
Engr 660: Software Engineering II

Fall Semester 2003, Final Project

Due Monday, 8 December, 2003 at 5:00 P.M.

Background

This project deals with the coordinated processing of two ordered sequences,
that is, cosequential processing.

Consider a sequence of elements that are ordered by the values of some key
attribute. A sequence is ascending if every element is <= all of its successors in
the sequence. Successor means an element that occurs later in the sequence (i.e.,
away from the beginning). A sequence is increasing if every element is < its succes-
sors. Similarly, a sequence is descending or decreasing if every element is >= or >,
respectively, its successors.

One example of cosequential processing is a program to merge two ascending
sequences of some type into a single ascending sequence. In this process the smaller
of the two elements is repeatedly moved to the result sequence until both input
sequences are empty.

For another example, suppose an increasing sequence is used to represent a set
of values. Then cosequential processing can be used to implement the set operations
such as union and intersection. A union of two sets is the sequence that includes
all elements in both sequences with no duplicates. An intersection would contain
all elements that match in the two sequences.

Cosequential processing can also be used to update a master file with data from
a transaction file. Suppose one sequential file contains bank account numbers, in
increasing order, paired with the month-end balances of those accounts. (This is
the master file.) Suppose a second sequential file contains transactions on the bank
accounts. That is, it contains deposits and withdrawals ordered first in ascending
order by account number and within that in ascending order by date. (This is
called the transaction file.) Then a cosequential processing can be used to apply
the transaction file to the master file to create and updated master file of account
balances. For each matching pair of account numbers, the transactions are applied
to the matching account balance.

Cosequential processing is basically the generalized merge of two sequences.
Using the typical technique, a general merge function must examine the “heads” of
its two input sequences, take an appropriate action (e.g., compute an appropriate
value for the initial segment of the result sequence), advance the input sequences
appropriately, and then repeat the process on the remaining portions of the input
sequences to generate the remainder of the output sequence.

1



We can represent our cosequential processing model in terms of a general merge
process defined in pseudocode as follows:

gmerge(list1, list2)

while (list1 and list2 both not empty)

head1 = first element of list1

key1 = key of head1

head2 = first element of list2

key2 = key of head2

if (key1 < key2)

do "list1 is less" action

do "advance list1" action

else if (key1 = key2)

do "both equal" action

do "advance when both equal" action

else

do "list1 is greater" action

do "advance list2" action

while (list1 is not empty)

head1 = first element of list1

do "list1 is less" action

do "advance list1" action

while (list2 is not empty)

head2 = first element of list2

do "list1 is greater" action

do "advance list2" action

return result

2



Assignment

This is an individual assignment!
Analyze the cosequential processing problem and design an appropriate software

framework, using the above pseudocode as a guide. The framework should consist
of frozen spots (design and code featurs that are common for all applications in
the family) and hot spots (parts of the framework that are designed for customiza-
tion with client code). It should be possible and convenient to build a variety of
cosequential processing applications using the framework.

Issues to consider:

• The framework should be able to handle implementations of the examples
described above such as the set operations, merging lists, and the master-
transaction file update process.

• The framework should be able to be connected to lists that are stored on disk
files or in memory or wherever.

• The frameworks should be able to accommodate different kinds of user-defined
list elements, keys, comparison operators, etc.

• You should identify other hot spots as appropriate.

Turn in the following items:

• A document that (a) describes the design and (b) describes how use the
framework to build an application.

• Printed and electronic copies of the framework source code, appropriately
documented.

• Printed and electronic copies of the source code for applications of the frame-
work to two significantly different problems.

3


