
Notes on
Functional Programming in Scala

Chapters 3-5

H. Conrad Cunningham

16 April 2022

Contents
3 Functional Data Structures 2

3.1 Chapter Introduction . 2
3.2 A List Algebraic Data Type . 2

3.2.1 Algebraic data types . 2
3.2.2 ADT confusion . 3
3.2.3 Using a Scala trait . 3

3.2.3.1 Aside on Haskell 4
3.2.4 Polymorphism . 4
3.2.5 Variance . 5

3.2.5.1 Covariance and contravariance 5
3.2.5.2 Function subtypes 6

3.2.6 Defining functions in companion object 7
3.2.7 Function to sum a list . 7
3.2.8 Function to multiply a list 8
3.2.9 Function to remove adjacent duplicates 9
3.2.10 Variadic function apply 10

3.3 Data Sharing . 11
3.3.1 Function to take tail of list 12
3.3.2 Function to drop from beginning of list 13
3.3.3 Function to append lists 13

3.4 Other List Functions . 15
3.4.1 Tail recursive function reverse 15
3.4.2 Higher-order function dropWhile 16
3.4.3 Curried function dropWhile 17

3.5 Generalizing to Higher Order Functions 18
3.5.1 Fold right . 18
3.5.2 Fold left . 21
3.5.3 Map . 23

1

3.5.4 Filter . 24
3.5.5 Flat map . 26

3.6 Classic Algorithms on Lists . 26
3.6.1 Insertion sort and bounded generics 26
3.6.2 Merge sort . 29

3.7 Lists in the Scala Standard Library 30
3.8 Source Code for Chapter . 32
3.9 Exercise Set A . 32
3.10 General Tree Algebraic Data Type 34

3.10.1 Description . 34
3.10.2 Exercise Set B . 34

3.11 Acknowledgements . 35
3.12 Terms and Concepts . 36

4 Handling Errors without Exceptions 37
4.1 Introduction . 37
4.2 Aside: On Null References . 37
4.3 An Option Algebraic Data Type 38

4.3.1 Method chaining in Scala 38
4.3.2 Type variance issues . 39
4.3.3 Parameter-passing modes 40
4.3.4 Implementing the Option methods 41
4.3.5 Using Option for statistical mean and variance 43
4.3.6 Using Option in the labelled digraph 44
4.3.7 Lifting . 45
4.3.8 For comprehensions . 45
4.3.9 Translating (desugaring) for-comprehensions 46
4.3.10 Adding for-comprehensions to data types 48

4.4 An Either Algebraic Data Type 49
4.5 Standard Library . 50
4.6 Summary . 51
4.7 Source Code for Chapter . 51
4.8 Exercises . 51
4.9 Acknowledgements . 51
4.10 Terms and Concepts . 52

5 Strictness and Laziness 53
5.1 Introduction . 53

5.1.1 Motivation . 53
5.1.2 What are strictness and nonstrictness? 54
5.1.3 Exploring nonstrictness 54

5.2 Lazy Lists . 56
5.2.1 Smart constructors and memoized streams 57
5.2.2 Helper functions . 58

5.3 Separating Program Description from Evaluation 59
5.3.1 Laziness promotes reuse 60

2

5.3.2 Incremental computations 61
5.3.3 For comprehensions on streams 63

5.4 Infinite Streams snd Corecursion 63
5.4.1 Prime numbers: Sieve of Erastosthenes 64
5.4.2 Function unfold . 65

5.5 Summary . 66
5.6 Source Code for Chapter . 66
5.7 Exercises . 66
5.8 Acknowledgements . 66
5.9 Terms and Concepts . 67

References 68

Copyright (C) 2016, 2018, 2019, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Note: I wrote this set of notes to accompany my lectures in the CSci 555
(Functional Programming) course based partly on the first edition of the book
Functional Programming in Scala [4] (i.e., the Red Book). In particular, I used
chapters 3, 4, and 5.

Prerequisites: In this set of notes, I assume the reader is familiar with the
programming concepts and Scala features covered in Notes on Scala for Java
Programmers [10], Recursion Styles, Correctness, and Efficiency (Scala Version)
[9], and Type System Concepts [11,16:5.2].

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good of April 2022 is a recent version
of Firefox from Mozilla.

3

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu
../ScalaForJava/ScalaForJava.html
../ScalaForJava/ScalaForJava.html
../../RecursionStyles/Scala/RecursionStylesScala.html
../TypeSystemConcepts/TypeSystemConcepts.html

3 Functional Data Structures
3.1 Chapter Introduction
To do functional programming, we construct programs from collections of pure
functions. Given the same arguments, a pure function always returns the same
result. The function application is thus referentially transparent. By referentially
transparent we mean that a name or symbol always denotes the same value in
some well-defined context in the program.

Such a pure function does not have side effects. It does not modify a variable
or a data structure in place. It does not set throw an exception or perform
input/output. It does nothing that can be seen from outside the function except
return its value Thus the data structures in pure functional programs must be
immutable, not subject to change as the program executes. (If mutable data
structures are used, no changes to the structures must be detectable outside the
function.)

For example, the Scala empty list—written as Nil or List()—represents a value
as immutable as the numbers 2 and 7.

Just as evaluating the expression 2 + 7 yields a new number 9, the concatenation
of list c and list d yields a new list (written c ++ d) with the elements of c
followed by the elements of d. It does not change the values of the original input
lists c and d.

Perhaps surprisingly, list concatenation does not require both lists to be copied,
as we see below.

3.2 A List Algebraic Data Type
To explore how to build immutable data structures in Scala, we examine a
simplified, singly linked list structure implemented as an algebraic data type.
This list data type is similar to the builtin Scala List data type.

What do we mean by algebraic data type?

3.2.1 Algebraic data types

An algebraic data type is a type formed by combining other types, that is, it is a
composite data type. The data type is created by an algebra of operations of
two primary kinds:

• a sum operation that constructs values to have one variant among several
possible variants. These sum types are also called tagged, disjoint union,
or variant types.

The combining operation is the alternation operator, which denotes the
choice of one but not both between two alternatives.

4

• a product operation that combines several values (i.e., fields) together to
construct a single value. These are tuple and record types.

The combining operation is the Cartesian product from set theory.

We can combine sums and products recursively into arbitrarily large structures.

An enumerated type is a sum type in which the constructors take no arguments.
Each constructor corresponds to a single value.

3.2.2 ADT confusion

Although sometimes the acronym ADT is used for both, an algebraic data type
is a different concept from an abstract data type.

• We specify an algebraic data type with its syntax (i.e., structure)—with
rules on how to compose and decompose them.

• We specify an abstract data type with its semantics (i.e., meaning)—with
rules about how the operations behave in relation to one another.

The modules we build with abstract interfaces, contracts, and data abstrac-
tion, such as the Rational Arithmetic modules from the book Exploring
Languages with Interpreters and Functional Programming [16, Ch. 7], are
abstract data types.

Perhaps to add to the confusion, in functional programming we sometimes use
an algebraic data type to help define an abstract data type.

3.2.3 Using a Scala trait

A list consists of a sequence of values, all of which have the same type. It is a
hierarchical data structure. It is either empty or it is a pair consisting of a head
element and a tail that is itself a list of elements.

We define List as an abstract type using a Scala trait. (We could also use
an abstract class instead of a trait.) We define the constructors for the
algebraic data type using the Scala case class and case object features.

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

Thus List is a sum type with two alternatives:

• Nil constructs the singleton case object that represents the empty list.

• Cons(h,t) constructs a new list from an element h, called the head, and a
list t, called the tail.

Cons itself is a product (tuple) type with two fields, one of which is itself a List.

5

The sealed keyword tells the Scala compiler that all alternative cases (i.e.,
subtypes) are declared in the current source file. No new cases can be added
elsewhere. This enables the compiler to generate safe and efficient code for
pattern matching.

As we have seen previously, for each case class and case object, the Scala
compiler generates:

• a constructor function (e.g., Cons)

• accessor functions (methods) for each field (e.g., head and tail on Cons)

• new definitions for equals, hashcode, and toString

In addition, the case object construct generates a singleton object—a new type
with exactly one instance.

Programs can use the constructors to build instances and use the pattern match-
ing to recognize the structure of instances and decompose them for processing.

List is a polymorphic type. What does polymorphic mean? We examine that
in Section 3.2.4.

3.2.3.1 Aside on Haskell In Haskell, an algebraic data type similar to the
Scala List[A] is the following:

data List a = Nil | Cons a (List a)
deriving (Show, Eq)

The Haskell List a is a type similar to the Scala List[A]. However, Nil and
Cons[A] are subtypes of List in Scala, but they are not types in Haskell. In
Haskell, they are constructor functions that return values of type List a.

3.2.4 Polymorphism

Polymorphism refers to the property of having “many shapes”. In programming
languages, we are primarily interested in how polymorphic function names (or
operator symbols) are associated with implementations of the functions (or
operations).

Scala is a hybrid, object-functional language. Its type system supports all
three types of polymorphism discussed in the notes on type systems concepts
[11,16:5.2].

• subtyping by extending classes and traits

• parametric polymorphism by using generic type parameters,

• overloading through both the Java-like mechanisms and Haskell-like “type
classes”

Scala’s type class pattern builds on the languages’s implicit classes and conver-
sions. A type class enables a programmer to enrich an existing class with an

6

extended interface and new methods without redefining the class or subclassing
it.

For example, Scala extends the Java String class (which is final and thus
cannot be subclassed) with new features from the RichString wrapper class.
The Scala implicit mechanisms associate the two classes “behind the scene”.
We defer further discussion of implicits until later in the semester.

Note: The type class feature arose from the language Haskell. Similar capabilities
are called extension methods in C# and protocols in Clojure and Elixir.

The List data type defined above is polymorphic; it exhibits both subtyping and
parametric polymorphism. Nil and Cons are subtypes of List. The generic type
parameter A denotes the type of the elements that occur in the list. For example,
List[Double] denotes a list of double-precision floating point numbers.

What does the + annotation mean in the definition List[+A]?

3.2.5 Variance

The presence of both subtyping and parametric polymorphism leads to the
question of how these features interact—that is, the concept of variance.

3.2.5.1 Covariance and contravariance Suppose we have a supertype
Fish with a subtype Bass, which in turn has a subtype BlackBass.

For generic data type List[A] as defined above, consider List[Fish] and
List[Bass].

• If List[Bass] is a subtype of List[Fish], preserving the subtyping order,
then the relationship is covariant.

• If List[Fish] is a subtype of List[Bass], reversing the subtyping order,
then the relationship is contravariant.

• If there is no subtype relationship between List[Fish] and List[Bass],
then the relationship is invariant (sometimes called nonvariant).

In the Scala definition List[+A] above, the + annotation in front of the A is a
variance annotation. The + means that parameter A is a covariant parameter of
List. That is, for all types X and Y such that X is a subtype of Y, then List[X]
is a is subtype of List[Y].

If we leave off the variance annotation, then List would be invariant in the
type parameter. Regardless of how types X and Y may be related, List[X] and
List[Y] are unrelated.

If we were put a - annotation in front of A, then we declare parameter A to be
contravariant. That is, for all types X and Y such that X is a subtype of Y, then
List[Y] is a is subtype of List[X].

7

In the definition of the List algebraic data type, Nil extends List[Nothing].
Nothing is a subtype of all other types. In conjunction with covariance, the Nil
list can be considered a list of any type.

Aside: Note the position of Nothing at the bottom of Scala’s unified type
hierarchy diagram [33].

3.2.5.2 Function subtypes Now consider first-class functions. When is one
function a subtype of another?

From the notes on type systems concepts [11,16:5.2], we recall that we should be
able to safely substitute elements of a subtype S for elements of type T because
S’s operations behave the “same” as T’s operations. That is, the relationship
satisfies the Liskov Substitution Principle [23,42].

Using the Fish type hierarchy above, consider a function of type Bass => X (for
some type X). It would be unsafe to use a function of type BlackBass => X in
its place. The function would be undefined for any values that are of type Bass
but are not of type BlackBass. So a function with a input type BlackBass is
not a subtype of a function with input Bass.

However, a function of type Fish => X would be defined for any value that is of
type Bass. So we need to examine the relationships between the output types
to determine what the subtyping relationship is between the functions.

Consider a function of type X => Bass. A function of type X => BlackBass
can be safely used in its place because a BlackBass is a Bass, so the function
yields a value of the expected type.

However, a function of type X => Fish cannot be safely used in place of the
X => Bass function. It may yield some value that is a Fish but not a Bass.

Thus we could safely use a Bass => Bass function in place of a Bass => Fish,
BlackBass => Bass, or BlackBass => Fish function. Thus Bass => Bass is
a subtype of the others.

However, we could not safely use a Bass => Bass function in place
of a Bass => BlackBass, BlackBass => BlackBass, Fish => Fish,
Fish => Bass, or Fish => BlackBass function. Thus Bass => Bass is
a not a subtype of the others.

Bringing these observations together, a function type S1 => S2 is a subtype of
a function type T1 => T2 if and only if:

• T1 is a subtype of S1 (i.e., contravariant on the input type)

• S2 is a subtype of T2 (i.e., covariant on the output type)

This general observation is consistent with the applicable theory.

For a Scala function of type S => T, we thus say the S is in a contravariant
position and T is in a covariant position.

8

https://docs.scala-lang.org/tour/unified-types.html
https://docs.scala-lang.org/tour/unified-types.html

TODO: May want to discuss multiargument functions.

3.2.6 Defining functions in companion object

The companion object for a trait or class is a singleton object with the same name
as the trait or class. The companion object for the List trait is a convenient
place to define functions for manipulating the lists.

Because List is a Scala algebraic data type (implemented with case classes),
we can use pattern matching in our function definitions. Pattern matching
helps enable the form of the algorithm to match the form of the data structure.
Or, in terms that Chiusano and Bjarnason use, it helps in following types to
implementations [4].

Note: Other writers call this design approach type-driven development [1] or
type-first development [27].

This is considered elegant. It is also pragmatic. The structure of the data often
suggests the algorithm needed for a task.

In general, lists have two cases that must be handled: the empty list (represented
by Nil) and the nonempty list (represented by Cons). The first yields a base leg
of a recursive algorithm; the second yields a recursive leg.

Breaking a definition for a list-processing function into these two cases is usually
a good place to begin. We must ensure the recursion terminates—that each
successive recursive call gets closer to the base case.

3.2.7 Function to sum a list

Consider a function sum to add together all the elements in a list of integers.
That is, if the list is v1, v2, v3, · · · , vn, then the sum of the list is the value
resulting from inserting the addition operator between consecutive elements of
the list:

v1 + v2 + v3 + · · · + vn

Because addition is an associative operation, the additions can be computed in
any order. That is, for any integers x, y, and z:

(x + y) + z = x + (y + z)

We can use the form of the data to guide the form of the algorithm—or follow
the type to the implementation of the function.

What is the sum of an empty list?

Because there are no numbers to add, then, intuitively, zero seems to be the
proper value for the sum.

9

In general, if some binary operation is inserted between the elements of a list,
then the result for an empty list is the identity element for the operation. Zero
is the identity element for addition because, for all integers x:

0 + x = x = x + 0

Now, how can we compute the sum of a nonempty list?

Because a nonempty list has at least one element, we can remove one element
and add it to the sum of the rest of the list. Note that the “rest of the list”
is a simpler (i.e., shorter) list than the original list. This suggests a recursive
definition.

The fact that we define lists recursively as a Cons of a head element with a
tail list suggests that we structure the algorithm around the structure of the
beginning of the list.

Bringing together the two cases above, we can define the function sum in Scala
using pattern matching as follows:

def sum(ints: List[Int]): Int = ints match {
case Nil => 0
case Cons(x,xs) => x + sum(xs)

}

The length of a non-nil argument decreases by one for each successive recur-
sive application. Thus sum will eventually be applied to a Nil argument and
terminate.

For a list consisting of elements 2, 4, 6, and 8, that is,

Cons(2,Cons(4,Cons(6,Cons(8,Nil))))

function sum computes:

2 + (4 + (6 + (8 + 0)))

Function sum is backward linear recursive; its time and space complexity are
both O(n), where n is the length of the input list.

We could, of course, redefine this to use a tail-recursive auxiliary function. With
tail call optimization, the recursion could be converted into a loop. It would still
be order O(n) in time complexity (but with a smaller constant factor) and O(1)
space.

3.2.8 Function to multiply a list

Now consider a function product to multiply together a list of floating point
numbers. The product of an empty list is 1 (which is the identity element for
multiplication). The product of a nonempty list is the head of the list multiplied
by the product of the tail of the list, except that, if a 0 occurs anywhere in the

10

list, the product of the list is 0. We can thus define product with two bases
cases and one recursive case, as follows:

def product(ds: List[Double]): Double = ds match {
case Nil => 1.0
case Cons(0.0, _) => 0.0
case Cons(x,xs) => x * product(xs)

}

Note: 0 is the zero element for the multiplication operation on real numbers.
That is, for all real numbers x:

0 ∗ x = x ∗ 0 = 0

For a list consisting of elements 2.0, 4.0, 6.0, and 8.0, that is,

Cons(2.0,Cons(4.0,Cons(6.0,Cons(8.0,Nil))))

function product computes:

2.0 * (4.0 * (6.0 * (8.0 * 1.0)))

For a list consisting of elements 2.0, 0.0, 6.0, and 8.0, function product “short
circuits” the computation as:

2.0 * 0.0

Like sum, function product is backward linear recursive; it has a worst-case time
complexity of O(n), where n is the length of the input list. It terminates because
the argument of each successive recursive call is one element shorter than the
previous call, approaching one of the base cases.

3.2.9 Function to remove adjacent duplicates

Consider the problem of removing adjacent duplicate elements from a list. That
is, we want to replace a group of adjacent elements having the same value by a
single occurrence of that value.

As with the above functions, we let the form of the data guide the form of the
algorithm, following the type to the implementation.

The notion of adjacency is only meaningful when there are two or more of
something. Thus, in approaching this problem, there seem to be three cases to
consider:

• The argument is a list whose first two elements are duplicates; in which
case one of them should be removed from the result.

• The argument is a list whose first two elements are not duplicates; in which
case both elements are needed in the result.

• The argument is a list with fewer than two elements; in which case the
remaining element, if any, is needed in the result.

11

Of course, we must be careful that sequences of more than two duplicates are
handled properly.

Our algorithm thus can examine the first two elements of the list. If they are
equal, then the first is discarded and the process is repeated recursively on
the list remaining. If they are not equal, then the first element is retained in
the result and the process is repeated on the list remaining. In either case the
remaining list is one element shorter than the original list. When the list has
fewer than two elements, it is simply returned as the result.

In Scala, we can define function remdups as follows:

def remdups[A](ls: List[A]): List[A] = ls match {
case Cons(x, Cons(y,ys)) =>

if (x == y)
remdups(Cons(y,ys)) // duplicate

else
Cons(x,remdups(Cons(y,ys))) // non-duplicate

case _ => ls
}

Function remdups puts the base case last in the pattern match to take advantage
of the wildcard match using _. This needs to match either Nil and Cons(_,Nil).

The function also depends upon the ability to compare any two elements of the
list for equality. Because equals is builtin operation on all types in Scala, we
can define this function polymorphically without constraints on the type variable
A.

Like the previous functions, remdups is backward linear recursive; it takes a
number of steps that is proportional to the length of the list. This function has
a recursive call on both the duplicate and non-duplicate legs. Each of these
recursive calls uses a list that is shorter than the previous call, thus moving
closer to the base case.

3.2.10 Variadic function apply

We can also add a function apply to the companion object List.

def apply[A](as: A*): List[A] =
if (as.isEmpty)

Nil
else

Cons(as.head, apply(as.tail: _*))

Scala treats an apply method in an object specially. We can invoke the apply
method using a postfix () operator. Given a singleton object X with an apply
method, the Scala complier translates the notation X(p) into the method call
X.apply(p).

12

In the List data type, function apply is a variadic function. It accepts zero or
more arguments of type A as denoted by the type annotation A* in the parameter
list. Scala collects these arguments into a Seq (sequence) data type for processing
within the function. The special syntax _* reverses this and passes a sequence
to another function as variadic parameters. Builtin Scala data structures such
as lists, queues, and vectors implement Seq. It provides methods such as the
isEmpty, head, and tail methods used in apply.

It is common to define a variadic apply methods for algebraic data types. This
method enables us to create instances of the data type conveniently. For example,
List(1,2,3) creates a three-element list of integers with 1 at the head.

3.3 Data Sharing
Suppose we have the declaration

val xs = Cons(1,Cons(2,Cons(3,Nil)))

or the more concise equivalent using the apply method:

val xs = List(1,2,3)

As we learned in the data structures course, we can implement this list as a
linked list xs with three cells with the values 1, 2, and 3, as shown in Figure 3.1.

Figure 3.1: Data sharing in lists.

Consider the following declarations

val ys = Cons(0,xs)
val zs = xs.tail

where

• Cons(0,xs) returns a list that has a new cell containing 0 in front of the
previous list

• xs.tail returns the list consisting of the last two elements of xs

If the linked list xs is immutable (i.e., the values and pointers in the three cells
cannot be changed), then neither of these operations requires any copying.

13

• The first just constructs a new cell containing 0, links it to the first cell in
list xs, and initializes ys with a reference to the new cell.

• The second just returns a reference to the second cell in list xs and initializes
zs with this reference.

• The original list xs is still available, unaltered.

This is called data sharing. It enables the programming language to implement
immutable data structures efficiently, without copying in many key cases.

Also, such functional data structures are persistent because existing references
are never changed by operations on the data structure.

3.3.1 Function to take tail of list

Consider a function that takes a List and returns its tail List. (This is different
from the tail accessor method on Cons.)

If the List is a Cons, then the function can return the tail element of the cell.
What should it do if the list is a Nil?

There are several possibilities:

• return Nil

• throw an exception (with perhaps a custom error string)

• leave the function undefined in this case (which would result with a standard
pattern match exception)

Generally speaking, the first choice seems misleading. It seems illogical for an
empty list to have a tail. And consider a typical usage of the function. It is
normally an error for a program to attempt to get the tail of an empty list. A
program can efficiently check whether a list is empty or not. So, in this case, it
is probably better to take the second or third approach.

We choose to implement tailList so that it explicitly throws an exception. It
can be defined in the companion object for List as follows:

def tailList[A](ls: List[A]): List[A] = ls match {
case Nil => sys.error("tail of empty list")
case Cons(_,xs) => xs

}

Above, the value of the head field of the Cons pattern is irrelevant in the
computation on the right-hand side. There is no need to introduce a new
variable for that value, so we use the wildcard variable _ to indicate that the
value is not needed.

Function tailList is O(1) in time complexity. It does not need to copy the
list. It is sufficient for it to just return a reference to the tail of the original
immutable list. This return value shares the data with its input argument.

14

3.3.2 Function to drop from beginning of list

We can generalize tailList to a function drop that removes the first n elements
of a list, as follows:

def drop[A](ls: List[A], n: Int): List[A] =
if (n <= 0) ls
else ls match {

case Nil => Nil
case Cons(_,xs) => drop(xs, n-1)

}

The drop function terminates when either the list argument is Nil or the
integer argument 0 or negative. The function eventually terminates because each
recursive call both shortens the list and decrements the integer.

This function takes a different approach to the empty list issue than tailList
does. Although it seems illogical to take the tailList of an empty list, dropping
the first element from an empty list seems subtly different. Given that we often
use drop in cases where the length of the input list is unknown, dropping the
first element of an empty list does not necessarily indicate a program error.

Suppose drop throws an exception when called with an empty list. To avoid this
situation, the program might need to determine the length of the list argument.
This is inefficient, usually requiring a traversal of the entire list to count the
elements.

3.3.3 Function to append lists

Consider the definition of an append (list concatenation) function. We must
define the append function in terms of the constructors Nil and Cons, already
defined list functions, and recursive applications of itself.

As with previous functions, we follow the type to the implementation—let the
form of the data guide the form of the algorithm.

The Cons constructor takes an element as its left operand and a list as its right
operand and returns a new list with the left operand as the head and the right
operand as the tail.

Similarly, append must take a list as its left operand and a list as its right
operand and return a new list with the left operand as the initial segment and
the right operand as the final segment.

Given the definition of Cons, it seems reasonable that an algorithm for append
must consider the structure of its left operand. Thus we consider the cases for
nil and non-nil left operands.

• If the left operand is Nil, then the function can just return the right
operand.

15

• If the left operand is a Cons (that is, non-nil), then the result consists of
the left operand’s head followed by the append of the left operand’s tail to
the right operand.

In following the type to the implementation, we use the form of the left operand
in a pattern match. We define append as follows:

def append[A](ls: List[A], rs: List[A]): List[A] = ls match {
case Nil => rs
case Cons(x,xs) => Cons(x, append(xs, rs))

}

For the recursive application of append, the length of the left operand decreases
by one. Hence the left operand of an append application eventually becomes
Nil, allowing the evaluation to terminate.

The number of steps needed to evaluate append(as,bs) is proportional to the
length of as, the left operand. That is, it is O(n), where n is the length of list
as.

Moreover, append(as,bs) only needs to copy the list as. The list bs is shared
between the second operand and the result. If we did a similar function to
append two (mutable) arrays, we would need to copy both input arrays to create
the output array. Thus, in this case, a linked list is more efficient than arrays!

The append operation has a number of useful mathematical (algebraic) properties,
for example, associativity and an identity element.

Associativity—For any finite lists xs, ys, and zs:

append(xs,append(ys,zs)) = append(append(xs,ys),zs)

Identity—For any finite list xs:

append(Nil,xs) = append(xs,Nil) = xs

Scala’s builtin List type uses the infix operator ++ for the “append” operation.
For this operator, associativity can be stated conveniently with the equation:

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

Mathematically, the List data type and the binary operation append form a
kind of abstract algebra called a monoid. Function append is closed (i.e., it takes
two lists and gives a list back), is associative, and has an identity element.

Aside: For more information on operations and algebraic structures, see the
Review of Relevant Mathematics chapter [16, Ch. 80] in my book Exploring
Languages with Interpreters and Functional Programming. For discussion of how
to prove properties like those above, see the Proving Haskell Laws chapter [16,
Ch. 25] in the same book.

16

3.4 Other List Functions
3.4.1 Tail recursive function reverse

Consider the problem of reversing the order of the elements in a list.

Again we can use the structure of the data to guide the algorithm development.
If the argument is a nil list, then the function returns a nil list. If the argument
is a non-nil list, then the function can append the head element at the back of
the reversed tail.

def rev[A](ls: List[A]): List[A] = ls match {
case Nil => Nil
case Cons(x,xs) => append(rev(xs),List(x))

}

Given that evaluation of append terminates, the evaluation of rev also terminates
because all recursive applications decrease the length of the argument by one.

How efficient is this function?

The evaluation of rev takes O(nˆ2) steps, where n is the length of the argument.
There are O(n) applications of rev . For each application of rev there are O(n)
applications of append .

The initial list and its reverse do not share data.

Function rev has a number of useful properties, for example a distribution and
an inverse properties.

Distribution—For any finite lists xs and ys:

rev(append(xs,ys)) = append(rev(ys), rev(xs))

Inverse—For any finite list xs:

rev(rev(xs)) = xs

Can we define a function to reverse a list using a “more efficient” tail recursive
solution?

As we have seen, a common technique for converting a backward linear recursive
definition like rev into a tail recursive definition is to use an accumulating
parameter to build up the desired result incrementally. A possible definition for
a tail recursive auxiliary function is:

def revAux[A](ls: List[A], as: List[A]): List[A] = ls match {
case Nil => as
case Cons(x,xs) => revAux(xs,Cons(x,as))

}

In this definition parameter as is the accumulating parameter. The head of the
first argument becomes the new head of the accumulating parameter for the tail

17

recursive call. The tail of the first argument becomes the new first argument for
the tail recursive call.

We know that revAux terminates because, for each recursive application, the
length of the first argument decreases toward the base case of Nil.

We note that rev(xs) is equivalent to revAux(xs,Nil) .

To define a single-argument replacement for rev , we can embed the definition of
revAux’ as an auxiliary function within the definition of a new function reverse
.

def reverse[A](ls: List[A]): List[A] = {
def revAux[A](rs: List[A], as: List[A]): List[A] =

rs match {
case Nil => as
case Cons(x,xs) => revAux(xs,Cons(x,as))

}
revAux(ls,Nil)

}

Function reverse(xs) returns the value from revAux(xs,Nil).

How efficient is this function?

The evaluation of reverse takes O(n) steps, where n is the length of the argument.
There is one application of revAux for each element; revAux requires a single
O(1) Cons operation in the accumulating parameter.

Where did the increase in efficiency come from?

Each application of rev applies append, a linear time (i.e., O(n)) function.
In revAux, we replaced the applications of append by applications of Cons, a
constant time (i.e., O(1)) function.

In addition, a compiler or interpreter that does tail call optimization can translate
this tail recursive call into a loop on the host machine.

3.4.2 Higher-order function dropWhile

Consider a function dropWhile that removes elements from the front of a List
while its predicate argument (a Boolean function) holds.

def dropWhile [A](ls: List[A], f: A => Boolean): List[A] =
ls match {

case Cons(x,xs) if f(x) => dropWhile(xs, f)
case _ => ls

}

This higher-order function terminates when either the list is empty or the head
of the list makes the predicate false. For each successive recursive call, the list

18

argument is one element shorter than the previous call, so the function eventually
terminates.

If evaluation of function argument p is O(1), then function dropWhile has worst-
case time complexity O(n), where n is the length of its first operand. The result
list shares data with the input list.

3.4.3 Curried function dropWhile

We often pass anonymous functions to higher-order utility functions like
dropwhile, which has the signature:

def dropWhile[A](ls: List[A], f: A => Boolean): List[A]

When we call dropWhile with an anonymous function for f, we must specify the
type of its argument, as follows:

val xs: List[Int] = List(1,2,3,4,5)
val ex1 = dropWhile(xs, (x: Int) => x < 4)

Even though it is clear from the first argument that higher order argument f
must take an integer as its argument, the Scala type inference mechanism cannot
detect this.

However, if we rewrite dropWhile in the following form, type inference can work
as we want:

def dropWhile2[A](ls: List[A])(f: A => Boolean): List[A] =
ls match {

case Cons(x,xs) if f(x) => dropWhile2(xs)(f)
case _ => ls

}

Function dropWhile2 is written in curried form above. In this form, a function
that takes two arguments can be represented as a function that takes the first
argument and returns a function, which itself takes the second argument.

If we apply dropWhile2 to just the first argument, we get a function. We call
this a partial application of dropWhile2.

More generally, a function that takes multiple arguments can be represented by
a function that takes its arguments in groups of one or more from left to right.
If the function is partially applied to the first group, it returns a function that
takes the remaining groups, and so forth.

Currying and partial application are directly useful in a number of ways in our
programs. Here currying is indirectly useful by assisting type inference. If a
function is defined with multiple groups of arguments, the type information
flows from one group to another, left to right. In dropWhile2, the first argument
group binds type variable A to Int. Then this binding can be used in the second
argument group.

19

3.5 Generalizing to Higher Order Functions
3.5.1 Fold right

Consider the sum and product functions we defined above, ignoring the short-cut
handling of the zero element in product.

def sum(ints: List[Int]): Int = ints match {
case Nil => 0
case Cons(x,xs) => x + sum(xs)

}

def product(ds: List[Double]): Double = ds match {
case Nil => 1.0
case Cons(x,xs) => x * product(xs)

}

What do sum and product have in common? What differs?

Both exhibit the same pattern of computation.

• Both take a list as input.

But the element type differs. Function sum takes a list of Int values and
product takes a list of Double values.

• Both insert a binary operator between all the consecutive elements of the
list in order to reduce the list to a single value.

But the binary operation differs. Function sum applies integer addition
and product applies double-precision floating-point multiplication.

• Both group the operations from the right to the left.

• Both functions return some value for an empty list. The function extends
nonempty input lists to implicitly include this value as the “rightmost”
value of the input list.

But the actual value differs.

Function sum returns integer 0, the (right) identity element for addition.

Function product returns 1.0, the (right) identity element for multiplica-
tion.

In general, this value could be something other than the (right) identity
element.

• Both return a value of the same element type as the input list.

But the input type differs, as we noted above.

Both functions insert operations of type (A,A) => A between elements a list of
type List[A], for some generic type A.

20

But these are special cases of more general operations of type (A,B) => B. In
this case, the value returned must be of type B in the case of both empty and
nonempty lists.

Whenever we recognize a pattern like this, we can systematically generalize the
function definition as follows:

1. Do a scope-commonality-variability (SCV) analysis [7] on the set of related
functions.

That is, identify what is to be included and what not (i.e., the scope), the
parts of functions that are the same (the commonalities or frozen spots),
and the parts that differ (the variabilities or hot spots).

2. Leave the commonalities in the generalized function’s body.

3. Move the variabilities into the generalized function’s header—its type
signature and parameter list.

• If the part moved to the generalized function’s parameter list is an
expression, then make that part a function with a parameter for each
local variable accessed.

• If a data type potentially differs from a specific type used in the set
of related functions, then add a type parameter to the generalized
function.

• If the same data value or type appears in multiple roles, then consider
adding distinct type or value parameters for each role.

4. Consider other approaches if the generalized function’s type signature and
parameter list become too complex.

For example, we can introduce new data or procedural abstractions for
parts of the generalized function. These may be in the same “module” (i.e.,
object, class, etc.) as the generalized function, in an appropriately defined
separate “module” that is imported, etc. A separate module may better
accomplish the desired parameterization of the function.

A similar approach can be used to generalize a whole class.

Following the above guidelines, we can express the common pattern from sum
and product as a new (broadly useful) polymorphic, higher-order function
foldRight, which we define as follows:

def foldRight[A,B](ls: List[A], z: B)(f: (A, B) => B): B =
ls match {

case Nil => z
case Cons(x,xs) => f(x, foldRight(xs, z)(f))

}

This function:

21

• passes in the binary operation f that combines the list elements

• passes in the element z to be returned for empty lists (often the right
identity element for the operation, but this is not required)

• uses two type parameters A and B—one for the type of elements in the list
and one for the type of the result

The foldRight function “folds” the list elements (of type A) into a value (of type
B) by “inserting” operation f between the elements, with value z “appended” as
the rightmost element. For example, foldRight(List(1,2,3),z)(f) expands
to f(1,f(2,f(3,z))).

Function foldRight is not tail recursive, so it needs a new stack frame for each
element of the input list. If its list argument is long or the folding function itself
is expensive, then the function can terminate with a stack overflow error.

We can specialize foldRight to have the same functionality as sum and product.

def sum2(ns: List[Int]) =
foldRight(ns, 0)((x,y) => x + y)

def product2(ns: List[Double]) =
foldRight(ns, 1.0)(_ * _)

The expression (_ * _) in product2 is a concise notation for the anonymous
function (x,y) => x * y. The two underscores denote two distinct anonymous
variables. This concise notation can be used in a context where Scala’s type
inference mechanism can determine the types of the anonymous variables.

We can construct a recursive function to compute the length of a polymorphic
list. However, we can also express this computation using foldRight, as follows:

def length[A](ls: List[A]): Int =
foldRight(ls, 0)((_,acc) => acc + 1)

We use the z parameter to accumulate the count, starting it at 0. Higher order
argument f is a function that takes an element of the list as its left argument
and the previous accumulator as its right argument and returns it incremented
by 1. In this application, z is not the identity element for f by a convenient
beginning value for the counter.

We can construct an “append” function that uses foldRight as follows:

def append2[A](ls: List[A], rs: List[A]): List[A] =
foldRight(ls, rs)(Cons(_,_))

Here the list that foldRight operates on the first argument of the append. The
z parameter is the entire second argument and the combining function is just
Cons. So the effect is to replace the Nil at the end of the first list by the entire
second list.

22

We can construct a recursive function that takes a list of lists and returns a
“flat” list that has the same elements in the same order. We can also express
this concat function in terms of foldRight, as follows:

def concat[A](ls: List[List[A]]): List[A] =
foldRight(ls, Nil: List[A])(append)

Function append takes time proportional to the length of its first list argument.
This argument does not grow larger because of right associativity of foldRight.
Thus concat takes time proportional to the total length of all the lists.

Above, we “pass” the append function without writing an explicit anonymous
function definition (i.e., function literal) such as (xs,ys) => append(xs,ys)
or append(_,_).

In concat, for which Scala can infer the types of append’s arguments, the
compiler can generate the needed function literal. In other cases, we would need
to use partial application notation such as

append _

or an explicit function literal such as

(xs: List[A], ys: List[A]) => append(xs,ys)

to enable the compiler to infer the types.

Above we defined function foldRight as a backward recursive function that
processes the elements of a list one by one. However, as we have seen, it is often
more useful to think of foldRight as a powerful list operator that reduces the
element of the list into a single value. We can combine foldRight with other
operators to conveniently construct list processing programs.

3.5.2 Fold left

We designed function foldRight above as a backward linear recursive function
with the signature:

foldRight[A,B](as: List[A], z: B)(f: (A, B) => B): B

As noted:

foldRight(List(1,2,3),z)(f) == f(1,f(2,f(3,z)))

Consider a function foldLeft such that:

foldLeft(List(1,2,3),z)(f) == f(f(f(z,1),2),3)

This function folds from the left. It offers us the opportunity to use parameter z
as an accumulating parameter in a tail recursive implementation, as follows:

@annotation.tailrec
def foldLeft[A,B](ls: List[A], z: B)(f: (B, A) => B): B =

ls match {

23

case Nil => z
case Cons(x,xs) => foldLeft(xs, f(z,x))(f)

}

In the first line above, we annotate function foldLeft as tail recursive using
@annotation.tailrec. If the function is not tail recursive, the compiler gives an
error, rather than silently generating code that does not use tail call optimization
(i.e., does not convert the recursion to a loop).

We can implement list sum, product, and length functions with foldLeft, similar
to what we did with foldRight.

def sum3(ns: List[Int]) =
foldLeft(ns, 0)(_ + _)

def product3(ns: List[Double]) =
foldLeft(ns, 1.0)(_ * _)

Given that addition and multiplication of numbers are associative and have
identity elements, sum3 and product3 use the same values for parameters z and
f as foldRight.

Function length2 that uses foldLeft is like length except that the arguments
of function f are reversed.

def length2[A](ls: List[A]): Int =
foldLeft(ls, 0)((acc,_) => acc + 1)

We can also implement list reversal using foldLeft as follows:

def reverse2[A](ls: List[A]): List[A] =
foldLeft(ls, List[A]())((acc,x) => Cons(x,acc))

This gives a solution similar to the tail recursive reverse function above. The z
value is initially an empty list; the folding function f uses Cons to “attach” each
element of the list to front of the accumulator, incrementally building the list in
reverse order.

Because foldLeft is tail recursive and foldRight is not, foldLeft is usually
safer and more efficient to use in than foldRight. (If the list argument is lazily
evaluated or the function argument f is nonstrict in at least one of its arguments,
then there are other factors to consider. We will discuss what we mean by “lazily
evaluated” and “nonstrict” later in the course.)

To avoid the stack overflow situation with foldRight, we can first apply reverse
to the list argument and then apply foldLeft as follows:

def foldRight2[A,B](ls: List[A], z: B)(f: (A,B) => B): B =
foldLeft(reverse(ls), z)((b,a) => f(a,b))

The combining function in the call to foldLeft is the same as the one passed to
foldRight2 except that its arguments are reversed.

24

3.5.3 Map

Consider the following two functions, noting their type signatures and patterns
of recursion.

The first, squareAll, takes a list of integers and returns the corresponding list
of squares of the integers.

def squareAll(ns: List[Int]): List[Int] = ns match {
case Nil => Nil
case Cons(x, xs) => Cons(x*x, squareAll(xs))

}

The second, lengthAll, takes a list of lists and returns the corresponding list of
the lengths of the element lists

def lengthAll[A](lss: List[List[A]]): List[Int] =
lss match {

case Nil => Nil
case Cons(xs, xss) => Cons(length(xs),lengthAll(xss))

}

Although these functions take different kinds of data (a list of integers versus
a list of polymorphically typed lists) and apply different operations (squaring
versus list length), they exhibit the same pattern of computation. That is, both
take a list and apply some function to each element to generate a resulting list
of the same size as the original.

As with the fold functions, the combination of polymorphic typing and higher-
order functions allows us to abstract this pattern of computation into a higher-
order function.

We can abstract the pattern of computation common to squareAll and
lengthAll as the (broadly useful) function map, defined as follows:

def map[A,B](ls: List[A])(f: A => B): List[B] = ls match {
case Nil => Nil
case Cons(x,xs) => Cons(f(x),map(xs)(f))

}

Function map takes a list of type A elements, applies function f of type A => B
to each element, and returns a list of the resulting type B elements.

Thus we can redefine squareAll and lengthAll using map as follows:

def squareAll2(ns: List[Int]): List[Int] =
map(ns)(x => x*x)

def lengthAll2[A](lss: List[List[A]]): List[Int] =
map(lss)(length)

We can implement map itself using foldRight as follows:

25

def map1[A,B](ls: List[A])(f: A => B): List[B] =
foldRight(ls, Nil: List[B])((x,xs) => Cons(f(x),xs))

The folding function (x,xs) => Cons(f(x),xs) applies the mapping function
f to the next element of the list (moving right to left) and attaches the result on
the front of the processed tail.

As implemented above, function map is backward recursive; it thus requires a
stack frame for each element of its list argument. For long lists, the recursion can
cause a stack overflow error. Function map1 uses foldRight, which has similar
characteristics. So we need to use these functions with care. However, we can
use the reversal technique illustrated in foldRight2 if necessary.

We could also optimize function map using local mutation. That is, we can use a
mutable data structure within the map function but not allow this structure to
be accessed outside of map. The following function takes that approach, using a
ListBuffer:

def map2[A,B](ls: List[A])(f: A => B): List[B] = {
val buf = new collection.mutable.ListBuffer[B]

@annotation.tailrec
def go(ls: List[A]): Unit = ls match {

case Nil => ()
case Cons(x,xs) => buf += f(x); go(xs)

}

go(ls)
List(buf.toList: _*)

}

A ListBuffer is a mutable list data structure from the Scala library. The
operation += appends a single element to the end of the buffer in constant time.
The method toList converts the ListBuffer to a Scala immutable list, which
is similar to the data structure we are developing in this module.

3.5.4 Filter

Consider the following two functions.

The first, getEven, takes a list of integers and returns the list of those integers
that are even (i.e., are multiples of 2). The function preserves the relative order
of the elements in the list.

def getEven(ns: List[Int]): List[Int] = ns match {
case Nil => Nil
case Cons(x,xs) =>

if (x % 2 == 0) // divisible evenly by 2
Cons(x,getEven(xs))

26

else
getEven(xs)

}

The second, doublePos, takes a list of integers and returns the list of doubles of
the positive integers from the input list; it preserves the order of the elements.

def doublePos(ns: List[Int]): List[Int] = ns match {
case Nil => Nil
case Cons(x,xs) =>

if (0 < x)
Cons(2*x, doublePos(xs))

else
doublePos(xs)

}

We can abstract the pattern of computation common to getEven and doublePos
as the (broadly useful) function filter, defined as follows:

def filter[A](ls: List[A])(p: A => Boolean): List[A] =
ls match {

case Nil => Nil
case Cons(x,xs) =>

val fs = filter(xs)(p)
if (p(x)) Cons(x,fs) else fs

}

Function filter takes a predicate p of type A => Boolean a list of type List[A]
and returns a list containing those elements that satisfy p, in the same order as
the input list.

Therefore, we can redefine getEven and doublePos as follows:

def getEven2(ns: List[Int]): List[Int] =
filter(ns)(x => x % 2 == 0)

def doublePos2(ns: List[Int]): List[Int] =
map(filter(ns)(x => 0 < x))(y => 2 * y)

Function doublePos2 exhibits both the filter and the map patterns of compu-
tation.

The higher-order functions map and filter allowed us to restate the definitions
of getEven and doublePos in a succinct form.

We can implement filter in terms of foldRight as follows:

def filter1[A](ls: List[A])(p: A => Boolean): List[A] =
foldRight(ls, Nil:List[A])((x,xs) => if (p(x)) Cons(x,xs) else xs)

Above, the folding function

27

(x,xs) => if (p(x)) Cons(x,xs) else xs

applies the filter predicate p to the next element of the list (moving right to left).
If the predicate evaluates to true, the folding function attaches that element on
the front of the processed tail; otherwise, it omits the element from the result.

3.5.5 Flat map

The higher-order function map applies its function argument f to every element
of a list and returns the list of results. If the function argument f returns a list,
then the result is a list of lists. Often we wish to flatten this into a single list,
that is, apply a function like concat defined in Section 3.5.1.

This computation is sufficiently common that we give it the name flatMap. We
can define it in terms of map and concat as

def flatMap[A,B](ls: List[A])(f: A => List[B]): List[B] =
concat(map(ls)(f))

or by combining map and concat into one foldRight as:

def flatMap1[A,B](ls: List[A])(f: A => List[B]): List[B] =
foldRight(ls, Nil: List[B])(

(x: A, ys: List[B]) => append(f(x),ys))

Above, the function argument to foldRight applies the flatMap function argu-
ment f to each element of the list argument and then appends the resulting list
in front of the result from processing the elements to the right.

We can also define filter in terms of flatMap as follows:

def filter2[A](ls: List[A])(p: A => Boolean): List[A] =
flatMap(ls)(x => if (p(x)) List(x) else Nil)

The function argument to flatMap generates a one-element list if the filter
predicate p is true and an empty list if it is false.

3.6 Classic Algorithms on Lists
3.6.1 Insertion sort and bounded generics

Consider a function to sort the elements of a list into ascending order. A simple
algorithm to do this is insertion sort. To sort a non-empty list with head x and
tail xs, sort the tail xs and insert the element x at the right position in the
result. To sort an empty list, just return it.

If we restrict the function to integer lists, we get the following Scala functions:

def isort(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case Cons(x,xs) => insert(x,isort(xs))

}

28

def insert(x: Int, xs: List[Int]): List[Int] = xs match {
case Nil => List(x)
case Cons(y,ys) =>

if (x <= y)
Cons(x,xs)

else
Cons(y,insert(x,ys))

}

Insertion sort has a (worst and average case) time complexity of O(nˆ2) where n
is the length of the input list. (Function isort requires n consecutive recursive
calls; each call uses function insert which itself requires on the order of n
recursive calls.)

Now suppose we want to generalize the sorting function and make it polymorphic.
We cannot just add a type parameter A and substitute it for Int everywhere.
Although all Scala data types support equality and inequality comparison, not
all types can be compared on a total ordering (<, <=, >, and >= as well).

Fortunately, the Scala library provides a trait Ordered. Any class that provides
the other comparisons can extend this trait; the standard types in the library do
so. This trait adds the comparison operators as methods so that they can be
called in infix form.

trait Ordered[A] {
def compare(that: A): Int
def < (that: A): Boolean = (this compare that) < 0
def > (that: A): Boolean = (this compare that) > 0
def <=(that: A): Boolean = (this compare that) <= 0
def >=(that: A): Boolean = (this compare that) >= 0
def compareTo(that: a) = compare(that)

}

We thus need to restrict the polymorphism on A to be a subtype of Ordered[A]
by putting an upper bound on the type as follows:

def isort[A <: Ordered[A]](ls: List[A]): List[A]

Note: In addition to upper bounds, we can use a lower bound. A constraint
A :> T requires type A to be a supertype of type T. We can also specify both
an upper and a lower bound on a type such as T1 <: A <: T2,

By using the upper bound constraint, we can sort data from any type that
extends Ordered. However, the primitive types inherited from Java do not
extend Ordered.

Fortunately, the Scala library defines implicit conversions between the Java
primitive types and Scala’s enriched wrapper types. (This is the “type class”
mechanism we discussed earlier.) We can use a weaker view bound constraint,

29

denoted by <% instead of <:. This A to be any type that is a subtype of or
convertible to Ordered[A].

def isort1[A <% Ordered[A]](ls: List[A]): List[A] =
ls match {

case Nil => Nil
case Cons(x,xs) => insert1(x,isort1(xs))

}

def insert1[A <% Ordered[A]](x: A, xs: List[A]): List[A] =
xs match {

case Nil => List(x)
case Cons(y,ys) =>

if (x <= y)
Cons(x,xs)

else
Cons(y,insert1(x,ys))

}

We could define insert inside isort and avoid the separate type parameteriza-
tion. But insert is separately useful, so it is reasonable to leave it external.

An alternative to use of the bound would be to pass in the needed comparison
predicate, as follows:

def isort2[A](ls: List[A])(leq: (A,A) => Boolean): List[A] =
ls match {

case Nil => Nil
case Cons(x,xs) => insert2(x,isort2(xs)(leq))(leq)

}

def insert2[A](x:A, xs:List[A])(leq:(A,A)=>Boolean):List[A] =
xs match {

case Nil => List(x)
case Cons(y,ys) =>

if (leq(x,y))
Cons(x,xs)

else
Cons(y,insert2(x,ys)(leq))

}

Above we expressed both functions in curried form. By putting the comparison
function last, we enabled the compiler to infer the argument types for the
function.

If we placed the function in the first argument group, the user of the function
would have to supply the types. However, putting the comparison function
first might allow a more useful partial application of the isort to a comparison
function.

30

3.6.2 Merge sort

The insertion sort given in Section 3.6.2 has an average case time complexity of
O(nˆ2) where n is the length of the input list.

We now consider a more efficient function to sort the elements of a list: merge
sort. Merge sort works as follows:

• If the list has fewer than two elements, then it is already sorted.

• If the list has two or more elements, then we split it into two sublists, each
with about half the elements, and sort each recursively.

• We merge the two ascending sublists into an ascending list.

For a general implementation, we specify the type of list elements and the function
to be used for the comparison of elements, giving the following implementation:

def msort[A](less: (A, A) => Boolean)(ls: List[A]): List [A] =
{

def merge(as: List[A], bs: List[A]): List[A] =
(as,bs) match {

case (Nil,_) => bs
case (_,Nil) => as
case (Cons(x,xs),Cons(y,ys)) =>

if (less(x,y))
Cons(x,merge(xs,bs))

else
Cons(y,merge(as,ys))

}

val n = length(ls)/2
if (n == 0)

ls
else

merge(msort(less)(take(ls,n)),
msort(less)(drop(ls,n)))

}

The merge forms a tuple of the two lists and does pattern matching against that
tuple. This allowed the pattern match to be expressed more symmetrically.

The above function uses a function we have not yet defined.

def take[A](ls: List[A], n: Int): List[A]

returns the first n elements of the list; it is the dual of drop.

By nesting the definition of merge, we enabled it to directly access the parameters
of msort. In particular, we did not need to pass the comparison function to
merge.

31

The average case time complexity of msort is O(n * (log2 n)), where n is the
length of the input list. (Here log2 denotes a function that computes logarithms
base 2.)

• Each call level requires splitting of the list in half and merging of the two
sorted lists. This takes time proportional to the length of the list argument.

• Each call of msort for lists longer than one results in two recursive calls of
msort.

• But each successive call of msort halves the number of elements in its
input, so there are O(log2 n) recursive calls.

So the total cost is O(n * (log2 n)). The cost is independent of distribution
of elements in the original list.

We can apply msort as follows:

msort((x: Int, y: Int) => x < y)(List(5, 7, 1, 3))

We defined msort in curried form with the comparison function first (unlike
what we did with isort1). This enables us to conveniently specialize msort
with a specific comparison function. For example,

val intSort = msort((x: Int, y: Int) => x < y) _
val descendSort = msort((x: Int, y: Int) => x > y) _

However, we do have to give explicit type annotations for the parameters of the
comparison function.

3.7 Lists in the Scala Standard Library
In this discussion (and in Chapter 3 of Functional Programming in Scala [4]),
we developed several functions for a simple List module. Our module is related
to the builtin Scala List module (from scala.collection.immutable), but it
differs in several ways.

Our List module is standalone module; the Scala List inherits from an abstract
class with several traits mixed in. These classes and traits structure the interfaces
shared among several data structures in the Scala library. Many of the functions
work for different data structures. For example, in Scala release 2.12.8 List is
defined as follows:

sealed abstract class List[+A] extends AbstractSeq[A]
with LinearSeq[A]
with Product
with GenericTraversableTemplate[A, List]
with LinearSeqOptimized[A, List[A]]
with scala.Serializable

Our List module consists of functions in which all arguments must be given
explicitly; the Scala List consists of methods on the List class. Scala enables

32

methods with one implicit argument (i.e., this) and one explicit argument to
be called as infix operators with different associativities. It allows symbols such
as < to be used for method names.

Scala’s approach to functional programming uses method chaining in its object
system to support composition of pure functions. Each method returns an
immutable object that becomes the receiver of the subsequent method call in
the same statement.

Extensive use of method chaining in an object-oriented program with muta-
ble objects—sometimes called a train wreck—can make programs difficult to
understand. However, disciplined use of method chaining helps make the func-
tional and object-oriented aspects of Scala work together. (In different ways,
method chaining is also useful in development of fluent library interfaces for
domain-specific languages.)

Our Cons(x,xs) is written as x :: xs using the standard Scala library. The
:: is a method that has one implicit argument (the tail list) and one explicit
argument (the head element).

Any Scala method name that ends with a : is right associative. Thus method
x :: xs represents the method call xs.::(x), which in turn calls the data
constructor. We can write x :: y :: z :: zs without parentheses to mean
x :: (y :: (z :: zs)).

We can also use multiple :: constructors in cases for pattern matching. For
example, where we wrote the pattern

case Cons(x, Cons(y,ys))

in the remdups function, we can write the pattern:

case x :: y :: ys

Our append function is normally written with the infix operator ++ in the Scala
library. (But there are several variations for special circumstances.)

Several of our functions with a single list parameter may appear as parameterless
methods with the same name in the Scala library. These include sum, product,
reverse, and length. There is also a head function to retrieve the head element
of a nonempty list.

Our concat function is parameterless method flatten in the Scala library.

Our functions with two parameters, a list and a modifier, are one-parameter
methods with the same name in the Scala library, and, hence, usable as infix
operators. These include drop, dropWhile, map, filter, and flatMap. There
are also analogous functions take and takeWhile.

Our functions foldRight and foldLeft, which have three parameters, are
methods in the Scala library with two curried parameters. The list argument

33

becomes implicit; the other arguments are in the same order. The Scala library
contains several folding and reducing functions with related functionality.

Other than head, take, takeWhile, and the appending and folding methods
mentioned above, the Scala List library has other useful methods such as forall,
exists, scanLeft, scanRight, zip, and zipWith.

Check out the Scala API documentation on the Scala website [32].

3.8 Source Code for Chapter
The Scala source code files for the functions in this chapter (3) are as follows:

• List2.scala for the

• TestList2.scala for testing code

3.9 Exercise Set A
In the following exercises, extend the List2.scala algebraic data type implemen-
tation developed in these notes to add the following functions. In the descriptions
below, type List refers to the trait defined in that package, not the standard
Scala list.

1. Write a Scala function orList that takes a List of Boolean values and
returns the logical or of the values (i.e., true if any are true, otherwise
false).

2. Write a Scala function andList that takes a List of Boolean values and
returns the logical and of the values (i.e., true if all are true, otherwise
false).

3. Write a Scala function maxList that takes a nonempty List of values and
returns its maximum value.

Hint: First solve this with Int, then generalize to a generic type. Study
insertion sort in Section {#sec:Scala-insertion-sort}.

4. Write a Scala remdups1 that is like remdups except that it is implemented
using either foldRight or foldLeft.

5. Write a Scala function total that takes a nonnegative integer n and a
function f of an appropriate type and returns f(0) + f(1) + ... f(n).

6. Write a Scala function flip that takes a function of polymorphic type
(A,B) => C and returns a function of type (B,A) => C such that, for all
x and y:

f(x,y) == flip(f)(y,x)

7. Write the following Scala functions using tail recursive definitions:

a. sumT with same functionality as sum

34

FPS03/List2.scala
FPS03/TestList2.scala
FPS03/List2.scala

b. productT with the same functionality as product

8. Write a Scala function mean that takes a nonempty List of Double values
and returns its mean (i.e., average) value.

9. Write a Scala function adjPairs that takes a List of pairs (i.e., two-
tuples) and returns the list of all pairs of adjacent elements. For example,
adjPairs(List(2,1,11,4)) returns List((2,1),(1,11),(11,4)).

10. Write a Scala function splitAt that takes a List of values and an integer
n and returns a pair (i.e., two tuple) of Lists, where the first component
consists of the first n elements of the input list (in order) and the second
component consists of the remaining elements (in order).

11. Number base conversion.

a. Write a Scala function natToBin that takes a natural number and
returns its binary representation as a List of 0’s and 1’s with the most
significant digit at the head. For example, natToBin(23) returns
List(1,0,1,1,1).

In computer science, we usually consider 0 as natural number along
with the positive integers.

b. Generalize natToBin to Scala function natToBase that takes base b
(b >= 2) as its first paramenter and the natural number as its second.
The function should return the base b representation of the natural
number as a list of integer digits with the most significant digit at
the head. For example, natToBase(5,42) returns List(1,3,2).

c. Write Scala function baseToNat that is the inverse of the natToBase
function. For any base b (b >= 2) and natural number n:

baseToNat(b,natToBase(b,n)) == n

12. For each of the following specifications, write a Scala function that has
the given arguments and result. Use the higher functions from the List
algebraic data type from these notes, such as map, filter, foldRight,
and foldLeft, as appropriate.

a. Function numof takes a value and a list and returns the number of
occurrences of the value in the list.

b. Function ellen takes a list of lists and returns a list of the lengths of
the corresponding lists.

c. Function ssp takes a list of integers and returns the sum of the squares
of the positive elements of the list.

13. Write a Scala function scalarProd with type

(List[Int],List[Int]):: Int

35

to compute the scalar product of two lists of integers (e.g., representing
vectors).

The scalar product is the sum of the products of the elements in corre-
sponding positions in the lists. That is, the scalar product of two lists xs
and ys, of length n, is:

i=n∑
i=0

xsi ∗ ysi

For example, scalarprod(List(1,2,3),List(3,3,3)) yields 18.

14. Write a Scala function mapper that takes a list of functions and a list of
values and returns the list of results of applying each function in the first
list to the corresponding value in the second list.

15. Write a Scala function removeFirst that takes a predicate (i.e., Boolean
function) and a list of values and returns the list with the first element
that satisfies the predicate removed.

16. Define a Scala function removeLast that takes a predicate (i.e., Boolean
function) and a list of values and returns the list with the last element
that satisfies the predicate removed.

How could you define it using removeFirst?

3.10 General Tree Algebraic Data Type
3.10.1 Description

A general tree is a hierarchical data structure in which each node of the tree
has zero or more subtrees. We can define this as a Scala algebraic data type as
follows:

sealed trait GTree[+A]
case class Leaf[+A](value: A) extends GTree[A]
case class Gnode[+A](gnode: List[GTree[A]]) extends GTree[A]

An object of class Leaf(x) represents a leaf of the tree holding some value x of
generic type A. A leaf does not have any subtrees. It has height 1.

An object of type Gnode represents an internal (i.e., non-leaf) node of the tree.
It consists of a nonempty list of subtrees, ordered left-to-right. A Gnode has a
height that is one more than the maximum height of its subtrees.

3.10.2 Exercise Set B

In the following exercises, write the Scala functions to operate on the GTrees.
You may use functions from the extended List module as needed.

1. Write Scala function numLeavesGT that takes a GTree and returns the
count of its leaves.

36

2. Write Scala function heightGT that takes a GTree and returns its height
(i.e., the number of levels).

3. Write Scala function sumGT that takes a GTree of integers and returns the
sum of the values.

4. Write Scala function findGT that takes a GTree and a value and returns
true if and only if the element appears in some leaf in the tree.

5. Write Scala function mapGT that takes a GTree and a function and returns
a GTree with the structure but with the function applied to all the values
in the tree.

6. Write Scala function flattenGT that takes a GTree and returns a List
with the values from the tree leaves ordered according to a left-to-right
traversal of the tree.

3.11 Acknowledgements
In Spring 2016, I wrote this set of notes to accompany my lectures on Chapter 3
of the book Functional Programming in Scala [4] (i.e., the Red Book) for my
Scala-based, Spring 2016 version of CSci 555 (Functional Programming) at the
University of Mississippi. I constructed the notes around the ideas, general
structure, and Scala examples from the Red Book and its associated materials
[5,6]. I also adapted some discussion and examples from my Haskell-based Notes
on Functional Programming with Haskell [8], Odersky’s Scala by Example [24],
and my previous notes on teaching mulitparadigm programming using Scala.

The Red Book [4] is an excellent book for self-study, but it needed expanded
explanations to be useful to me as a textbook for students who were novices in
both Scala and functional programming.

I expanded the Red Book’s discussion of algebraic data types, polymorphism, and
variance. For this expansion, I examined other materials including the Wikipedia
articles on Abstract Data Type [37], Algebraic Data Type [38], Polymorphism
[43], Ad Hoc Polymorphism [45], Parametric Polymorphism [46], Subtyping [47],
Liskov Substitution Principle [42], Function Overloading [44], and Covariance
and Contravariance (computer science) [39]. I also examined the discussion of
variance in the Wampler textbook [36]. I adapted the sorting algorithms from
Scala by Example [24].

In 2018 and 2019, I updated the format to be more compatible with my evolv-
ing document structures for instructional materials (e.g., such as the textbool
Exploring Languages with Interpreters and Functional Programming (ELIFP)
[16]).

In Spring 2019, I also moved the discussion of the kinds of polymorphism to the
new notes on Type System Concepts [11], expanded the discussion of Variance,
and added two exercise sets. Several items from Exercise Set A were adapted
from the list processing chapters of ELIFP [16].

37

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on the ELIFP textbook and other instructional
materials. In January 2022, I began refining the ELIFP content and related
documents such as this one. I am integrating separately developed materials
better, reformatting the documents (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

3.12 Terms and Concepts
TODO: Update

Function, pure function, referential transparency, side effects, mutable, im-
mutable, list data type (head, tail, empty), algebraic data type (composite,
sum, product, enumerated), abstract data type, ADT, syntax, semantics, trait,
sealed trait, case class, case object, singleton object, polymorphism, sub-
typing, parametric polymorphism, generics, overloading, type classes, variance
(covariant, contravariant, invariant/nonvariant), following types to implementa-
tions (type-driven or type-first development).

38

4 Handling Errors without Exceptions
4.1 Introduction
A benefit of Java or Scala exception handling (i.e., using try-catch blocks) is
that it consolidates error handling to well-defined places in the code.

However, code that throws exceptions typically exhibits two problems for func-
tional programming.

1. It is not referentially transparent. It has side effects. Its meaning is thus
dependent upon the context in which it is executed.

2. It is not type safe. Exceptions may cause effects that are of a different type
than the return value of the function.

The key idea from Chapter 4 is to use ordinary data values to represent failures
and exceptions in programs. This preserves referential transparency and type
safety while also preserving the benefit of exception-handling mechanisms, that
is, the consolidation of error-handling logic.

To do this, we introduce the Option and Either algebraic data types. These
are standard types in the Scala library, but for pedagogical purposes Chapter 4
introduces its own definition that is similar to the standard one.

This set of notes also introduces Scala features that we have not previously
discussed extensively: type variance, call-by-name parameter passing, and for-
comprehensions.

4.2 Aside: On Null References
What should a function do when it is required to return an object but no suitable
object exists?

One common approach is to return a null reference. British computing scientist
Tony Hoare, who introduced the null reference into the Algol type system in
the mid-1960s, calls that his “billion dollar mistake” because it “has led to
innumerable errors, vulnerabilities, and system crashes” [20].

The software patterns community documented a safer approach to this situation
by identifying the Null Object design pattern [51,54]. This well-known object-
oriented pattern seeks to “encapsulate the absence of an object by providing a
substitutable alternative that offers suitable default do nothing behavior” [34].
That is, the object must be of the correct type. It must be possible to apply all
operations on that type to the object, but the operations should have neutral
behaviors, with no side effects. The null object should actively do nothing!

The functional programming community introduced option types [52] as an
approach to the same general problem. For example, Haskell defines the Maybe
and Either types [16,35]. More recently designed functional languages—such as
Idris [1,2], Elm [17,18], and PureScript [19,28]—include similar types.

39

Regardless of language paradigm, most other recently designed languages have
option types or similar features. As we discuss in this chapter, the hybrid
object-oriented/functional language Scala supports the Option[T] and Either
case classes that correspond to Haskell’s Maybe and Either types. Similarly,
Rust [22,31] has an Option type and Swift has an Optional type that are similar
to Haskell’s Maybe.

The concept of nullable type [50] is closely related to the option type. Several
older languages support this concept (e.g.,Optional in Java 8, None in Python
[29,30], and ? type annotations in C#).

4.3 An Option Algebraic Data Type
We define a Scala algebraic data type Option using sealed trait Option with
case class Some to wrap a value and case object None to denote an empty value.
We specify the operations on the data type using the method chaining style.

import scala.{Option => _, Either => _, _} // hide standard
sealed trait Option[+A] {

def map[B](f: A => B): Option[B]
def getOrElse[B >: A](default: => B): B
def flatMap[B](f: A => Option[B]): Option[B]
def orElse[B >: A](ob: => Option[B]): Option[B]
def filter(f: A => Boolean): Option[A]

}
case class Some[+A](get: A) extends Option[A]
case object None extends Option[Nothing]

The import statement above hides the standard definitions of Option and Either
from the Scala standard library. The versions developed in this chapter are
similar, but add useful features above what is available in the standard library.

Before we move on to the definition of these methods, let’s review the concept
of method chaining and then consider issues raised in the signatures of the
getOrElse and orElse methods: one related to the generic parameters and the
other to the default parameters.

4.3.1 Method chaining in Scala

Consider function map in the Option trait. It is implemented in this chapter as
a method on the classes that extend the Option trait.

Method map takes two arguments and returns a result object. Its implicit “left”
argument is the receiver object for the method call, an Option object represented
internally by the variable this. Its explicit “right” argument is a function. The
result returned is itself an Option object.

Suppose obj is an Option[A] object and f is an A => B function. In standard
object-oriented style, we can issue the call obj.map(f) to operate on object obj

40

https://en.wikipedia.org/wiki/Method_chaining

with method map and argument f. Scala allows us to apply such a method in an
infix operator style as follows:

obj map f

Note that map takes an Option[A] as its left operand (i.e., argument) and returns
an Option[B] object as its result. Thus we can chain such method calls as
follows (where functions p and g have the appropriate types):

obj.map(f).filter(p).map(g)

In Scala’s infix operator style, this would be:

(obj map f) filter p)) map g

But these operators associate to the left, so can leave off the parentheses and
write the above as follows

obj map f filter p map g

or perhaps more readably as:

obj map(f) filter(p) map(g)

Note that this last way of writing the chain suggests the data flow nature of this
computation. The data originates with the source obj, which is then transformed
by a map(f) operator, then by a filter(p) operator, and then by a map(g)
operator to give the final result.

Now let’s consider an issue raised in the signatures of the getOrElse and orElse
methods related to the generic parameter.

4.3.2 Type variance issues

As we have discussed previously, the +A annotation in the Option[+A] definition
declares that parameter A is covariant. That is, if S is a subtype of T, then
Option[S] is a subtype of Option[T]. Also remember that Nothing is a subtype
of all other types.

For example, suppose type Beagle is a subtype of type Dog, which, in
turn, is a subtype of type Mammal. Then, because of the covariant defini-
tion, Option[Beagle] is a subtype of Option[Dog], which is a subtype of
Option[Mammal]. This is intuitively what we expect.

However, in getOrElse and orElse, we use type constraint B >: A. This means
that B must be equal to A or a supertype of A. We also define value parameter
of these functions to have type Option[B] instead of Option[A].

Why must we have this constraint?

See the chapter notes [6] for Chapter 4 of the Functional Programming in Scala
book [4] for more detail on this complicated issue. We sketch the argument
below.

41

https://github.com/fpinscala/fpinscala/wiki

In some sense, the +A annotation declares that, in all contexts, it is safe to cast
this type A to some supertype of A. The Scala compiler does not allow us to use
this annotation unless we can cast all members of a type safely.

Suppose we declare orElse (incorrectly!) as follows:

trait Option[+A] {
def orElse(o: Option[A]): Option[A]
...

}

We have a problem because this declaration of orElse only allows us to cast A
to a subtype of A.

Why?

As with any function, orElse can only be safely passed a subtype of its declared
input type. That is, a function of type Dog => R can be passed an object of
subtype like Beagle or of type Dog itself, but it cannot be passed a supertype
object of Dog such as Mammal.

As we saw in the notes on Chapter 3 [12], Scala functions are contravariant in
their input types.

But orElse has a parameter type of Option[A]. Because of the covariance of A
(declared in the trait), this parameter only allows subtypes of A—not supertypes
as required by the covariance.

So, we have a contradiction.

For the incorrect signature of orElse, the Scala compiler generates an error
message such as “Covariant type A occurs in contravariant position.”

We can get around this error by using a more complicated signature that does
not mention A (declared in the trait) in any of the function arguments, such as:

trait Option[+A] {
def orElse[B >: A](o: Option[B]): Option[B]
...

}

Now consider the second new feature appearing in the signatures of getOrElse
and orElse—the => B and => Option[B] types for the parameters.

4.3.3 Parameter-passing modes

Scala’s primary parameter-passing mode is call by value as in Java and C. That
is, the program evaluates the caller’s argument and the resulting value is bound
to the corresponding formal parameter within the called function.

If the argument’s value is of a primitive type, then the value itself is passed. If
the value is an object, then the address of (i.e., reference to) the object is passed.

42

A call-by-value parameter is called strict because the called function always re-
quires that parameter’s value before it can execute. The corresponding argument
must be evaluated eagerly before transferring control to the called function.

Scala also has call-by-name parameter passing. Consider the default: => B
feature in the declaration

def getOrElse[B >: A](default: => B): B

The type notation => B means the calling program leaves the argument of type
B unevaluated. That is, the calling program wraps the argument expression in
an parameterless function and passes the function to the called method. This
automatically generated parameterless function is sometimes called a thunk.

Every reference to the corresponding parameter causes the thunk to be evaluated.
If the method does not access the corresponding parameter during some execution,
then the parameter is never evaluated.

As with all higher-order arguments in Scala, a thunk is passed as a closure. In
addition to the function, the closure captures any free variables occurring in the
expression—that is, the variables defined in the caller’s environment but not
within the expression itself.

Note: The closure actually captures the variable itself, not its value. So if the
free variable is either a reference to a var or to a mutable data structure, then
changes in the value are seen inside the called function. But in this course, we
normally use immutable data structures and val declarations.

A call-by-name parameter is called nonstrict because the called function does
not always require that parameter’s value for its execution. The corresponding
argument can thus be evaluated lazily, that is, evaluated only if and when its
value is needed.

We look at more implications of strict and nonstrict functions in Chapter 5 of
the Red Book [4].

Note: See ClosureExample.scala and ThunkExample.scala for examples of
using closures and thunks, respectively.

4.3.4 Implementing the Option methods

Now, let’s define the methods in the Option data type.

Above we defined the trait Option as follows. It is parameterized by covariant
type A.

import scala.{Option => _, Either => _, _} // hide standard
sealed trait Option[+A] {

def map[B](f: A => B): Option[B]
def getOrElse[B >: A](default: => B): B
def flatMap[B](f: A => Option[B]): Option[B]

43

FPS04/ClosureExample.scala
FPS04/ThunkExample.scala

def orElse[B >: A](ob: => Option[B]): Option[B]
def filter(f: A => Boolean): Option[A]

}
case class Some[+A](get: A) extends Option[A]
case object None extends Option[Nothing]

The Option data type is similar to a list that is either empty or has one element.
As with the List algebraic data type from Chapter 3, we follow the types to
implementations. (This is sometimes called type-driven development.) That is,
we use the form of the data to guide us to design the form of the function.

The map method applies a function to its implicit Option[A] argument. If the
implicit argument is a Some, the method applies the function to the wrapped
value and returns the resulting Some. If it is a None, the method just returns
None. We can implement map using pattern matching directly as follows:

def map[B](f: A => B): Option[B] = this match {
case None => None
case Some(a) => Some(f(a))

}

Similarly, we can use pattern matching directly to implement the getOrElse
function. If the implicit argument is of type Some, this function returns the
value it wraps. If the implicit argument is of type None, this function returns
the value denoted by the default argument. By passing default by name, the
argument is only evaluated when its value is needed.

def getOrElse[B >: A](default: => B): B = this match {
case None => default // evaluate the thunk
case Some(a) => a

}

Function flatMap applies its argument function f, which might fail, to its implicit
Option argument when this value is not None. We can define flatMap in terms
of map and getOrElse as shown below. (Reminder: If we apply method names
as operators in an infix manner, they associate to the left. The leftmost operator
implicitly operates on this object.)

def flatMap[B](f: A => Option[B]): Option[B] =
map(f) getOrElse None

We can also define flatMap using pattern matching directly.

def flatMap_1[B](f: A => Option[B]): Option[B] = this match {
case None => None
case Some(a) => f(a)

}

Function orElse returns the implicit Option argument if is not None; otherwise,
it returns the explicit Option argument. We can define orElse in terms of map
and getOrElse or by directly using pattern matching.

44

def orElse[B >: A](ob: => Option[B]): Option[B] =
this map (Some(_)) getOrElse ob

def orElse_1[B>:A](ob: => Option[B]): Option[B] =
this match {

case None => ob
case _ => this

}

The filter function converts its implicit argument from Some to None if it does
not satisfy the boolean function p. We can define filter by using pattern
matching directly or by using flatMap.

def filter(p: A => Boolean): Option[A] =
this match {

case Some(a) if p(a) => this
case _ => None

}

def filter_1(p: A => Boolean): Option[A] =
flatMap(a => if (p(a)) Some(a) else None)

4.3.5 Using Option for statistical mean and variance

Consider a function to calculate and return the mean (i.e., average value) of a
list of numbers. This function must sum the list of numbers and divide by the
number of elements. It might have a signature such as:

def mean(xs: List[Double]): Double

But what should be returned for empty lists?

We can modify the signature to use Option and define the function as follows:

def mean(xs: Seq[Double]): Option[Double] =
if (xs.isEmpty)

None
else

Some(xs.sum / xs.length)

The return type now allows the possibility that the mean may be undefined. We
thus extend a partial function to a total function in a meaningful way.

Above we also generalize the List type to its supertype Seq from the Scala
library. Type Seq denotes a family of sequential data types that includes the
List type, array-like collections, etc. This type defines the methods isEmpty,
sum, and length.

If the mean of a sequence s is m, then the (statistical) variance of the sequence
s is the mean of the sequence formed by the terms (x − m)2 for each x ∈ s

45

(perserving the order).

Using the mean function defined above, we can compute the variance of a sequence
of numbers as follows:

def variance(xs: Seq[Double]): Option[Double] =
mean(xs) flatMap

(m => mean(xs.map(x => math.pow(x - m, 2))))

4.3.6 Using Option in the labelled digraph

In the doubly labelled Digraph case study, we define the following method to
return the label on a vertex:

def getVertexLabel(ov: A): B

In the case study’s DigraphList implementation, we define this function as
follows. The function terminates with an error when the the argument vertex is
not present in the digraph.

def getVertexLabel(ov: A): B =
(vs dropWhile (w => w._1 != ov)) match {

case Nil =>
sys.error("Vertex " + ov + " not in digraph")

case ((_,l)::_) => l
}

We can avoid the error termination in this function by changing the method
signature to return an Option[B] instead of a B.

def getVertexLabelOption(ov: A): Option[B] =
(vs dropWhile (w => w._1 != ov)) match {

case Nil => None
case ((_,l)::_) => Some(l)

}

Code that uses this new Digraph method can call the various Option methods
(or directly use pattern matching) to process the result appropriately.

For example, if the vertex label is a string, it may be appropriate in some
scenarios to just use a null string for the label of a nonexistent vertex. Let g be
a Digraph and be v be a possible vertex, then

(g getVertexLabelOption v) getOrElse ""

would either return the label string for v if it exists or the null string if v does
not exist.

Similarly, the code

(g getVertexLabelOption v) getOrElse
(sys.error("undefined vertex " + v))

46

would still terminate with an error. However, this design enables the user of the
Digraph library to decide under what circumstances and at what point in the
code to terminate.

Idiom: A common pattern for computing with the Option type is to use map,
flatMap, and filter to transform values generated by a function like
getVertexLabelOption and then to use getOrElse for error handling at
the end.

4.3.7 Lifting

It seems that that deciding to use of Option could cause lots of changes to ripple
through our code, much like the introduction of extensive exception-handling
would. However, we can avoid that somewhat by using a technique called lifting.

For example, the Option type’s map function enables us to transform values of
type Option[A] into values of type Option[B] using a function of type A => B.

Alternatively, we could consider map as transforming a function of type A => B
into a function of type Option[A] => Option[B]. That is, we lift an ordinary
function into a function on Option.

We can formalize this alternative view with the following function:

def lift[A,B](f: A => B): Option[A] => Option[B] = _.map(f)

Thus any existing function can be transformed to work within the context of
a single Option value. For example, we can lift the square root function from
type Double to work with Option[Double] as follows:

def sqrtO: Option[Double] => Option[Double] =
lift(math.sqrt _)<

We can now use sqrtO such as sqrtO(Some(4)). This evaluates to Some(2).

Chapter 4 of Functional Programming in Scala [4] gives several examples where
Option types can be used effectively in realistic scenarios. One of these examples
illustrates how to wrap an exception-oriented API to provide users with Option
results in error situations.

TODO: Add example of wrapping an exception-oriented API.

Note: See WrapException.scala for examples of how to wrap exception-
throwing functions to return Option and Either objects, respectively.

4.3.8 For comprehensions

Another useful function on Option data types is the function map2 that combines
two Option values by lifting a binary function. If either of the arguments are
None, then the result should also be None. We can define map2 as follows:

47

FPS04/WrapException.scala

def map2[A,B,C](a: Option[A], b: Option[B])(f: (A, B) => C):
Option[C] =

a flatMap (aa =>
b map (bb =>

f(aa, bb)))

This function applies a series of map and flatMap calls.

Because lifting is so common in functional programming, Scala provides a
syntactic construct called a for-comprehension to facilitate its use. This con-
struct is really syntactic sugar for a series of applications of map, flatMap,
and withFilter. (Method withFilter works like filter except it filters on
demand, without creating a new collection as a result.)

Here is the same code expressed as a for-comprehension:

def map2fc[A,B,C](a: Option[A], b: Option[B])(f: (A, B) => C):
Option[C] =

for {
aa <- a
bb <- b

} yield f(aa, bb)

Of course, for-comprehensions are more general than just their use with Option.
They can be used for the lists, arrays, iterators, ranges, streams, and other types
in the Scala standard library that support the map, flatMap, and withFilter
(or filter) operations.

Consider a list persons of person objects with name and age fields. We can
collect the names of all persons who are age 21 and above as follows:

for (p <- persons if p.age >= 21) yield p.name

This is equivalent to the following List expression

filter (p => p.age >= 21) map (p => p.name)

4.3.9 Translating (desugaring) for-comprehensions

In general, a for-comprehension

for (enums) yield e

evaluates expression e for each binding generated by the enumerator sequence
enums and collects the results. An enumerator sequence begins with a generator
and may be followed by additional generators, value definitions, and guards.

• A generator p <- e produces a sequence of zero or more bindings from
expression e by matching each value against pattern p.

• A value definition p = e binds the names in pattern p to the result of
evaluating the expression e.

48

• A guard if e restricts the bindings to those that satisfy the boolean
expression e.

We can translate (or desugar) for-comprehension (more or less) as follows:

1. We replace every generator p <- e, where p is a pattern and e is an
expression, by:

p <- e.withFilter { case p => true ; case _ => false }

Here we use withFilter to filter out those items that do not match the
pattern p.

2. While all comprehension have not been eliminated, repeat the following:

a. Translate for-comprehension

for (p <- e) yield e1

to the expression:

e.map { case p => e1 }

b. Translate for-comprehension

for (p <- e; p1 <- e1; ...) yield e2

where ... is a (possibly empty) sequence of generators, definitions,
or guards, to the expression:

e.flatMap { case p => for (p1 <- e1; ...) yield e2 }

c. Translate a generator p <- e followed by a guard if g to a single
generator

p <- e.withFilter((x1,...,xn) => g)

where x,...,xn are the free variables of p.

d. Translate a generator p <- e followed by a value definition p1 = e1
to the following generator of pairs of values, where x and x1 are fresh
names:

(p, p1) <- for (x@p <- e) yield
{ val x1@p1 = e1; (x, x1) }

The Scala notation x@p means that name x is bound to the value of the expression
p.

Note: Above we do not consider the imperative for-loops. These can also be
translated as above except that the imperative method forEach is also needed.

As an example, we can translate (desugar) the for-comprehension

for(x <- e1; y <- e2; z <- e3) yield {...}

into the expression:

49

e1.flatMap(x => e2.flatMap(y => e3.map(z => {...})))

As a second example, we can also translate the for-comprehension

for(x <- e; if p) yield {...}

into the expression:

e.withFilter(x => p).map(x => {...})

If no withFilter method is available, we can instead use:

e.filter(x => p).map(x => {...})

As a third example, we can translate for-comprehension

for(x <- e1; y = e2) yield {...}

into the expression:

e1.map(x => (x, e2)).map((x,y) => {...})

4.3.10 Adding for-comprehensions to data types

The Scala language has no typing rules for the for-comprehensions themselves.
The Scala compiler first translates for-comprehensions into calls on the various
method and then checks the types. It does not require that methods map,
flatMap, and withFilter have particular type signatures. However, a particular
setup for some collection type C with elements of type A is the following:

trait C[A] {
def map[B](f: A => B): C[B]
def flatMap[B](f: A => C[B]): C[B]
def withFilter(p: A => Boolean): C[A]

}

We can define our own data types to support for-comprehension by providing
one or more of the required operations above.

• If the data type defines just map, Scala allows for-comprehensions consisting
of a single generator.

• If the data type defines both flatMap and map, Scala allows for-
comprehensions consisting of several generators.

• If the data type defines withFilter, Scala allows for-comprehensions with
guards. (If withFilter is not defined but filter is, Scala will currently
use filter instead. However, this gives a deprecation warning, so this
fallback feature may be eliminated in a future release of Scala.)

We added for-comprehensions to our own Option type earlier. We do the same
for the Either type in the next section.

50

Note: A for-comprehension is, in general, convenient syntactic sugar for express-
ing compositions of monadic operators. If time allows, we will discuss monads
later in the semester.

4.4 An Either Algebraic Data Type
We can use data type Option to encode that a failure or exception has occurred.
However, it does not give any information about what went wrong.

We can encode this additional information using the algebraic data type Either.

import scala.{Option => _, Either => _, _} // hide builtin
sealed trait Either[+E,+A] {

def map[B](f: A => B): Either[E,B]
def flatMap[EE >: E, B](f: A => Either[EE,B]):

Either[EE,B]
def orElse[EE >: E, AA >: A](b: => Either[EE,AA]):

Either[EE,AA]
def map2[EE >: E, B, C](b: Either[EE, B])(f: (A,B) => C):

Either[EE, C]
}
case class Left[+E](get: E) extends Either[E,Nothing]
case class Right[+A](get: A) extends Either[Nothing,A]

By convention, we use the constructor Right to denote success and constructor
Left to denote failure.

We can implement map, flatMap, and orElse directly using pattern matching
on the Either type.

def map[B](f: A => B): Either[E, B] =
this match {

case Left(e) => Left(e)
case Right(a) => Right(f(a))

}

def flatMap[EE >: E, B](f: A => Either[EE, B]):
Either[EE, B] = this match {

case Left(e) => Left(e)
case Right(a) => f(a)

}

def orElse[EE >: E, AA >: A](b: => Either[EE, AA]):
Either[EE, AA] = this match {

case Left(_) => b
case Right(a) => Right(a)

}

51

The availability of flatMap and map enable us to use for-comprehension genera-
tors with Either. We can thus implement map2 using a for-comprehension, as
follows:

def map2[EE >: E, B, C](b: Either[EE, B])(f: (A, B) => C):
Either[EE, C] =

for { a <- this; b1 <- b } yield f(a,b1)

Let’s again use mean as an example and use a String to describe the failure in
Left.

def mean(xs: IndexedSeq[Double]): Either[String, Double] =
if (xs.isEmpty)

Left("mean of empty list!")
else

Right(xs.sum / xs.length)

We can use the Left value to encode more information, such as the location of
the error in the program. For example, we might catch and return the value of
an Exception generated as we do in the safeDiv function below.

def safeDiv(x: Int, y: Int): Either[Exception, Int] =
try Right(x / y)

catch { case e: Exception => Left(e) }

We can abstract the computational pattern in the safeDiv function as function
Try defined below:

def Try[A](a: => A): Either[Exception, A] =
try Right(a) // evaluate thunk
catch { case e: Exception => Left(e) }

Chapter 4 of Functional Programming in Scala [4] describes other functions for
type Either.

4.5 Standard Library
Both Option and Either appear in the standard library.

The standard library Option type is similar to the one developed here, but the
library version is missing some of the extended functions described in Chapter 4
[4].

The standard library Either type is similar but more complicated, using pro-
jections on the left and right. It is also missing some of the extended functions
from Chapter 4 [4].

Study the Scala API documentation [32] for more information on these data
types.

52

4.6 Summary
The big idea in this chapter is to use ordinary values to represent exceptions and
use higher-order functions for handling and propagating errors. As examples, we
considered the algebraic data types Option and Either and functions such as
map, flatMap, filter, and orElse to process their values.

We use this general technique of using values to represent effects in the subsequent
studies in this course.

We introduced the idea of nonstrict functions. We examine the implications and
use of these more in Chapter 5 [4,14].

4.7 Source Code for Chapter
The Scala source code files for the functions in this chapter (4) are as follows:

• Option2.scala for the Option algebraic data type from this chapter

• Either2.scala for the Either algebraic data type from this chapter

• WrapException.scala for the exc

• List2.scala for the List algebraic data type from Chapter 3

• ClosureExample.scala

• ThunkExample.scala

4.8 Exercises
TODO: Add

4.9 Acknowledgements
In Spring 2016, I wrote this set of notes to accompany my lectures on Chapter
4 of the book Functional Programming in Scala [4] (i.e., the Red Book). I
constructed the notes around the ideas, general structure, and Scala examples
from Chapter 4 and its chapter notes [6], and exercises [5].

I also patterned some of the discussion of for-comprehensions on Chapter 10
of the document Scala by Example by Martin Odersky [24], on Chapter 23 of
2nd Edition of the book Programming in Scala [25], on the relevant parts of the
Scala language specification [32], and on the Scala FAQ [32].

In 2018 and 2019, I updated the format of the domdmdcument to be more
compatible with my evolving document structures and corrected a few errors.
In 2019, I also added the sections on null references and method chaining.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on the ELIFP textbook and other instructional
materials. In January 2022, I began refining the ELIFP content and related

53

FPS04/Option2.scala
FPS04/Either2.scala
FPS04/WrapException.scala
FPS04/List2.scala
FPS04/ClosureExample.scala
FPS04/ThunkExample.scala

documents such as this one. I am integrating separately developed materials
better, reformatting the documents (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

4.10 Terms and Concepts
Big idea: Using ordinary data values to represent failures and exceptions in
programs. This preserves referential transparency and type safety while also pre-
serving the benefit of exception-handling mechanisms, that is, the consolidation
of error-handling logic.

Concepts: Error handling, exceptions referential transparency, type safety, null
reference, Null Object design pattern, option types, nullabile types, Option
and Either algebraic data types in Scala, method chaining, type variance,
covariant and contravariant, parameter passing (by-value, by-name), thunk,
free variables, closure, strict and nonstrict parameters/functions, eager and
lazy evaluation, follow the types to implementation (type-driven development),
lifting, for-comprehensions, syntactic sugar, (generators, definitions, guards),
desugaring.

54

NOT FINISHED e.g., URL for citation [15] on abstract data types

5 Strictness and Laziness
5.1 Introduction
The big idea we discuss in this chapter is how we can exploit nonstrict functions
to increase efficiency, increase code reuse, and improve modularity in functional
programs.

5.1.1 Motivation

In our discussion [12] of Chapter 3 of Functional Programming in Scala [4], we
examined purely functional data structures—in particular, the immutable, singly
linked list.

We also examined the design and use of several bulk operations—such as map,
filter, foldLeft, and foldRight. Each of these operations makes a pass over
the input list and often constructs a new list for its output.

Consider the Scala expression

List(10,20,30,40,50).map(_/10).filter(_%2 == 1).map(_*100)

that generates the result:

List(100, 300, 500)

The evaluation of the expression requires three passes through the list. However,
we could code a specialized function that does the same work in one pass.

def mfm(xs: List[Int]): List[Int] = xs match {
case Nil => Nil
case (y::ys) =>

val z = y / 10
if (z % 2 == 1) (z*100) :: mfm(ys) else mfm(ys)

}

Note: In this chapter, we use the method-chaining formulation of List from the
standard library, not the one we developed in the “Functional Data Structures”
chapter. :: constructs a list with its left operand as the head value and its right
operand as the tail list.

It would be convenient if we could instead get a result similar to mfm by composing
simpler functions like map and filter.

Can we do this?

We can by taking advantage of nonstrict functions to build a lazy list structure.
We introduced the concepts of strict and nonstrict functions in Chapter 4 [13];
we elaborate on them in this chapter.

55

5.1.2 What are strictness and nonstrictness?

If the evaluation of an expression runs forever or throws an exception instead of
returning an explicit value, we say the expression does not terminate—or that it
evaluates to bottom (written symbolically as ⊥).

A function f is strict if f(x) evaluates to bottom for all x that themselves
evaluate to bottom. That is, f(⊥) == ⊥. A strict function’s argument must
always have a value for the function to have a value.

A function is nonstrict (sometimes called lenient) if it is not strict. That is,
f(⊥) != ⊥. The function can sometimes have value even if its argument does
not have a value.

For multiparameter functions, we sometimes apply these terms to individual
parameters. A strict parameter of a function must always be evaluated by the
function. A nonstrict parameter of a function may sometimes be evaluated by
the function and sometimes not.

5.1.3 Exploring nonstrictness

By default, Scala functions are strict.

However, some operations are nonstrict. For example, the “short-circuited” &&
operation is nonstrict; it does not evaluate its second operand when the first
operation is false. Similarly, || does not evaluate its second operand when its
first operand is true.

Consider the if expression as a ternary operator. When the condition operand
evaluates to true, the operator evaluates the second (i.e., then) operand but
not the third (i.e., else) operand. Similarly, when the condition is false, the
operator evaluates the third operand but not the second.

We could implement if as a function as follows:

def if2[A](cond: Boolean, onTrue: () => A,
onFalse: () => A): A =

if (cond) onTrue() else onFalse()

Then we can call if2 as in the code fragment

val age = 21
if2(age >= 18, () => println("Can vote"),

() => println("Cannot vote"))

and get the output:

Can vote

The parameter type () => A means that the corresponding argument is passed as
a parameterless function that returns a value of type A. This function wraps the

56

expression, which is not evaluated before the call. This function is an explicitly
specified thunk.

When the value is needed, then the called function must force the evaluation of
the thunk by calling it explicitly, for example by using onTrue().

To use the approach above, the caller must explicitly create the thunk. However,
as we saw in the previous chapter, Scala provides call-by-name parameter passing
that relieves the caller of this requirement in most circumstances. We can thus
rewrite if2 as follows:

def if2[A](cond: Boolean, onTrue: => A, onFalse: => A): A =
if (cond) onTrue else onFalse

The onTrue: => A notation makes the argument expression a by-name parame-
ter. Scala automatically creates the thunk for parameter onTrue and enables it
to be referenced within the function without explicitly forcing its evaluation, for
example by using onTrue.

An advantage of call-by-name parameter passing is that the evaluation of an
expression can be delayed until its value is referenced, which may be never. A
disadvantage is that the expression will be evaluated every time it is referenced.

To determine how to address this disadvantage, consider function

def maybeTwice(b: Boolean, i: => Int) = if (b) i + i else 0

which can be called as

println(maybeTwice(true, {println("hi"); 1 + 41}))

to generate output:

hi
hi
84

Note that the argument expression i is evaluated twice.

We can address this issue by defining a new variable and initializing it lazily to
have the same value as the by-name parameter. We do this by declaring the
temporary variable as a lazy val. The temporary variable will not be initialized
until it is referenced, but it caches the calculated value so that it can be used
without reevaluation on subsequent references.

We can rewrite maybeTwice as follows:

def maybeTwice2(b: Boolean, i: => Int) = {
lazy val j = i
if (b) j+j else 0

}

Now calling it as

57

println(maybeTwice2(true, {println("hi"); 1 + 41}))

generates output:

hi
84

This technique of caching the result of the evaluation gives us call-by-need
parameter passing as it is called in Haskell and other lazily evaluated languages.

5.2 Lazy Lists
Now let’s return to the problem discussed in the Motivation subsection. How
can we use laziness to improve efficiency and modularity of our programs?

In this section, we answer this question by developing lazy lists or streams.
These allow us to carry out multiple operations on a list without always making
multiple passes over the elements.

Consider a simple “stream” algebraic data type StreamC. A nonempty stream
consists of a head and a tail, both of which must be nonstrict.

Note: The Functional Programming in Scala book uses algebraic data type
Stream, which differs from the implementation of the similar Stream type in
Scala’s standard library. To avoid conflicts with the standard library type, these
notes use StreamC.

For technical reasons, Scala does not allow by-name parameters in the construc-
tors for case classes. Thus these components must be explicitly defined thunks
whose evaluations are explicitly forced when their values are required.

import StreamC._

sealed trait StreamC[+A]
case object Empty extends StreamC[Nothing]
case class Cons[+A](h: () => A, t: () => StreamC[A])

extends StreamC[A]

object StreamC {
def cons[A](hd: => A, tl: => StreamC[A]): StreamC[A] = {

lazy val head = hd // cache values once computed
lazy val tail = tl
Cons(() => head, () => tail) // create thunks for Cons

}
def empty[A]: StreamC[A] = Empty
def apply[A](as: A*): StreamC[A] =

if (as.isEmpty)
empty

else

58

cons(as.head, apply(as.tail: _*))
}

5.2.1 Smart constructors and memoized streams

In the StreamC data type, we define two smart constructors to create new
streams. By convention, these are functions defined in the companion object
with the same names as the corresponding type constructors except they begin
with a lowercase letter. They construct a data type object, ensuring that the
needed integrity invariants are established. In the StreamC type, these take care
of the routine work of creating the thunks, caching the values, and enabling
transparent use of the parameters.

Smart constructor function cons takes the head and tail of the new StreamC as
by-name parameters, equates these to lazy variables to cache their values, and
then creates a Cons cell. The h and t fields of the Cons are explicitly defined
thunks wrapping the head and the tail of the stream, respectively.

The evaluation of the thunk h of a Cons cell returns the value of the lazy variable
head in the cell’s closure. If this is the first access to head, then the access
causes the corresponding by-name argument hd to be evaluated and cached in
head. Subsequent evaluations of h get the cached value.

The evaluation of the thunk t of a Cons cell causes similar effects on the lazy
variable tail and the corresponding by-name argument tl. However, the value
of this argument is itself a StreamC, which may include lazily evaluated fields.

Smart constructor function empty just creates an Empty StreamC.

We define both smart constructors to have return type StreamC[A]. In addition
to establishing the needed invariants, the use of the smart constructors helps
Scala’s type inference mechanism infer the StreamC type (which is what we
usually want) instead of the subtypes associated with the case class/object
constructors (which is what often will be inferred in Scala’s object-oriented type
system).

Convenience function apply takes a sequence of zero or more arguments and
creates the corresponding StreamC.

If a function examines or traverses a StreamC, it must explicitly force evalu-
ation of the thunks. In general, we should encapsulate such accesses within
functions defined as a part of the StreamC implementation. (That is, we should
practice information hiding, hide this design detail as a secret of the StreamC
implementation as we discuss in the notes on abstract data types [15].)

An example of this is function headOption that optionally extracts the head of
the stream.

def headOption: Option[A] = this match {
case Empty => None

59

case Cons(h,t) => Some(h()) // force thunk
}

It explicitly forces evaluation of the thunk and thus enables code that called it
to work with the values.

This technique for caching the value of the by-name argument is an example of
memoizing the function. In general, memoization is an implementation technique
in which a function stores the return value computed for certain arguments.
Instead of recomputing the value on a subsequent call, the function just returns
the cached value. This technique uses memory space to (potentially) save
computation time later.

5.2.2 Helper functions

Now let’s define a few functions that help us manipulate streams. We implement
these as methods on the StreamC trait.

First, let’s define a function toList that takes a StreamC (as its implicit ar-
gument) and constructs the corresponding Scala List. A standard backward
recursive method can be defined as follows:

def toListRecursive: List[A] = this match {
case Cons(h,t) => h() :: t().toListRecursive // force thunks
case _ => List()

}

Of course, this method may suffer from stack overflow for long streams. We can
remedy this by using a tail recursive auxiliary function that uses an accumulator
to build up the list in reverse order and then reverses the constructed list.

def toList: List[A] = {
@annotation.tailrec
def go(s: StreamC[A], acc: List[A]): List[A] = s match {

case Cons(h,t) => go(t(), h() :: acc) // force thunks
case _ => acc

}
go(this, List()).reverse

}

To avoid the reverse, we could instead build up the list in a mutable ListBuffer
using a loop and then, when finished, convert the buffer to an immutable List.
We preserve the purity of the toList function by encapsulating use of the
mutable buffer inside the function.

def toListFast: List[A] = {
val buf = new collection.mutable.ListBuffer[A]
@annotation.tailrec
def go(s: StreamC[A]): List[A] = s match {

case Cons(h,t) =>

60

buf += h() // force head thunk, add to end of buffer
go(t()) // force tail thunk, process recursively

case _ => buf.toList // convert buffer to immutable list
}
go(this)

}

Next, let’s define function take to return the first n elements from a StreamC
and function drop to skip the first n elements.

We can define method take using a standard backward recursive form that
matches on the structure of the implicit argument. However, we must be careful
not to evaluate either the head or the tail thunks unnecessarily (e.g., by treating
the n == 1 and n == 0 cases specially).

def take(n: Int): StreamC[A] = this match {
case Cons(h, t) if n > 1 => cons(h(), t().take(n - 1))
case Cons(h, _) if n == 1 => cons(h(), empty)
case _ => empty // stream empty or n < 1

}

Function take does its work incrementally. The recursive leg of the definition
(i.e., the first leg) returns a Cons cell with the recursive call to take embedded
in the lazily evaluated tail field. It will only be evaluated if its value is required.

We can define method drop to recursively calling drop on the forced tail. This
yields the following tail recursive function.

@annotation.tailrec
final def drop(n: Int): StreamC[A] = this match {

case Cons(_, t) if n > 0 => t().drop(n - 1)
case _ => this

}

Unlike take, drop is not incremental. The recursive call is not lazily evaluated.

Finally, let’s also define method takeWhile to return all starting elements of the
StreamC that satisfy the given predicate.

def takeWhile(p: A => Boolean): StreamC[A] = this match {
case Cons(h,t) if p(h()) => cons(h(), t() takeWhile p)
case _ => empty

}

In the first case, we apply method takeWhile as an infix operator.

5.3 Separating Program Description from Evaluation
One of the fundamental design concepts in software engineering and programming
is separation of concerns. A concern is some set of information that affects the
design and implementation of a software system [53]. We identify the key

61

concerns in a software design and try to keep them separate and independent
from each other. The goal is to implement the parts independently and then
combine the parts to form a complete solution.

We apply separation of concerns in modular programming and abstract data
types as information hiding [15,26,48]. We hide the secrets of how a module is
implemented (e.g., what algorithms and data structures are used, what specific
operating system or hardware devices are used, etc.) from the external users of
the module or data type. We encapsulate the secrets behind an abstract interface
[3,15].

We also apply separation of concerns in software architecture for computing
applications. For example, we try to keep an application’s business logic (i.e.,
specific knowledge about the application area) separate from its user interface
such as described by the Model-View-Controller (MVC) architectural design
pattern [49] commonly used in Web applications.

In functional programming, we also apply separation of concerns by seeking to
keep the description of computations separate from their evaluation (execution).
Examples include:

• first-class functions that express computations in their bodies but which
must be supplied arguments before they execute

• use of Option or Either to express that an error has occurred but deferring
the handling of the error to other parts of the program

• use of StreamC operators to assemble a computation that generates a
sequence without actually running the computation until later when its
result in needed

5.3.1 Laziness promotes reuse

In general, lazy evaluation enables us to separate the description of an expression
from the evaluation of the expression. It enables us to to describe a “larger”
expression than we need and then to only evaluate the portion that we actually
need. This offers us the potential for greater code reuse.

Note: For a classic discussion of how higher-order and first-class functions and
lazy evaluation promote software modularity and reuse, see the John Hughes
paper “Why Functional Programming Matters” [21].

Consider a method exists on StreamC that checks whether an element matching
a Boolean function p occurs in the stream. We can define this using an explicit
tail recursion as follows:

def exists(p: A => Boolean): Boolean = this match {
case Cons(h,t) => p(h()) || t().exists(p)
case _ => false

}

62

Given that || is nonstrict in its second argument, this function terminates and
returns true as soon as it finds the first element that makes p true. Because
the stream holds the tail in a lazy val, it is only evaluated when needed. So
exists does not evaluate the stream past the first occurrence.

As with the List data type in Chapter 3, we can define a more general method
foldRight on StreamC to represent the pattern of computation exhibited by
exists.

def foldRight[B](z: => B)(f: (A, => B) => B): B = this match {
case Cons(h,t) => f(h(), t().foldRight(z)(f))
case _ => z

}

The notation => B in the second parameter of combining function f takes its
second argument by-name and, hence, may not evaluate it in all circumstances. If
f does not evaluate its second argument, then the recursion terminates. Thus the
overall foldRight computation can terminate before it completes the complete
traversal through the stream.

We can now redefine exists to use the more general function as follows:

def exists2(p: A => Boolean): Boolean =
foldRight(false)((a, b) => p(a) || b)

Here parameter b represents the unevaluated recursive step that folds the tail of
the stream. If p(a) returns true, then b is not evaluated and the computation
terminates early.

Caveat: The second version of exists illustrates how we can use a general
function to represent a variety of more specific computations. But, for a large
stream in which all elements evaluate to false, this version is not stack safe.

Because the foldRight method on StreamC can terminate its traversal early,
we can use it to implement exists efficiently. Unfortunately, we cannot im-
plement the List version of exists efficiently in terms of the List version of
foldRight. We must implement a specialized recursive version of exists to get
early termination.

Laziness thus enhances our ability to reuse code.

5.3.2 Incremental computations

Now, let’s flesh out the StreamC trait and implement the basic map, filter,
append, and flatMap methods using the general function foldRight, as follows:

def map[B](f: A => B): StreamC[B] =
foldRight(empty[B])((h,t) => cons(f(h), t))

def filter(p: A => Boolean): StreamC[A] =
foldRight(empty[A])((h,t) => if (p(h)) cons(h, t) else t)

63

def append[B >: A](s: => StreamC[B]): StreamC[B] =
foldRight(s)((h,t) => cons(h,t))

def flatMap[B](f: A => StreamC[B]): StreamC[B] =
foldRight(empty[B])((h,t) => f(h) append t)

These implementations are incremental. They do not fully generate all their
answers. No computation takes place until some other computation examines the
elements of the output StreamC and then only enough elements are generated
to give the requested result.

Because of their incremental nature, we can call these functions one after another
without fully generating the intermediate results.

We can now address the problem raised in the Introduction section of these notes.
There we asked the question of how can we compute the result of the expression

List(10,20,30,40,50).map(_/10).filter(_%2 == 1).map(_*100)

without producing two unneeded intermediate lists.

The StreamC expression

StreamC(10,20,30,40,50).map(_/10).filter(_%2 == 1).
map(_*100).toList

generates the result:

List(100, 300, 500)

which is the same as the List expression. The expression looks the same except
that we create a StreamC initially instead of a List and we call toList to force
evaluation of stream at the end.

When executed, the lazy evaluation interleaves two map, the filter, and the
toList transformations. The computation does not fully instantiate any in-
termediate streams. It is a similar interleaving to what we did in the special
purpose function mfm in the introduction.

(For a more detailed discussion of this interleaving, see Listing 5.3 in the first
edition of thr Functional Programming in Scala book [4].)

Because stream computations do not generate intermediate streams in full, we
are free to use stream operations in ways that might seem counterintuitive at
first. For example, we can use filter (which seems to process the entire stream)
to implement find, a function to return the first occurrence of an element in a
stream that satisfies a given predicate, as follows:

def find(p: A => Boolean): Option[A] = filter(p).headOption

The incremental nature of these computations can sometimes save memory. The
computation may only need a small amount of working memory; the garbage

64

collector can quickly recover working memory that the current step does not
need.

Of course, some computations may require more intermediate elements and each
element may itself require a large amount of memory, so not all computations
are as well-behaved as the examples in this section.

5.3.3 For comprehensions on streams

Given that we have defined map, filter, and flatMap, we can now use sequence
comprehensions on our StreamC data. For example, the code fragment

val seq = for (x <- StreamC(1,2,3,4) if x > 2;
y <- StreamC(1,2)) yield x

println(seq.toList)

causes the following to print on the console:

List(3, 3, 4, 4)

Note: During compilation, some versions of the Scala compiler may issue a
deprecation warning that filter is used instead of withFilter. In a future
release of Scala, this substitution may no longer work. Because filter is lazy for
streams, we could define f<ilter as an alias for withFilter with the following:

def withFilter = filter _

However, filter does generate a new StreamC where withFilter normally
does not generate a new collection. Although this gets rid of the warning, it
would be better to implement a proper withFilter function.

5.4 Infinite Streams snd Corecursion
Because the streams are incremental, the functions we have defined also work
for infinite streams.

Consider the following definition for an infinite sequence of ones:

lazy val ones: StreamC[Int] = cons(1, ones)

Note: The book Functional Programming in Scala [4] does not add the lazy
annotation, but that version gives a compilation error in some versions of Scala.
Adding lazy seems to fix the problem, but this issue should be investigated
further.

Although ones is infinite, the StreamC functions only reference the finite prefix
of the stream needed to compute the needed result.

For example:

• ones.take(5).toList yields List(1,1,1,1,1)

• ones.map(_+2).take(5).toList yields List(3,3,3,3,3)

65

• What about ones.map(_+2).toList?

We can generalize ones to a constant function as follows:

def constant[A](a: A): StreamC[A] = {
lazy val tail: StreamC[A] = Cons(() => a, () => tail)
tail

}

An alternative would be just to make the body cons(a, constant(a)). But
the above is more efficient because it is just one object referencing itself.

We can also define an increasing StreamC of all integers beginning with n as
follows:

def from(n: Int): StreamC[Int] =
cons(n, from(n+1))

The (second-order) Fibonacci sequence begins with the elements 0 and 1; each
subsequent element is the sum of the two previous elements. We can define the
Fibonacci sequence as a stream fibs with the following definition:

val fibs = {
def go(f0: Int, f1: Int): StreamC[Int] =

cons(f0, go(f1, f0+f1))
go(0, 1)

}

5.4.1 Prime numbers: Sieve of Erastosthenes

A positive integer greater than 1 is prime if it is divisible only by itself and 1.
The Sieve of Eratosthenes algorithm works by removing multiples of numbers
once they are identified as prime.

• We begin the increasing stream of integers starting with 2, a prime number.

• The head is 2, so we remove all the multiples of 2 from the stream.

• The head of the tail is 3, so it is prime because it was not removed as a
multiple of 2 and it is the smallest integer remaining.

• Continue the process recursively on the tail.

We can define this calculation with the following StreamC functions.

def sieve(ints: StreamC[Int]): StreamC[Int] =
ints.headOption match {

case None =>
sys.error(

"Should not occur: No head on infinite stream.")
case Some(x) =>

cons(x,sieve(ints drop 1 filter (_ % x > 0)))

66

}
val primes: StreamC[Int] = sieve(from(2))

We can then use primes to define a function isPrime to test whether an integer
is prime.

def isPrime(c: Int): Boolean =
(primes filter (_ >= c) map (_ == c)).headOption getOrElse

sys.error(
"Should not occur: No head on infinite list.")

5.4.2 Function unfold

Now let’s consider unfold, a more general stream-building function. Function
unfold takes an initial state and a function that produces both the next state
and the next value in the stream and builds the resulting stream. We can define
it as follows:

def unfold[A, S](z: S)(f: S => Option[(A, S)]): StreamC[A] =
f(z) match {

case Some((h,s)) => cons(h, unfold(s)(f))
case None => empty

}

This function applies f to the current state z to generate the next state s and the
next element h of the stream. We use Option so f can signal when to terminate
the StreamC.

Function unfold is an example of a corecursive function.

A recursive function consumes data. The input of each successive call is “smaller”
than the previous one. Eventually the recursion terminates when input size
reaches the minimum.

A corecursive function produces data. Corecursive functions need not terminate
as long as they remain productive. By productive, we mean that the function
can continue to evaluate more of the result in a finite amount of time.

Where we seek to argue that recursive functions terminate, we seek to argue
that corecursive functions are productive.

The unfold function remains productive as long as its argument function f
terminates. Function f must terminate for the unfold computation to reach its
next state.

Some writers in the functional programming community use the term guarded
recursion instead of corecursion and the term cotermination instead of produc-
tivity. See the Wikipedia articles on corecursion [40] and coinduction [41] for
more information and links.

67

The function unfold is very general. For example, we can now define ones,
constant, from, and fibs with unfold.

val onesViaUnfold = unfold(1)(_ => Some((1,1)))

def constantViaUnfold[A](a: A) =
unfold(a)(_ => Some((a,a)))

def fromViaUnfold(n: Int) =
unfold(n)(n => Some((n,n+1)))

val fibsViaUnfold =
unfold((0,1)) { case (f0,f1) => Some((f0,(f1,f0+f1))) }

5.5 Summary
The big idea in this chapter is that we can exploit nonstrict functions to in-
crease efficiency, increase code reuse, and improve the modularity in functional
programs.

5.6 Source Code for Chapter
The Scala source code files for the functions in this chapter (5) are as follows:

• StreamC.scala

5.7 Exercises
TODO: Add

5.8 Acknowledgements
In Spring 2016, I wrote this set of notes to accompany my lectures on Chapter 5
of the first edition of the book Functional Programming in Scala [4] (i.e., the
Red Book). I constructed the notes around the ideas, general structure, and
Scala examples from that chapter and its associated materials [5,6].

In 2018 and 2019, I updated the format of the document to be more compatible
with my evolving document structures. In 2019, I also renamed the Stream
(used in the Red Book) to StreamC to better avoid conflicts with the standard
library type Stream.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on the ELIFP textbook and other instructional
materials. In January 2022, I began refining the ELIFP content and related
documents such as this one. I am integrating separately developed materials
better, reformatting the documents (e.g., using CSS), constructing a unified

68

FPS05/StreamC.scala

bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

5.9 Terms and Concepts
Big idea: Exploiting nonstrict function to increase efficiency, increase code reuse,
and improve modularity

Concepts: Strict and nonstrict (lenient) functions/parameters, termination,
bottom, call-by-name, thunk, forcing, call-by-need, lazy evaluation, lazy lists
or streams, Stream data type, smart constructors, memoization, lazy variables,
purity of functions, separation of concerns, information hiding, design secret,
abstract interface, business logic, Model-View-Controller (MVC) design pattern,
keeping program description separate from evaluation, incremental computation,
prime number, Sieve of Eratosthenes, recursive, corecursive (guarded recursion),
productivity (cotermination).

69

References
[1] Edwin Brady. 2017. Type-driven development with Idris. Manning,

Shelter Island, New York, USA.
[2] Edwin Brady. 2022. Idris: A language for type-driven development.

Retrieved from https://www.idris-lang.org
[3] Kathryn Heninger Britton, R. Alan Parker, and David L. Parnas. 1981.

A procedure for designing abstract interfaces for device interface modules.
In Proceedings of the 5th international conference on software engineering,
IEEE, San Diego, California, USA, 195–204.

[4] Paul Chiusano and Runar Bjarnason. 2015. Functional programming in
Scala (First ed.). Manning, Shelter Island, New York, USA.

[5] Paul Chiusano and Runar Bjarnason. 2022. FP in Scala exercises, hints,
and answers. Retrieved from https://github.com/fpinscala/fpinscala

[6] Paul Chiusano and Runar Bjarnason. 2022. FP in Scala community guide
and chapter notes. Retrieved from https://github.com/fpinscala/fpinsca
la/wiki

[7] James Coplien, Daniel Hoffman, and David Weiss. 1998. Commonality
and variability in software engineering. IEEE Software 15, 6 (1998),
37–45.

[8] H. Conrad Cunningham. 2014. Notes on functional programming with
Haskell. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/docs/Notes_FP_Haskell/Notes_on_Functi
onal_Programming_with_Haskell.pdf

[9] H. Conrad Cunningham. 2019. Recursion concepts and terminology:
Scala version. University of Mississippi, Department of Computer and
Information Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/docs/RecursionStyles/Scala/RecursionStyle
sScala.html

[10] H. Conrad Cunningham. 2019. Notes on Scala for Java programmers.
University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/docs/ScaldFP/ScalaForJava/ScalaForJava.html

[11] H. Conrad Cunningham. 2019. Type system concepts. University of
Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/
TypeConcepts/TypeSystemConcepts.html

[12] H. Conrad Cunningham. 2019. Functional data structures (Scala). Uni-
versity of Mississippi, Department of Computer and Information Science,
University, Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/
~hcc/docs/ScalaFP/FPS03/FunctionalDS.html

70

https://www.idris-lang.org
https://github.com/fpinscala/fpinscala
https://github.com/fpinscala/fpinscala/wiki
https://github.com/fpinscala/fpinscala/wiki
https://john.cs.olemiss.edu/~hcc/docs/Notes_FP_Haskell/Notes_on_Functional_Programming_with_Haskell.pdf
https://john.cs.olemiss.edu/~hcc/docs/Notes_FP_Haskell/Notes_on_Functional_Programming_with_Haskell.pdf
https://john.cs.olemiss.edu/~hcc/docs/Notes_FP_Haskell/Notes_on_Functional_Programming_with_Haskell.pdf
https://john.cs.olemiss.edu/~hcc/docs/RecursionStyles/Scala/RecursionStylesScala.html
https://john.cs.olemiss.edu/~hcc/docs/RecursionStyles/Scala/RecursionStylesScala.html
https://john.cs.olemiss.edu/~hcc/docs/RecursionStyles/Scala/RecursionStylesScala.html
https://john.cs.olemiss.edu/~hcc/docs/ScaldFP/ScalaForJava/ScalaForJava.html
https://john.cs.olemiss.edu/~hcc/docs/ScaldFP/ScalaForJava/ScalaForJava.html
https://john.cs.olemiss.edu/~hcc/docs/TypeConcepts/TypeSystemConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/TypeConcepts/TypeSystemConcepts.html
https://john.cs.olemiss.edu/~hcc/docs/ScalaFP/FPS03/FunctionalDS.html
https://john.cs.olemiss.edu/~hcc/docs/ScalaFP/FPS03/FunctionalDS.html

[13] H. Conrad Cunningham. 2019. Handling errors without exceptions (Scala).
University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/docs/ScalaFP/FPS04/ErrorHandling.html

[14] H. Conrad Cunningham. 2019. Strictness and laziness (Scala). Univer-
sity of Mississippi, Department of Computer and Information Science,
University, Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/
~hcc/docs/ScalaFP/FPS05/Laziness.html

[15] H. Conrad Cunningham. 2019. Abstract data types in Scala. University of
Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/
Digraph/Scala/AbstractDataTypes.html

[16] H. Conrad Cunningham. 2022. Exploring programming languages with in-
terpreters and functional programming (ELIFP). University of Mississippi,
Department of Computer and Information Science, University, Mississippi,
USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/ELIFP/EL
IFP.pdf

[17] Evan Czaplicki. 2022. Elm: A delightful language for reliable web
applications. Retrieved from https://elm-lang.org

[18] Richard Feldman. 2020. Elm in action. Manning, Shelter Island, New
York, USA.

[19] Phil Freeman. 2017. Purescript by example: Functional programming for
the web. Leanpub, Victoria, British Columbia, Canada. Retrieved from
https://book.purescript.org/

[20] Tony Hoare. 2009. Null references: The billion dollar mistake (presen-
tation). Retrieved from https://www.infoq.com/presentations/Null-
References-The-Billion-Dollar-Mistake-Tony-Hoare

[21] John Hughes. 1989. Why functional programming matters. Computer
Journal 32, 2 (1989), 98–107.

[22] Steve Klabnik, Carol Nichols, and Conributers. 2019. The Rust pro-
gramming language (Rust 2018th ed.). No Starch Press, San Francisco,
California, USA. Retrieved from https://doc.rust-lang.org/book/

[23] Barbara Liskov. 1987. Keynote address—Data abstraction and hierarchy.
In Proceedings on object-oriented programming systems, languages, and
applications (OOPSLA ’87): addendum, ACM, Orlando, Florida, USA,
17–34.

[24] Martin Odersky. 2014. Scala by example. École Polytechnique Fédérale
Lausanne (EPFL), Programming Methods Laboratory, Lausanne, Switzer-
land.

[25] Martin Odersky, Lex Spoon, and Bill Venners. 2011. Programming in
Scala (Second ed.). Artima, Inc., Walnut Creek, California, USA.

71

https://john.cs.olemiss.edu/~hcc/docs/ScalaFP/FPS04/ErrorHandling.html
https://john.cs.olemiss.edu/~hcc/docs/ScalaFP/FPS04/ErrorHandling.html
https://john.cs.olemiss.edu/~hcc/docs/ScalaFP/FPS05/Laziness.html
https://john.cs.olemiss.edu/~hcc/docs/ScalaFP/FPS05/Laziness.html
https://john.cs.olemiss.edu/~hcc/docs/Digraph/Scala/AbstractDataTypes.html
https://john.cs.olemiss.edu/~hcc/docs/Digraph/Scala/AbstractDataTypes.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://elm-lang.org
https://book.purescript.org/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://doc.rust-lang.org/book/

[26] David L. Parnas. 1972. On the criteria to be used in decomposing systems
into modules. Communications of the ACM 15, 12 (December 1972),
1053–1058.

[27] Tomas Petricek. 2012. Why type-first development matters (blog post.
Retrieved from http://tomasp.net/blog/type-first-development.aspx/

[28] purescript.org. 2022. PureScript: A strongly-typed functional pro-
gramming language that compiles to javascript. Retrieved from https:
//www.purescript.org/

[29] Python Software Foundation. 2022. Python. Retrieved from https:
//www.python.org/

[30] Luciano Ramalho. 2013. Fluent Python: Clear, concise, and effective
programming. O’Reilly Media, Sebastopol, California, USA.

[31] Rust Team. 2022. Rust: A language empowering everyone to build reliable
and efficient software. Retrieved from https://www.rust-lang.org/

[32] Scala Language Organization. 2022. The Scala programming language.
Retrieved from https://www.scala-lang.org/

[33] Scala Language Organization. 2022. Tour of Scala: Unified types. Re-
trieved from https://docs.scala-lang.org/tour/unified-types.html

[34] Source Making. 2022. Null object design pattern. Retrieved from
https://sourcemaking.com/design_patterns/null_object

[35] Simon Thompson. 2011. Haskell: The craft of programming (Third ed.).
Addison-Wesley, Boston, Massachusetts, USA.

[36] Dean Wampler and Alex Payne. 2014. Programming Scala: Scalabil-
ity = functional programming + objects (Second ed.). O’Reilly Media,
Sebastopol, California, USA.

[37] Wikpedia: The Free Encyclopedia. 2022. Abstract data type. Retrieved
from https://en.wikipedia.org/wiki/Abstract_data_type

[38] Wikpedia: The Free Encyclopedia. 2022. Algebraic data type. Retrieved
from https://en.wikipedia.org/wiki/Algebraic_data_type

[39] Wikpedia: The Free Encyclopedia. 2022. Covariance and contravariance
(computer science). Retrieved from https://en.wikipedia.org/wiki/Covari
ance_and_contravariance_(computer_science)

[40] Wikpedia: The Free Encyclopedia. 2022. Corecursion. Retrieved from
https://en.wikipedia.org/wiki/Corecursion

[41] Wikpedia: The Free Encyclopedia. 2022. Coinduction. Retrieved from
https://en.wikipedia.org/wiki/Coinduction

[42] Wikpedia: The Free Encyclopedia. 2022. Liskov substitution principle.
Retrieved from https://en.wikipedia.org/wiki/Liskov_substitution_prin
ciple

72

http://tomasp.net/blog/type-first-development.aspx/
https://www.purescript.org/
https://www.purescript.org/
https://www.python.org/
https://www.python.org/
https://www.rust-lang.org/
https://www.scala-lang.org/
https://docs.scala-lang.org/tour/unified-types.html
https://sourcemaking.com/design_patterns/null_object
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)
https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)
https://en.wikipedia.org/wiki/Corecursion
https://en.wikipedia.org/wiki/Coinduction
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle

[43] Wikpedia: The Free Encyclopedia. 2022. Polymorphism (computer
science). Retrieved from https://en.wikipedia.org/wiki/Polymorphism
_(computer_science)

[44] Wikpedia: The Free Encyclopedia. 2022. Function overloading. Retrieved
from https://en.wikipedia.org/wiki/Function_overloading

[45] Wikpedia: The Free Encyclopedia. 2022. Ad hoc polymorphism. Re-
trieved from https://en.wikipedia.org/wiki/Ad_hoc_polymorphism

[46] Wikpedia: The Free Encyclopedia. 2022. Parametric polymophism.
Retrieved from https://en.wikipedia.org/wiki/Parametric_polymorphism

[47] Wikpedia: The Free Encyclopedia. 2022. Subtyping. Retrieved from
https://en.wikipedia.org/wiki/Subtyping

[48] Wikpedia: The Free Encyclopedia. 2022. Information hiding. Retrieved
from https://en.wikipedia.org/wiki/Information_hiding

[49] Wikpedia: The Free Encyclopedia. 2022. Model-view-controller. Re-
trieved from https://en.wikipedia.org/wiki/Model-view-controller

[50] Wikpedia: The Free Encyclopedia. 2022. Nullable type. Retrieved from
https://en.wikipedia.org/wiki/Nullable_type

[51] Wikpedia: The Free Encyclopedia. 2022. Null object pattern. Retrieved
from https://en.wikipedia.org/wiki/Null_object_pattern

[52] Wikpedia: The Free Encyclopedia. 2022. Option type. Retrieved from
https://en.wikipedia.org/wiki/Option_type

[53] Wikpedia: The Free Encyclopedia. 2022. Separation of concerns. Re-
trieved from https://en.wikipedia.org/wiki/Separation_of_concerns

[54] Bobby Woolf. 1997. Null object. In Pattern languages of program design
3, Robert Martin, Dirk Riehle and Frank Buschmann (eds.). Addison-
Wesley, Boston, Massachusetts, USA, 5–18.

73

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Function_overloading
https://en.wikipedia.org/wiki/Ad_hoc_polymorphism
https://en.wikipedia.org/wiki/Parametric_polymorphism
https://en.wikipedia.org/wiki/Subtyping
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Nullable_type
https://en.wikipedia.org/wiki/Null_object_pattern
https://en.wikipedia.org/wiki/Option_type
https://en.wikipedia.org/wiki/Separation_of_concerns

	Functional Data Structures
	Chapter Introduction
	A List Algebraic Data Type
	Algebraic data types
	ADT confusion
	Using a Scala trait
	Aside on Haskell

	Polymorphism
	Variance
	Covariance and contravariance
	Function subtypes

	Defining functions in companion object
	Function to sum a list
	Function to multiply a list
	Function to remove adjacent duplicates
	Variadic function apply

	Data Sharing
	Function to take tail of list
	Function to drop from beginning of list
	Function to append lists

	Other List Functions
	Tail recursive function reverse
	Higher-order function dropWhile
	Curried function dropWhile

	Generalizing to Higher Order Functions
	Fold right
	Fold left
	Map
	Filter
	Flat map

	Classic Algorithms on Lists
	Insertion sort and bounded generics
	Merge sort

	Lists in the Scala Standard Library
	Source Code for Chapter
	Exercise Set A
	General Tree Algebraic Data Type
	Description
	Exercise Set B

	Acknowledgements
	Terms and Concepts

	Handling Errors without Exceptions
	Introduction
	Aside: On Null References
	An Option Algebraic Data Type
	Method chaining in Scala
	Type variance issues
	Parameter-passing modes
	Implementing the Option methods
	Using Option for statistical mean and variance
	Using Option in the labelled digraph
	Lifting
	For comprehensions
	Translating (desugaring) for-comprehensions
	Adding for-comprehensions to data types

	An Either Algebraic Data Type
	Standard Library
	Summary
	Source Code for Chapter
	Exercises
	Acknowledgements
	Terms and Concepts

	Strictness and Laziness
	Introduction
	Motivation
	What are strictness and nonstrictness?
	Exploring nonstrictness

	Lazy Lists
	Smart constructors and memoized streams
	Helper functions

	Separating Program Description from Evaluation
	Laziness promotes reuse
	Incremental computations
	For comprehensions on streams

	Infinite Streams snd Corecursion
	Prime numbers: Sieve of Erastosthenes
	Function unfold

	Summary
	Source Code for Chapter
	Exercises
	Acknowledgements
	Terms and Concepts

	References

