
Type System Concepts

H. Conrad Cunningham

05 April 2022

Contents
1 Type System Concepts 2

1.1 Chapter Introduction . 2
1.2 Types and Subtypes . 2
1.3 Constants, Variables, and Expressions 2

1.3.1 Static and dynamic . 3
1.3.2 Nominal and structural 3
1.3.3 Polymorphic operations 4
1.3.4 Polymorphic variables . 5

1.4 What Next? . 5
1.5 Exercises . 5
1.6 Acknowledgements . 5
1.7 Terms and Concepts . 6
1.8 References . 6

Copyright (C) 2018, 2019, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good of April 2022 is a recent version
of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

1 Type System Concepts
1.1 Chapter Introduction
The goal of this chapter is to examine the general concepts of type systems.

1.2 Types and Subtypes
The term type tends to be used in many different ways in programming languages.
What is a type?

Conceptually, a type is a set of values (i.e., possible states or objects) and a set
of operations defined on the values in that set.

Similarly, a type S is (a behavioral) subtype of type T if the set of values of
type S is a “subset” of the values in set T an set of operations of type S is a
“superset” of the operations of type T. That is, we can safely substitute elements
of subtype S for elements of type T because S’s operations behave the “same” as
T’s operations.

This is known as the Liskov Substitution Principle [12,20].

Consider a type representing all furniture and a type representing all chairs. In
general, we consider the set of chairs to be a subset of the set of furniture. A
chair should have all the general characteristics of furniture, but it may have
additional characteristics specific to chairs.

If we can perform an operation on furniture in general, we should be able to
perform the same operation on a chair under the same circumstances and get
the same result. Of course, there may be additional operations we can perform
on chairs that are not applicable to furniture in general.

Thus the type of all chairs is a subtype of the type of all furniture according to
the Liskov Substitution Principle.

1.3 Constants, Variables, and Expressions
Now consider the types of the basic program elements.

A constant has whatever types it is defined to have in the context in which it
is used. For example, the constant symbol 1 might represent an integer, a real
number, a complex number, a single bit, etc., depending upon the context.

A variable has whatever types its value has in a particular context and at a
particular time during execution. The type may be constrained by a declaration
of the variable.

An expression has whatever types its evaluation yields based on the types of the
variables, constants, and operations from which it is constructed.

2

1.3.1 Static and dynamic

In a statically typed language, the types of a variable or expression can be
determined from the program source code and checked at “compile time” (i.e.,
during the syntactic and semantic processing in the front-end of a language
processor). Such languages may require at least some of the types of variables
or expressions to be declared explicitly, while others may be inferred implicitly
from the context.

Java, Scala, and Haskell are examples of statically typed languages.

In a dynamically typed language, the specific types of a variable or expression
cannot be determined at “compile time” but can be checked at runtime.

Lisp, Python, JavaScript, and Lua are examples of dynamically typed languages.

Of course, most languages use a mixture of static and dynamic typing. For
example, Java objects defined within an inheritance hierarchy must be bound
dynamically to the appropriate operations at runtime. Also Java objects declared
of type Object (the root class of all user-defined classes) often require explicit
runtime checks or coercions.

1.3.2 Nominal and structural

In a language with nominal typing, the type of value is based on the type name
assigned when the value is created. Two values have the same type if they have
the same type name. A type S is a subtype of type T only if S is explicitly
declared to be a subtype of T.

For example, Java is primarily a nominally typed language. It assigns types to
an object based on the name of the class from which the object is instantiated
and the superclasses extended and interfaces implemented by that class.

However, Java does not guarantee that subtypes satisfy the Liskov Substitution
Principle. For example, a subclass might not implement an operation in a
manner that is compatible with the superclass. (The behavior of subclass objects
are this different from the behavior of superclass objects.) Ensuring that Java
subclasses preserve the Substitution Principle is considered good programming
practice in most circumstances.

In a language with structural typing, the type of a value is based on the structure
of the value. Two values have the same type if they have the “same” structure;
that is, they have the same public data attributes and operations and these are
themselves of compatible types.

In structurally typed languages, a type S is a subtype of type T only if S has
all the public data values and operations of type T and the data values and
operations are themselves of compatible types. Subtype S may have additional
data values and operations not in T.

Haskell is primarily a structurally typed language.

3

1.3.3 Polymorphic operations

Polymorphism refers to the property of having “many shapes”. In programming
languages, we are primarily interested in how polymorphic function names (or
operator symbols) are associated with implementations of the functions (or
operations).

In general, two primary kinds of polymorphism exist in programming languages:

1. Ad hoc polymorphism, in which the same function name (or operator
symbol) can denote different implementations depending upon how it is
used in an expression. That is, the implementation invoked depends upon
the types of function’s arguments and return value.

There are two subkinds of ad hoc polymorphism.

a. Overloading refers to ad hoc polymorphism in which the language’s
compiler or interpreter determines the appropriate implementation
to invoke using information from the context. In statically typed
languages, overloaded names and symbols can usually be bound to
the intended implementation at compile time based on the declared
types of the entities. They exhibit early binding.

Consider the language Java. It overloads a few operator symbols, such
as using the + symbol for both addition of numbers and concatenation
of strings. Java also overloads calls of functions defined with the same
name but different signatures (patterns of parameter types and return
value). Java does not support user-defined operator overloading; C++
does.

Haskell’s type class mechanism, which we examine in a later chapter,
implements overloading polymorphism in Haskell. There are similar
mechanisms in other languages such as Scala and Rust.

b. Subtyping (also known as subtype polymorphism or inclusion poly-
morphism) refers to ad hoc polymorphism in which the appropriate
implementation is determined by searching a hierarchy of types. The
function may be defined in a supertype and redefined (overridden)
in subtypes. Beginning with the actual types of the data involved,
the program searches up the type hierarchy to find the appropriate
implementation to invoke. This usually occurs at runtime, so this
exhibits late binding.

The object-oriented programming community often refers to
inheritance-based subtype polymorphism as simply polymorphism.
This the polymorphism associated with the class structure in Java.

Haskell does not support subtyping. Its type classes do support class
extension, which enables one class to inherit the properties of another.
However, Haskell’s classes are not types.

4

2. Parametric polymorphism, in which the same implementation can be
used for many different types. In most cases, the function (or class)
implementation is stated in terms of one or more type parameters. In
statically typed languages, this binding can usually be done at compile
time (i.e., exhibiting early binding).

The object-oriented programming (e.g., Java) community often calls this
type of polymorphism generics or generic programming.

The functional programming (e.g., Haskell) community often calls this
simply polymorphism.

TODO: Bring “row polymorphism” into the above discussion?

1.3.4 Polymorphic variables

A polymorphic variable is a variable that can “hold” values of different types
during program execution.

For example, a variable in a dynamically typed language (e.g., Python) is
polymorphic. It can potentially “hold” any value. The variable takes on the
type of whatever value it “holds” at a particular point during execution.

Also, a variable in a nominally and statically typed, object-oriented language
(e.g., Java) is polymorphic. It can “hold” a value its declared type or of any of
the subtypes of that type. The variable is declared with a static type; its value
has a dynamic type.

A variable that is a parameter of a (parametrically) polymorphic function is
polymorphic. It may be bound to different types on different calls of the function.

1.4 What Next?
TODO

1.5 Exercises
TODO

1.6 Acknowledgements
In Spring 2018, I wrote the general Type System Concepts section as a part of
a chapter that discusses the type system of Python 3 [4] to support my use of
Python in graduate CSci 658 (Software Language Engineering) course.

In Summer 2018, I revised the section to become Section 5.2 in Chapter 5 of
the evolving textbook Exploring Languages with Interpreters and Functional
Programming (ELIFP) [7]. I also moved the “Kinds of Polymorphism” discussion
from the 2017 List Programming chapter to the new subsection “Polymorphic

5

Operations”. This textbook draft supported my Haskell-based offering of the
core course CSci 450 (Organization of Programming Languages).

In Fall 2018, I copied the general concepts section from ELIFP and recombined
it with the Python-specific content [4] to support my Python-based offering of
the elective course CSci 556 (Multiparadigm Programming) and for a posible
future book [5]. This chapter sought to remain compatible with the concepts,
terminology, and approach of the 2018 version of my textbook Exploring Lan-
guages with Interpreters and Functional Programming [7], in particular Chapters
2, 3, 5, 6, 7, 11, and 21.

In Spring 2019, I extracted the general concepts discussion [5] to create this
chapter [6] for use in my Scala-based offering of CSci 555 (Functional Program-
ming).

The type concepts discussion draws ideas from various sources:

• my general study of a variety of programming, programming language, and
software engineering over three decades [1–3,8–19].

• the Wikipedia articles on the Liskov Substitution Principle [20], Polymor-
phism [21], Ad Hoc Polymorphism [23], Parametric Polymorphism [24],
Subtyping [25], and Function Overloading [22]

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a unified bibliography
(e.g., using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

1.7 Terms and Concepts
TODO

Object, object characteristics (state, operations, identity, encapsulation, inde-
pendent lifecycle), immutable vs. mutable, type, subtype, Liskov Substitution
Principle, types of constants, variables, and expressions, static vs. dynamic
types, declared and inferred types, nominal vs. structural types, polymorphic
operations (ad hoc, overloading, subtyping, parametric/generic), early vs. late
binding, compile time vs. runtime, polymorphic variables.

1.8 References
[1] Richard Bird. 1998. Introduction to functional programming using Haskell

(Second ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

6

[2] Kathryn Heninger Britton, R. Alan Parker, and David L. Parnas. 1981.
A procedure for designing abstract interfaces for device interface modules.
In Proceedings of the 5th international conference on software engineering,
IEEE, San Diego, California, USA, 195–204.

[3] Timothy Budd. 2000. Understanding object-oriented programming with
Java (Updated ed.). Addison-Wesley, Boston, Massachusetts, USA.

[4] H. Conrad Cunningham. 2018. Python 3 reflexive metaprogramming.
University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.
html

[5] H. Conrad Cunningham. 2018. Multiparadigm programming with Python
3. University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/csci556/Py3MPP/Ch05/05_Python_Types.html

[6] H. Conrad Cunningham. 2019. Type system concepts. University of
Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/csci5
55/notes/TypeConcepts/TypeSystemConcepts.html

[7] H. Conrad Cunningham. 2022. Exploring programming languages with in-
terpreters and functional programming (ELIFP). University of Mississippi,
Department of Computer and Information Science, University, Mississippi,
USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/ELIFP/EL
IFP.pdf

[8] Cay S. Horstmann. 1995. Mastering object-oriented design in C++.
Wiley, Indianapolis, Indiana, USA.

[9] Cay S. Horstmann and Gary Cornell. 1999. Core Java 1.2: Volume
I—Fundamentals. Prentice Hall, Englewood Cliffs, New Jersey, USA.

[10] Paul Hudak. 1989. Conception, evolution, and application of functional
programming languages. ACM Computing Surveys 21, 3 (1989), 359–411.

[11] Roberto Ierusalimschy. 2013. Programming in Lua (Third ed.). Lua.org,
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil.

[12] Barbara Liskov. 1987. Keynote address—Data abstraction and hierarchy.
In Proceedings on object-oriented programming systems, languages, and
applications (OOPSLA ’87): addendum, ACM, Orlando, Florida, USA,
17–34.

[13] Bertrand Meyer. 1997. Object-oriented program construction (Second
ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

[14] Martin Odersky, Lex Spoon, and Bill Venners. 2008. Programming in
Scala (First ed.). Artima, Inc., Walnut Creek, California, USA.

[15] David L. Parnas. 1972. On the criteria to be used in decomposing systems
into modules. Communications of the ACM 15, 12 (December 1972),
1053–1058.

7

https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/csci556/Py3MPP/Ch05/05_Python_Types.html
https://john.cs.olemiss.edu/~hcc/csci556/Py3MPP/Ch05/05_Python_Types.html
https://john.cs.olemiss.edu/~hcc/csci555/notes/TypeConcepts/TypeSystemConcepts.html
https://john.cs.olemiss.edu/~hcc/csci555/notes/TypeConcepts/TypeSystemConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf

[16] David L. Parnas. 1976. On the design and development of program
families. IEEE Transactions on Software Engineering SE-2, 1 (1976),
1–9.

[17] Michael L. Scott. 2015. Programming language pragmatics (Third ed.).
Morgan Kaufmann, Waltham, Massachusetts, USA.

[18] Robert W. Sebesta. 1993. Concepts of programming languages (Second
ed.). Benjamin/Cummings, Boston, Massachusetts, USA.

[19] Simon Thompson. 1996. Haskell: The craft of programming (First ed.).
Addison-Wesley, Boston, Massachusetts, USA.

[20] Wikpedia: The Free Encyclopedia. 2022. Liskov substitution principle.
Retrieved from https://en.wikipedia.org/wiki/Liskov_substitution_prin
ciple

[21] Wikpedia: The Free Encyclopedia. 2022. Polymorphism (computer
science). Retrieved from https://en.wikipedia.org/wiki/Polymorphism
_(computer_science)

[22] Wikpedia: The Free Encyclopedia. 2022. Function overloading. Retrieved
from https://en.wikipedia.org/wiki/Function_overloading

[23] Wikpedia: The Free Encyclopedia. 2022. Ad hoc polymorphism. Re-
trieved from https://en.wikipedia.org/wiki/Ad_hoc_polymorphism

[24] Wikpedia: The Free Encyclopedia. 2022. Parametric polymophism.
Retrieved from https://en.wikipedia.org/wiki/Parametric_polymorphism

[25] Wikpedia: The Free Encyclopedia. 2022. Subtyping. Retrieved from
https://en.wikipedia.org/wiki/Subtyping

8

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Function_overloading
https://en.wikipedia.org/wiki/Ad_hoc_polymorphism
https://en.wikipedia.org/wiki/Parametric_polymorphism
https://en.wikipedia.org/wiki/Subtyping

	Type System Concepts
	Chapter Introduction
	Types and Subtypes
	Constants, Variables, and Expressions
	Static and dynamic
	Nominal and structural
	Polymorphic operations
	Polymorphic variables

	What Next?
	Exercises
	Acknowledgements
	Terms and Concepts
	References

