recv.j = ε in RE

Property 14 (Message Reception Invariant)
inv recv ok.j in RE H

Property 15 (Message Reception Prefix Inv)
inv unpack.recv.j v trecv.j in RE H

Property 16 (Eventual Message Reception)
trecv.j = unpack.x 7−→ recv.j = x in RE H

The proof of refinement requires proof that the
union SE TR RE satisfies the specification for R.
That is, if R’s environmental hypotheses and the spec-
ifications for SE , TR, and RE hold, then one must
prove that the Conclusions of R’s properties hold.
This proof may use the conditional properties of the
token-level specification as inference rules. Because
the proofs are lengthy, they are not presented here.

5 Grid-level router specification

The task now is to refine the token-level router pro-
gram TR into a grid of switch programs with M rows
and N columns. We picture the senders, receivers,
switches, and channels as being laid out as shown in
the grid below. Switch S.i.j (with 0 ≤ i < M and
0 ≤ j < N) is located at the intersection of the row
from sender i and the column to receiver j.

tsend.i

trecv.j

-2

-1

-0

?
0

?
1

?
2

?
3

tt
t
tt
t
tt
t
tt
t

We postulate new two-dimensional arrays of pro-
gram variables row and col to represent the channels
connecting the switches along the rows and columns,
respectively. These variables hold sequences of tokens
having the same format as the tsend.i and trecv.j
sequences. As above, the auxiliary variables row.i.j
and col.i.j represent the history sequences for row.i.j
and col.i.j, respectively. To construct the grid we as-
sign the variables row.i.j, row.i.(j+ 1), col.i.j, and
col.(i+1).j to the interface of switch program S.i.j as
shown in the diagram below.

S.i.j-row.i.j -row.i.(j+1)
?

col.i.j

?

col.(i+1).j

To connect the grid with its environment, we as-
sume that the following Grid Refinement Invariant
holds for any i and j such that 0 ≤ i < M and
0 ≤ j < N . This refinement invariant relates the
channel variables along the left side and bottom of
the grid with variables in the token-level specification.

Property 17 (Grid Refinement Invariant)
inv row.i.0 = tsend.i ∧ col.M.j = trecv.j

In the token-level specification, program TR ini-
tializes both the sender and receiver channels. Thus
the grid router must initialize those channels as well
as the other channels of the grid. We require that
each switch program S.i.j initialize its output chan-
nels row.i.(j+1) and col.(i+1).j as specified by the
Switch Initialization property below. This takes care
of the receiver channels and the unused channels along
the right boundary. To initialize the sender channels
and the unused channels along the top boundary, we
introduce the Grid Router Initialization program Init
that does nothing but initialize those channels.

Property 18 (Grid Router Initialization)
initially row.i.0 = ε ∧ col.0.j = ε in Init

Property 19 (Switch Initialization)
initially row.i.(j+1) = ε ∧ col.(i+1).j = ε in S.i.j

Like the interface variables in the message- and
token-level routers, we constrain access to the row
and col variables. Switch S.i.j may remove one to-
ken at time from the head of input sequence row.i.j
or col.i.j and append one token at a time to the tail
of output sequence row.i.(j+1) or col.(i+1).j. In ac-
cordance with the Grid Refinement Invariant and the
access constraints at the token level, program SE may
append elements to the row.i.0 variables and program
RE may remove the head elements from the col.M.j
variables. No other accesses or updates are allowed.

Before proceeding with a specification of the grid-
level router’s properties, we must first consider how



the router moves tokens through the grid toward their
designated receiver channels. The informal descrip-
tion of the grid requires that tokens of a message
travel along a row until the destination column is en-
countered and then travel along the column toward
the receiver. The only destination information avail-
able to the router is the address field of the message’s
header token. Upon entry into the grid (on a tsend.i),
this field specifies the destination for the message (i.e.,
some receiver j). The router must deliver the message
to its destination, but it is allowed to modify the ad-
dress field as the header token moves through the grid.

Thus there must be a method for switch program
S.i.j to determine a message’s destination given the
address field of the header token. Since we do not
want to constrain the switch’s designers unnecessar-
ily by prematurely specifying details, we do not yet
wish to commit to a specific method. However, we
do need to characterize a class of methods that are
acceptable. First, the address calculation must invari-
antly yield the actual destination of the message. Sec-
ond, it should be possible to compute the destination
from the header token’s address value and its position
within the grid (i.e., which channel it is in). In partic-
ular, the address calculation for a message must not
be sensitive to the state of any switch or of any other
message. (Perhaps the second requirement is not ab-
solutely necessary, but it is a constraint that seems to
lead to simple methods.)

Therefore, we postulate the existence of a func-
tion addr such that addr.p.i.j.v maps the header
token’s current location within the grid (denoted by
p ∈ {ROW,COL}, 0 ≤ i < M , and 0 ≤ j < N)
and the address field of the header token (denoted by
v) into the destination for the message. The actual
definition depends upon the routing strategy chosen.

Note: There are at least two reasonable definitions
for function addr. With the definition

addr.p.i.j.v = v

the value of the address field of the header token of
a message does not change within the router. To de-
termine how to route a message, switch S.i.j simply
compares the address field in the header against its
own column number j. The switch must “know” in
which column it is located. With the definition

addr.p.i.j.v = v + j

the value of the address field of the header token of a
message is decremented by 1 each time a switch for-
wards it along a row. Switch S.i.j can compare the
address field of a header token against 0 to determine

how to route a message. The switch does not need to
“know” its column number.

As in the higher-level specifications, we assume that
no invalid tokens will arrive at a switch. But here we
must be concerned with two input channels, row.i.j
and col.i.j. For a switch S.i.j , the history sequence
row.i.j must be a valid sequence of message tokens
from sender i to either receiver j or some receiver to
the right of j in the grid. Similarly, the history se-
quence col.i.j must be a valid sequence of message
tokens from a sender above row i in the grid to re-
ceiver j. Also, for all header tokens (s, r, (HDR, v))
in row.i.j and col.i.j, addr.ROW.i.j.v = r and
addr.COL.i.j.v = r, respectively. Thus we define
predicates row ok.i.j and col ok.i.j to hold when the
sequences of message tokens row.i.j and col.i.j, re-
spectively, are sequences with these characteristics.

Switch S.i.j has two output channels, row.i.(j+1)
and col.(i+1).j. Thus its specification must include
a delivery invariant for each, the Row Invariant and
Column Invariant below. These properties state that,
if the switch receives valid input sequences, then it is
required to generate valid output sequences. Because
token sequences must be merged from the row and
column inputs onto the column output, the Column
Invariant must be conditional upon receiving valid in-
put on both input channels.

Assume that the following properties are all condi-
tionals with the given conclusions and the hypothesis:

inv row ok.i.j in D.i.j , inv col ok.i.j in D.i.j

Let D.i.j represent the environment of program S.i.j .
In this system, D.i.j = SE Init 〈 k, l : 0 ≤ k <
M ∧ 0 ≤ l < N ∧ (k, l) 6= (i, j) :: S.k.l 〉. Note that
i and j are parameters of program S.i.j rather than
free variables.

Property 20 (Row Invariant)
inv row ok.i.(j+1) in S.i.j D.i.j

Property 21 (Column Invariant)
inv col ok.(i+1).j in S.i.j D.i.j

Tokens arriving at switch S.i.j on channel col.i.j
must be forwarded downward on col.(i+1).j. How-
ever, tokens arriving at switch S.i.j on channel row.i.j
must be forwarded to the right on channel row.i.(j+1)
or downward on channel col.(i+1).j depending upon
their destinations. Thus we need a prefix invariant for
each of the three possible token movements through
the switch. Together, the following three invariants
specify how a sequence of message tokens arriving
from a sender p and destined for a receiver q may flow



through the switch—without tokens being corrupted,
duplicated, lost, forged, or reordered. Below p is uni-
versally quantified over all rows and q is universally
quantified over all columns.

Property 22 (Row Prefix Invariant)
inv j < q ⇒ route′.i.q.row.i.(j+1) v

route′.i.q.row.i.j in S.i.j D.i.j

Property 23 (Direction Switch Prefix Inv)
inv route′.i.j.col.(i+1).j v

route′.i.j.row.i.j in S.i.j D.i.j

Property 24 (Column Prefix Invariant)
inv p < i⇒ route′.p.j.col.(i+1).j v

route′.p.j.col.i.j in S.i.j D.i.j

As with the prefix invariants, the grid-level router
specification requires three eventual delivery proper-
ties. Together the following three properties specify
that a token arriving from a sender p and destined
for a receiver q must eventually move through the
switch toward its destination. As with the Eventual
Token Delivery property, we must prevent the output
channels from being blocked by the attempted deliv-
ery of an incomplete message. Hence, we make these
eventual delivery properties conditional upon all input
messages eventually being complete. The additional
hypotheses are:
〈∀ l : j ≤ l < N :: partial.(route′.i.l.row.i.j) 6= ε
7−→ partial.(route′.i.l.row.i.j) = ε in S.i.j D.i.j 〉

〈∀ k : 0 ≤ k < i :: partial.(route′.k.j.col.i.j) 6= ε

7−→ partial.(route′.k.j.col.i.j) = ε in S.i.j D.i.j 〉

Property 25 (Row Forwarding)
j < q ∧ route′.i.q.row.i.j = x 7−→

route′.i.q.row.i.(j+1) = x in S.i.j D.i.j

Property 26 (Direction Switching)
route′.i.j.row.i.j = x 7−→
route′.i.j.col.(i+1).j = x in S.i.j D.i.j

Property 27 (Column Forwarding)
p < i ∧ route′.p.j.col.i.j = x 7−→

route′.p.j.col.(i+1).j = x in S.i.j D.i.j

Unlike the choices for the Message Sending Prefix
Invariant and Eventual Message Sending properties,
here we choose weak formalizations of the Row Prefix
and Row Forwarding properties. The properties al-
low S.i.j to change the relative order of messages des-
tined for different receivers from sender i. Likewise,

we choose weak formalizations of the Column Prefix
and Column Forwarding properties. The properties
allow S.i.j to change the relative order of messages
destined for receiver j from different senders.

The proof of refinement requires proof that the
composite program GR = Init 〈 k, l : 0 ≤ k <
M ∧ 0 ≤ l < N :: S.k.l 〉 satisfies the specification
for TR. That is, we assume that TR’s environmental
hypotheses and the specifications for Init and S.i.j all
hold for the grid and then prove that the Conclusions
of TR’s properties hold. The proofs of these proper-
ties will rely upon inductive proofs over the rows and
columns of the grid. Since the proofs are lengthy, they
are not presented here.

6 Discussion

This case study began with an intriguing problem, a
message router, and devised a high-level specification
and a series of refinements using the UNITY model
[4]. Others who have studied this problem have ap-
proached it as a closed system [5]. That is, they chose
to specify both the router and its environment as ac-
tive agents. This case study took a different approach.
It developed the router specification as an open sys-
tem. That is, it characterized the router in terms of its
interactions with an arbitrary environment. The re-
sulting specification can be readily composed with any
environment that satisfies a few simple constraints.

The decision to specify the router as an open sys-
tem meant that we had to give careful attention to
its interface to the environment. By constraining this
interface, we simplified both the statement of the spec-
ification and subsequent proofs of properties. The na-
ture of the router enabled us to represent its interface
by a group of shared variables, each of which can only
be written by the environment and read by the router,
or vice versa. This allowed us to decouple the internal
operation of the router from its environment. (Future
research should reexamine the interface specification
in light of recent work on monotonic variables and
program composition [2, 3].)

Another critical early decision was the choice of a
method for stating the properties. Given the con-
straints placed upon the interface to the router, the
use of auxiliary history sequences seemed appropri-
ate. That is, we chose to express the specification in
terms of the sequences of values written to the shared
variables from the beginning of the computation up
to the “current” point. The history sequences enabled
us to constrain the allowed behaviors of the router by
stating invariant properties of the individual sequences



or of the relationship among two or more sequences.
The history sequences also enabled us to express the
required behaviors of the router in a straightforward
way—as increases in the lengths of the appropriate
sequences. By defining special predicates and opera-
tions on the history sequences similar to those used in
functional programming [1], we were also able to state
the router’s properties concisely.

In addition to conciseness, the specifications needed
to be consistent, both within and between levels.
Analysis of the problem revealed four classes of prop-
erties that capture the essence of the router: ini-
tializations, delivery invariants, prefix invariants, and
eventual delivery properties. These classes guided the
derivation of the specific properties for the programs
within each level. They helped make the specification
modular and consistent. The grid-level refinement
highlighted the need for an additional class, refine-
ment invariants. These invariants relate data entities
in a refined specification to entities in the higher level
specification. Other classes can be added as needed.
For example, if we need bounds on the sizes of the
channel buffers, then we can add a new class of in-
variants to constrain the lengths of the values of the
channel variables (e.g., tsend.i).

Clearly, the message-level and token-level routers
have different interfaces. In the former, a sender trans-
mits a message as a single atomic operation. In the
latter, a sender transmits a message as a sequence of
atomic operations, one for each token of the message.
To handle this situation, we proposed the reactive en-
velope heuristic. Applying this heuristic, we refined
the message-level router into a token-level router that
is encapsulated within a reactive envelope. The re-
active envelope makes the interfaces of the token-level
router and message-level environment conform to each
other. The reactive envelope, in essence, captures the
changes that need to be made to the message-level en-
vironment for it to interact with the token-level router.
The reactive envelope heuristic was an effective tech-
nique for this case study. However, future research
should formalize this heuristic and study its applica-
bility to other problems.

The use of formal notations forced us to confront
the important aspects of the problem early in the de-
velopment process. For example, this case study had
to handle the potential blockage caused by an “in-
finite pause” in the sending of the tokens of a mes-
sage. This problem might be easy to overlook and its
discovery late in the design process could be costly.
Unfortunately, this case study still relied upon oper-
ational reasoning to help identify and resolve such is-

sues. Future research should explore ways of using
calculational techniques more extensively.

Overall, this case study met the challenges it faced.
It developed the router as an open system, assuming
very little about the environment. For each program,
it devised a very general specification, avoiding unnec-
essary constraints upon the designers. It also stated
the program properties in a consistent and modular
way. By struggling to meet these challenges, this re-
search yielded a better understanding of the process
of specification and refinement and uncovered oppor-
tunities for further research.

Acknowledgements

The National Science Foundation supported the au-
thors’ work under Grant CCR-9210342. The authors
thank the anonymous referees and several colleagues
for their suggestions concerning this work.

References

[1] R. Bird and P. Wadler. Introduction to Functional
Programming. Prentice Hall International, 1988.

[2] K. M. Chandy. Using triples to reason about con-
current programs. Technical Report 93-02, Dept.
of Computer Science, California Institute of Tech-
nology, Pasadena, CA, January 1993.

[3] K. M. Chandy and C. Kesselman. The derivation
of compositional programs. Technical Report 92-
18, Dept. of Computer Science, California Institute
of Technology, Pasadena, CA, July 1992.

[4] K. M. Chandy and J. Misra. Parallel Program De-
sign: A Foundation. Addison-Wesley, 1988.

[5] C. Creveuil and G.-C. Roman. Formal specifica-
tion and design of a message router. Technical
Report 92–44, Dept. of Computer Science, Wash-
ington University, St. Louis, MO, Dec. 1992.

[6] H. C. Cunningham and J. T. Udding. “Succeed-
ings” of the Sixth International Workshop on Soft-
ware Specification and Design: Concurrency and
Distribution. ACM SIGSOFT Software Engineer-
ing Notes, 17(1):46–47, Jan. 1992.

[7] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, 1976.

[8] Z. Manna and A. Pnueli. The Temporal Logic
of Reactive and Concurrent Systems. Springer-
Verlag, 1992.


