
Engr 664: Theory of Concurrent Programming
Concurrent Programming Introduction, Fall 2016

H. Conrad Cunningham, D.Sc.
Department of Computer and Information Science

The University of Mississippi

22 August 2016

Concurrent Programming Introduction

Motivation

We can model the execution of a (sequential) program as a sequence of atomic
operations from the program. Each operation atomically changes the state (i.e.,
the values of the variables) of the program.

We can model the set of possible asynchronous parallel executions of two programs
as the set of all interleavings of the sequences of atomic operations from the two
programs. A particular parallel execution corresponds to one of the interleavings,
the choice of which is nondeterministic (i.e., unpredictable by the programmer).
The nondeterministic interleaving models the nondeterministic relative speeds of
the executions of the two programs.

Note: By interleaving, we mean a merge of the two sequences in which the
relative order of elements in each sequence is preserved. Picture the shuffling of
two decks of cards into one.

Consider the parallel execution of the following two assignment statements
(identified as programs P1 and P2, respectively):

/* P1 */ x := y + z || /* P2 */ y := z + x

Assume that the two assignments are executed asynchronously on two different
processors. Also assume that the variables x, y, and z are shared between the
processors.

On a typical machine, execution of x := y + z would correspond to execution
of a sequence of atomic “instructions” such as:

/* P1 */ reg1 := y ; reg1 := reg1 + z ; x := reg1

1

/~hcc/HOME_hcc.html
http://www.cs.olemiss.edu
http://www.olemiss.edu

Similarly, execution of y := z + x would correspond to execution of the se-
quence:

/* P2 */ reg2 := z ; reg2 := reg2 + x ; y := reg2

There are 20 different ways that these two sequences might be interleaved. A
parallel execution of the two sequences might correspond to any of the possible
interleavings. The final values of the shared variables will be different depending
upon which interleaving models the execution.

For example, consider the following interleavings of programs P1 and P2 where
the initial values of the variables x, y, and z are 1, 2, and 3, respectively.

/* P1 */ reg1 := y ; reg1 := reg1 + z ; x := reg1
/* P2 */ reg2 := z ; reg2 := reg2 + x ; y := reg2

Interleaving #1 Interleaving #2
/* P1 */ reg1 := y ; /* P1 */ reg1 := y ;
/* P2 */ reg2 := z ; /* P1 */ reg1 := reg1 + z ;
/* P1 */ reg1 := reg1 + z ; /* P2 */ reg2 := z ;
/* P2 */ reg2 := reg2 + x ; /* P1 */ x := reg1 ;
/* P1 */ x := reg1 ; /* P2 */ reg2 := reg2 + x ;
/* P2 */ y := reg2 /* P2 */ y := reg2

Note that interleaving #1 leaves shared variable y with the value 4 and inter-
leaving #2 leaves y with the value 8. The result depends upon the relative
ordering of the assignment to x in P1 and the reference to x in P2. The result is
time dependent and outside of the programmer’s control: the relative execution
speeds of P1 and P2 affect the final values of the variables.

As the above example illustrates, the result of parallel execution of statements is,
in general, indeterminate because of the nondeterministic order of operations on
shared data. A key problem in concurrent programming is thus finding a way to
tame the nondeterminism without sacrificing the benefits of parallel execution.

Terminology

The following “definitions” are abstractions; in a specific situation the terms may
be used to denote slightly different concepts. Much of the following is adapted
from the book Concurrency in Programming and Database Systems by Arthur
J. Bernstein and Philip M. Lewis (Jones and Bartlett, 1992) or other sources.

Hardware

This section gives definitions for hardware concepts from the perspective of
programmers. These are not necessarily the definitions that would be given in a
computer architecture class.

2

A processor is a physical device that executes operations sequentially, atomically,
and deterministically.

Note: Here we use the terms operation and execute in a general sense. An
example of a processor is a cpu that can execute instructions.

Sequential means that the processor executes no more than one operation at any
one time.

Atomic means that, once the processor selects an operation for execution, it
executes the operation completely; the processor does not interrupt an operation
at an intermediate stage to execute another operation.

In this context, deterministic means that:

• each of the processor’s operations performs a well-defined action that
always produces the same result when operating on the same input data,

• upon completion of the execution of an operation, the next operation to
be executed is determined (except in the case of operations that halt the
processor).

That is, if an operation execution is deterministic, its results are predictable.

A control unit for a processor controls the sequencing of operations.

A control point (or point of execution) refers to each operation in a “program”
for the processor.

If an operation is eligible for execution, the associated control point is enabled.

When the processor executes an operation, the associated control point is serviced.

The control unit is usually driven by a clock; the clock generates a sequence of
timing pulses that activates the portions of the processor needed to carry out
the operation being executed.

Primitive computers are constructed from a single processor with a single control
unit.

A computer is sequential if no more than one control point can be serviced at
time.

A computer made up of only one processor is sometimes called a uniprocessor.

A common way to increase the power of a computer is to provide multiple
processors, each with its own control unit.

A computer is parallel if multiple control points can be serviced at the same
time.

A shared memory multiprocessor (sometimes called a tightly coupled multipro-
cessor) is a parallel computer consisting of several processors sharing a common
memory. (The processors communicate by exchanging information through the
shared memory. Interprocessor communication is fast, but contention for access

3

to the shared memory can be costly. As a result, this approach limits computers
to a small number of processors.)

A multicore computer is a shared memory multiprocessor in which all processors
are on the same electronic chip.

A multicomputer (sometimes called a loosely coupled multiprocessor or an en-
semble computer) is a parallel computer consisting of several processing nodes
connected by high-speed message switching hardware. (The processors commu-
nicate by sending messages through the switching hardware. Communication
among processors is more costly than with shared memory, but memory con-
tention is avoided.)

A distributed computer system is a geographically dispersed group of computers
connected by a communication network. (The processors communicate by
sending messages through the network. Communication among processors is
usually more costly than with a multicomputer.)

Two processors are synchronous if their operations are driven by a common clock.
Otherwise, they are asynchronous.

Asynchronous processors can explicitly synchronize their execution from time to
time.

Software

A program is a finite description of a task in some programming language.

An address space is the collection of all the variables that a program references.

The program state is the mapping of the variables in an address space to their
values.

A program is concurrent if during its execution multiple control points can be
enabled at the same time.

A program is sequential if during its execution no more than one control point
can be enabled at a time.

In essence, sequential programs form a special class of concurrent programs.

Note: Concurrent programs are sometimes called parallel programs. Here we
tend to use the term concurrent to describe logically or potentially simultaneous
activities and parallel to describe physically simultaneous activities.

A process is an agent that

• executes operations on a processor in an address space,
• has a unique associated control point that designates the next operation it

will execute.

4

Note: A processor is a physical device; a process is a logical processor.

The above definition is for what some writers call a sequential process; they use
the term process to describe a more general concept.

A program is determinate if it always produces the same result when executed
from the same initial state. (In this definition we consider just the external
effects of the execution—the relationship between “inputs” and “outputs”.)

A program is indeterminate if it can produce an unpredictable result when
executed from some initial state.

A program is deterministic if its control points are always serviced in the same
sequence when execution is started from the same initial state. (In this definition
we consider the internal effects of the execution—the order in which operations
are executed.)

A program is nondeterministic if its control points are serviced in an unpredictable
sequence when execution is started from some initial state.

Note: A program may be nondeterministic but still determinate. In such a case,
each of the alternative execution sequences produce the same result.

Note: Nondeterministic is not the same as random. Nondeterministic means
that something is unpredictable; in general, probabilities cannot be assigned to
the alternatives.

In a context where a system must repeatedly choose among alternatives, fairness
means that no alternative will be postponed forever. For example, a fair execution
of a concurrent program may mean that any continuously enabled control point
will eventually be serviced.

A concurrent program is asynchronous if, given the identity of one enabled
control point, we cannot infer the identities of the others. That is, the concurrent
processes are not executed in lock-step; they can be executed on separately
clocked processors.

A concurrent program is synchronous if, given the identity of one enabled control
point, we can always infer the identity of the remaining enabled control points.

We sometimes distinguish between a program and its environment—the other
agents (i.e., programs, devices, and people) with which the program interacts
during its execution.

A transformational program interacts with its environment only at initiation and
termination. It can be specified in terms of its initial and final states.

A reactive program interacts with its environment throughout execution. For
some reactive programs (e.g., operating systems) termination may be considered
an abnormal occurrence. Thus reactive program cannot be specified purely in
terms of initial and final states.

In essence, a transformational program is a special case of a reactive program.

5

A system (e.g., a program) is open if it can interact with (perhaps unknown)
agents in its environment; otherwise, the system is closed.

A concurrent programming language consists of two components (often integrated
into a single language):

• a computation language to compute values and manipulate local data
objects,

• a composition (or coordination) language to combine programs into more
complex programs.

Why develop concurrent programs?

• to get results faster—concurrent programs can be executed in parallel iIn
particular, to better take advantage of the processor “cores” available)

• to express programs more naturally—the universe is naturally parallel
place

• to have fun!? :-)

6

	Concurrent Programming Introduction
	Motivation
	Terminology
	Hardware
	Software

