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5 Python Types
5.1 Chapter Introduction
The goals of this chapter (5) are to:

• examine the general concepts of type systems

• explore Python’s type system and built-in types

Note: In this book, we use the term Python to mean Python 3. The various
examples use Python 3.7 or later.

5.2 Type System Concepts
The term type tends to be used in many different ways in programming languages.
What is a type?

Chapter 7) on object-based paradigms discusses the concept of type in the
context of object-oriented languages. This chapter first examines the concept
more generally and then examines Python’s builtin types.

5.2.1 Types and subtypes

Conceptually, a type is a set of values (i.e., possible states or objects) and a set
of operations defined on the values in that set.

Similarly, a type S is (a behavioral) subtype of type T if the set of values of
type S is a “subset” of the values in set T an set of operations of type S is a
“superset” of the operations of type T. That is, we can safely substitute elements
of subtype S for elements of type T because S’s operations behave the “same” as
T’s operations.

This is known as the Liskov Substitution Principle [24,39].

Consider a type representing all furniture and a type representing all chairs. In
general, we consider the set of chairs to be a subset of the set of furniture. A
chair should have all the general characteristics of furniture, but it may have
additional characteristics specific to chairs.

If we can perform an operation on furniture in general, we should be able to
perform the same operation on a chair under the same circumstances and get
the same result. Of course, there may be additional operations we can perform
on chairs that are not applicable to furniture in general.

Thus the type of all chairs is a subtype of the type of all furniture according to
the Liskov Substitution Principle.

5.2.2 Constants, variables, and expressions

Now consider the types of the basic program elements.
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A constant has whatever types it is defined to have in the context in which it
is used. For example, the constant symbol 1 might represent an integer, a real
number, a complex number, a single bit, etc., depending upon the context.

A variable has whatever types its value has in a particular context and at a
particular time during execution. The type may be constrained by a declaration
of the variable.

An expression has whatever types its evaluation yields based on the types of the
variables, constants, and operations from which it is constructed.

5.2.3 Static and dynamic

In a statically typed language, the types of a variable or expression can be
determined from the program source code and checked at “compile time” (i.e.,
during the syntactic and semantic processing in the front-end of a language
processor). Such languages may require at least some of the types of variables
or expressions to be declared explicitly, while others may be inferred implicitly
from the context.

Java, Scala, and Haskell are examples of statically typed languages.

In a dynamically typed language, the specific types of a variable or expression
cannot be determined at “compile time” but can be checked at runtime.

Lisp, Python, JavaScript, and Lua are examples of dynamically typed languages.

Of course, most languages use a mixture of static and dynamic typing. For
example, Java objects defined within an inheritance hierarchy must be bound
dynamically to the appropriate operations at runtime. Also Java objects declared
of type Object (the root class of all user-defined classes) often require explicit
runtime checks or coercions.

5.2.4 Nominal and structural

In a language with nominal typing, the type of value is based on the type name
assigned when the value is created. Two values have the same type if they have
the same type name. A type S is a subtype of type T only if S is explicitly
declared to be a subtype of T.

For example, Java is primarily a nominally typed language. It assigns types to
an object based on the name of the class from which the object is instantiated
and the superclasses extended and interfaces implemented by that class.

However, Java does not guarantee that subtypes satisfy the Liskov Substitution
Principle. For example, a subclass might not implement an operation in a
manner that is compatible with the superclass. (The behavior of subclass objects
are this different from the behavior of superclass objects.) Ensuring that Java
subclasses preserve the Substitution Principle is considered good programming
practice in most circumstances.
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In a language with structural typing, the type of a value is based on the structure
of the value. Two values have the same type if they have the “same” structure;
that is, they have the same public data attributes and operations and these are
themselves of compatible types.

In structurally typed languages, a type S is a subtype of type T only if S has
all the public data values and operations of type T and the data values and
operations are themselves of compatible types. Subtype S may have additional
data values and operations not in T.

Haskell is an example of a primarily structurally typed language.

5.2.5 Polymorphic operations

Polymorphism refers to the property of having “many shapes”. In programming
languages, we are primarily interested in how polymorphic function names (or
operator symbols) are associated with implementations of the functions (or
operations).

In general, two primary kinds of polymorphic operations exist in programming
languages:

1. Ad hoc polymorphism, in which the same function name (or operator
symbol) can denote different implementations depending upon how it is
used in an expression. That is, the implementation invoked depends upon
the types of function’s arguments and return value.

There are two subkinds of ad hoc polymorphism.

a. Overloading refers to ad hoc polymorphism in which the language’s
compiler or interpreter determines the appropriate implementation
to invoke using information from the context. In statically typed
languages, overloaded names and symbols can usually be bound to
the intended implementation at compile time based on the declared
types of the entities. They exhibit early binding.

Consider the language Java. It overloads a few operator symbols, such
as using the + symbol for both addition of numbers and concatenation
of strings. Java also overloads calls of functions defined with the same
name but different signatures (patterns of parameter types and return
value). Java does not support user-defined operator overloading; C++
does.

Haskell’s type class mechanism implements overloading polymorphism
in Haskell. There are similar mechanisms in other languages such as
Scala and Rust.

b. Subtyping (also known as subtype polymorphism or inclusion poly-
morphism) refers to ad hoc polymorphism in which the appropriate
implementation is determined by searching a hierarchy of types. The
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function may be defined in a supertype and redefined (overridden)
in subtypes. Beginning with the actual types of the data involved,
the program searches up the type hierarchy to find the appropriate
implementation to invoke. This usually occurs at runtime, so this
exhibits late binding.

The object-oriented programming community often refers to
inheritance-based subtype polymorphism as simply polymorphism.
This is the polymorphism associated with the class structure in Java.

Haskell does not support subtyping. Its type classes do support class
extension, which enables one class to inherit the properties of another.
However, Haskell’s classes are not types.

2. Parametric polymorphism, in which the same implementation can be
used for many different types. In most cases, the function (or class)
implementation is stated in terms of one or more type parameters. In
statically typed languages, this binding can usually be done at compile
time (i.e., exhibiting early binding).

The object-oriented programming (e.g., Java) community often calls this
type of polymorphism generics or generic programming.

The functional programming (e.g., Haskell) community often calls this
simply polymorphism.

5.2.6 Polymorphic variables

A polymorphic variable is a variable that can “hold” values of different types
during program execution.

For example, a variable in a dynamically typed language (e.g., Python) is
polymorphic. It can potentially “hold” any value. The variable takes on the
type of whatever value it “holds” at a particular point during execution.

Also, a variable in a nominally and statically typed, object-oriented language
(e.g., Java) is polymorphic. It can “hold” a value its declared type or of any of
the subtypes of that type. The variable is declared with a static type; its value
has a dynamic type.

A variable that is a parameter of a (parametrically) polymorphic function is
polymorphic. It may be bound to different types on different calls of the function.

5.3 Python Type System
What about Python’s type system?

5.3.1 Objects

Python is object-based [13, Ch. 3]; it treats all data as objects.
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A Python object has the following essential characteristics of objects [13, Ch. 3]:

a. a state (value) drawn from a set of possible values

The state may consist of several distinct data attributes. In this case, the
set of possible values is the Cartesian product of the sets of possible values
of each attribute.

b. a set of operations that access and/or mutate the state

c. a unique identity (e.g., address in memory)

A Python pbject has one of the two important but nonessential characteristics
of objects [13, Ch. 3]. Python does:

d. not enforce encapsulation of the state within the object, instead relying
upon programming conventions and name obfuscation to hide private
information

e. exhibit an independent lifecycle (i.e., has a different lifetime than the code
that created it)

As we see in Chapter 7, each object has a distinct dictionary, the directory, that
maps the local names to the data attributes and operations.

Python typically uses dot notation to access an object’s data attributes and
operations:

• obj.data accesses the attribute data of obj

• obj.op accesses operation op of obj

• obj.op() invokes operation op of obj, passing any arguments in a comma-
separated list between the parentheses

Some objects are immutable and others are mutable. The states (i.e., values) of:

• immutable objects (e.g., numbers, booleans, strings, and tuples) cannot be
changed after creation

• mutable objects (e.g., lists, dictionaries, and sets) can be changed in place
after creation

Caveat: We cannot modify a Python tuple’s structure (i.e., length) after its
creation. However, if the components of a tuple are themselves mutable objects,
they can be changed in-place.

All Python objects have a type.

5.3.2 Types

In terms of the discussion in Section {#sec:type-system-concepts}, all Python
objects can be considered as having one or more conceptual types at a particular
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point in time. The types may change over time because the program can change
the possible set of data attributes and operations associated with the object.

A Python variable is bound to an object by an assignment statement or its equiv-
alent. Python variables are thus dynamically typed, as are Python expressions.

Although a Python program usually constructs an object within a particular
nominal type hierarchy (e.g., as an instance of a class), this may not fully describe
the type of the object, even initially. And the ability to dynamically add, remove,
and modify attributes (both data fields and operations) means the type can
change as the program executes.

The type of a Python object is determined by what it can do—what data it
can hold and what operations it can perform on that data—rather than how it
was created. We sometimes call this dynamic, structural typing approach duck
typing. (If it walks like a duck and quacks like a duck, then it is a duck, even if
is declared as a snake.)

For example, we can say that any object is of an iterable type if it implements
an __iter__ operation that returns a valid iterator object. An iterator object
must implement a __next__ operation that retrieves the next element of the
“collection” and must raise a StopIteration exception if no more elements are
available.

In Python, we sometimes refer to a type like iterable as a protocol. That is, it is
an, perhaps informal, interface that objects are expected to satisfy in certain
circumstances.

5.4 Built-in Types
Python provides several built-in types and subtypes, which are named and
implemented in the core language. When displayed, these types are shown as
follows:

<class 'int'>

That is, the value is an instance of a class named int. Python uses the term
class to describe its nominal types.

We can query the nominal type of an object obj with the function call type(obj).
In the following discussion, we show the results from calling this function
interactively in Python REPL (Read-Evaluate-Print Loop) sessions.

For the purpose of our discussion, the primary built-in types include:

• Singleton types
• Number types
• Sequence types
• Mapping types
• Set types
• Other types (e.g., callable, class, module, and user-defined object types)

10



TODO: Probably should elaborate the “other types” more than currently.

5.4.1 Singleton types

Python has single-element types used for special purposes. These include None
and NotImplemented.

5.4.1.1 None The name None denotes a value of a singleton type. That is,
the type has one element written as None.

Python programs normally use None to mean there is no meaningful value of
another type. For example, this is the value returned by Python procedures.

5.4.1.2 NotImplemented The name NotImplemented also denotes a value of
a singleton type. Python programs normally use this value to mean that an
arithmetic or comparison operation is not implemented on the operand objects.

5.4.2 Number types

Core Python supports four types of numbers:

• integers
• real numbers
• complex numbers
• Booleans

5.4.2.1 Integers (int) Type int denotes the set of integers. They are
encoded in a variant of two’s complement binary numbers in the underlyng
hardware. They are of unbounded precision, but they are, of course, limited in
size by the available virtual memory.

>>> type(1)
<class 'int'>
>>> type(-14)
<class 'int'>
>>> x = 2
>>> type(x)
<class 'int'>
>>> type(99999999999999999999999999999999)
<class 'int'>

5.4.2.2 Real numbers (float) Type float denotes the subset of the real
numbers that can be encoded as double precision floating point numbers in the
underlying hardware.

>>> type(1.01)
<class 'float'>
>>> type(-14.3)
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<class 'float'>
>>> x = 2
>>> type(x)
<class 'int'>
>>> y = 2.0
>>> type(y)
<class 'float'>
>>> x == y # Note result of equality comparison
True

5.4.2.3 Complex numbers (complex) Type complex denotes a subset of
the complex numbers encoded as a pair of floats, one for the real part and one
for the imaginary part.

>>> type(complex('1+2j')) # real part 1, imaginary part 2
<class 'complex'>
>>> complex('1') == 1.0 # Note result of comparison
True
>>> complex('1') == 1 # Note result of comparison
True

5.4.2.4 Booleans (bool) Type bool denotes the set of Boolean values False
and True. In Python, this is a subtype of int with False and True having the
values 0 and 1, respectively.

>>> type(False)
<class 'bool'>
>>> type(True)
<class 'bool'>
>>> True == 1
True

Making bool a subtype of int is an unfortunate legacy design choice from the
early days of Python. It is better not to rely on this feature in modern Python
programs.

5.4.2.5 Truthy and falsy values Python programs can test any object as
if it was a Boolean (e.g., within the condition of an if or while statement or as
an operand of a Boolean operation).

An object is falsy (i.e., considered as False) if its class defines

• a special method __bool__() that, when called on the object, returns
False

• a special method __len__() that returns 0

Note: We discuss special methods Chapter 7.
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Otherwise, the object is truthy (i.e., considered as True).

The singleton value NotImplemented is explicitly defined as truthy.

Falsy built-in values include:

• constants False and None

• numeric values of zero such as 0, 0.0, and 0j

• empty sequences and collections such as '' , (), [], and {} (defined below)

Unless otherwise documented, any function expected to return a Boolean result
should return False or 0 for false and True or 1 for true. However, the Boolean
operations or and and should always return one of their operands.

5.4.3 Sequence types

A sequence denotes a serially ordered collection of zero or more objects. An
object may occur more than once in a sequence.

Python supports a number of core sequence types. Some sequences have im-
mutable structures and some have mutable.

5.4.3.1 Immutable sequences An immutable sequence is a sequence in
which the structure cannot be changed after initialization.

5.4.3.1.1 str Type str (string) denotes sequences of text characters—that
is, of Unicode code points in Python. We can express strings syntactically by
putting the characters between single, double, or triple quotes. The latter
supports multi-line strings.

Python does not have a separate character type; a characer is a single-element
str.

>>> type('Hello world')
<class 'str'>
>>> type("Hi Earth")
<class 'str'>
>>> type('''
... Can have embedded newlines
... ''')
<class 'str'>

5.4.3.1.2 tuple Type tuple type denotes fixed length, heterogeneous se-
quences of objects. We can express tuples syntactically as sequences of comma-
separated expressions in parentheses.

The tuple itself is immutable, but the objects in the sequence might themselves
be mutable.
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>>> type(()) # empty tuple
<class 'tuple'>
>>> type((1,)) # one-element tuple, note comma
<class 'tuple'>
>>> x = (1,'Ole Miss') # mixed element types
>>> type(x)
<class 'tuple'>
>>> x[0] # access element with index 0
1
>>> x[1] # access element with index 1
'Ole Miss'

5.4.3.1.3 range The range type denotes an immutable sequence of numbers.
It is commonly used to specify loop controls.

• range(stop) denotes the sequence of integers that starts from 0, increases
by steps of 1, and stops at stop-1; if stop <= 0, the range is empty.

• range(start, stop) denotes the sequence of integers that starts from
start, increases by steps of 1, and stops at stop-1; if stop <= start,
the range is empty.

• range(start, stop, step) denotes the sequence of integers that starts
from start with a nonzero stepsize of step.

If step is positive, the sequence increases toward stop-1; if stop <=
start, the range is empty.

if negative, the sequence decreases toward stop+1.

A range is a lazy data structure. It only yields a value if the output is
needed.

>>> list(range(5))
[0, 1, 2, 3, 4]
>>> list(range(1, 5))
[1, 2, 3, 4]
>>> list(range(0, 9, 3))
[0, 3, 6]
>>> list(range(0, 10, 3))
[0, 3, 6, 9]
>>> list(range(5, 0, -1))
[5, 4, 3, 2, 1]
>>> list(range(0))
[]
>>> list(range(1, 0))
[]
>>> list(range(0, 0))
[]
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5.4.3.1.4 bytes Type bytes type denotes sequences of 8-bit bytes. We can
express these syntactically as ASCII character strings prefixed by a “b”.

>>> type(b'Hello\n World!')
<class 'bytes>

5.4.3.2 Mutable sequences A mutable sequence is a sequence in which
the structure can be changed after initialization.

5.4.3.2.1 list Type list denotes variable-length, heterogeneous sequences
of objects. We can express lists syntactically as comma-separated sequence of
expressions between square brackets.

>>> type([])
<class 'list'>
>>> type([3])
<class 'list'>
>>> x = [1,2,3] + ['four','five'] # concatenation
>>> x
[1, 2, 3, 'four', 'five']
>>> type(x)
<class 'list'>
>>> y = x[1:3] # get slice of list
>>> y
[2, 3]
>>> y[0] = 3 # assign to list index 0
[3, 3]

5.4.3.2.2 bytearray Type bytearray denotes mutable sequences of 8-bit
bytes, that is otherwise like type bytes. They are constructed by calling the
function bytearray().

>>> type(bytearray(b'Hello\n World!'))
<class 'bytes>

5.4.4 Mapping types

Type dict (dictionary) denotes mutable finite sets of key-value pairs, where the
key is an index into the set for the value with which it is paired.

The key can be any hashable object. That is, the key can be any immutable object
or an object that always gives the same hash value. However, the associated
value objects may be mutable and the membership in the set may change.

We can express dictionaries syntactically in various ways such as comma-separated
lists of key-value pairs with braces.

>>> x = { 1 : "one" }
>>> x
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{1: 'one'}
>>> type(x)
<class 'dict'>
>>> x[1]
'one'
>>> x.update({ 2 : "two" }) # add to dictionary
>>> x
{1: 'one', 2: 'two'}
>>> type(x)
<class 'dict'>
>>> del x[1] # delete element with key
>>> x
{2: 'two'}

5.4.5 Set Types

A set is an unordered collection of distinct hashable objects.

There are two built-in set types—set and frozenset.

5.4.5.1 set Type set denotes a mutable collection.

We can create a nonempty set by putting a comma-separated list of elements
between braces as well as by using the set constructor.

For example, sets sx and sy below have the same elements. The operation |=
adds the elements of the right operand to the left.

>>> sx = { 'Dijkstra', 'Hoare', 'Knuth' }
>>> sx
{'Knuth', 'Hoare', 'Dijkstra'}
>>> sy = set(['Knuth', 'Dijkstra', 'Hoare'])
>>> sy

< {'Knuth', 'Hoare', 'Dijkstra'}
>>> sx == sy
True
>>> sx.add('Turing') # add element to mutable set
>>> sx
{'Turing', 'Knuth', 'Hoare', 'Dijkstra'}

5.4.5.2 frozenset Type frozenset denotes an immutable collection.

We can extend the set example above as follows:

>>> fx = frozenset(['Dijkstra', 'Hoare', 'Knuth'])
>>> fx
frozenset({'Knuth', 'Hoare', 'Dijkstra'})
>>> fy = frozenset(sy)
>>> fy
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frozenset({'Knuth', 'Hoare', 'Dijkstra'})
>>> fx.add('Turing')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'add'

5.4.6 Other object types

We discuss callable objects (e.g., functions), class objects, module objects, and
user-defined types (classes) in later chapters.

TODO: Perhaps be more specific about later chapters.

5.5 What Next?
TODO

5.6 Chapter Source Code
TODO, if needed.

5.7 Exercises
TODO
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5.9 Terms and Concepts
TODO: revise for the current content

Object, object characteristics (state, operations, identity, encapsulation, inde-
pendent lifecycle), immutable vs. mutable, type, subtype, Liskov Substitution
Principle, types of constants, variables, and expressions, static vs. dynamic
types, declared and inferred types, nominal vs. structural types, polymorphic
operations (ad hoc, overloading, subtyping, parametric/generic), early vs. late
binding, compile time vs. runtime, polymorphic variables, duck typing, protocol,
interface, REPL, singleton types (None and NotImplemented), number types
(int, float, complex, bool, False, falsy, True, truthy), immutable sequence
types (str, tuple, range, bytes), mutable sequence types (list, bytearray),
mapping types (dict, key and value), set types (set, frozenset),other types.
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6 Python Program Components
6.1 Chapter Introduction
The basic building blocks of Python programs include statements, functions,
classes, and modules. This chapter (6) examines key features of those building
blocks.

Chapter 7 examines classes, objects, and object orientation in more detail.

Note: In this book, we use the term Python to mean Python 3. The various
examples use Python 3.7 or later.

6.2 Statements
Python statements consist primarily of assignment statements and other mutator
statements and of constructs to control the order in which those are executed.

Statements execute in the order given in the program text (as shown below). Each
statement executes in an environment (i.e., a dictionary holding the names in
the namespace) that assigns values to the names (e.g., of variables and functions)
that occur in the statement.

statement1
statement2
statement3
...

A statement may modify the environment by changing the values of variables,
creating new variables, reading input, writing output, etc.

A statement may be simple or compound. We discuss selected simple and
compound statements in the following subsections.

6.2.1 Simple statements

A simple statment is a statement that does not contain other statements. This
subsection examines four simple statements. We discuss other simple statements
later in this textbook.

TODO: Make last sentence above more explicit.

6.2.1.1 pass statement The simple statement

pass

is a null operation. It does nothing. We can use it when the syntax requires a
statement but no action is needed.
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6.2.1.2 Expression statement An expression statement is a simple state-
ment with the form:

expression1, expression2, ...

If the expression list has only one element, then the result of the statement is
the result of the expression’s execution.

If the expression list has two or more elements, then the result of the statement
is a sequence (e.g., tuple) of the expressions in the list.

In program scripts, expression statements typically occur where an expression
is executed for its side effects (e.g., a procedure call) rather than the value it
returns. A procedure call always returns the value None to indicate there is no
meaningful return value.

However, if called from the Python REPL and the value is not None, the REPL
converts the result to a string (using built-in function repr()) and writes the
string to the standard output.

6.2.1.3 Assignment statement A typical Python assignment statement
has the form:

target1, target2, ... = expression1, expression2, ...

The assignment statement evaluates the expression list and generates a sequence
object (e.g., tuple). If the target list and the sequence have the same length,
the statement assigns the elements of the sequence to the targets left to right.
Otherwise, if there is a single target on the left, then the sequence object itself
is assigned to the target.

Consider the following REPL session:

>>> x, y = 1, 2
>>> x
1
>>> y
2
>>> x = 1, 2, 3
>>> x
(1, 2, 3)
>>> x, y = 1, 2, 3
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: too many values to unpack (expected 2)

One of the targets may be prefixed by an asterisk (*). In this case, that target
packs zero or more values into a list.

Consider the following REPL session:
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>>> x, *y, z = 1, 2
>>> y
[]
>>> x, *y, z = 1, 2, 3
>>> y
[2]
>>> x, *y, z = 1, 2, 3, 4, 5
>>> y
[2, 3, 4]

Note: See the Python 3 Language Reference manual [30] for a more complete
explanation of the syntax and semantics of assignment statements.

TODO: Discuss augmented assignment statements here?

6.2.1.4 del statement The simple statement

del target1, target2, ...

recursively deletes each target from left to right.

If target is a name, then the statement removes the binding of that name from
the local or global namespace. If the name is not bound, then the statement
raises a NameError exception.

If target is an attribute reference, subscription, or slicing, the interpreter passes
the operation to the primary object involved.

TODO: Expand on what the previous paragraph means. Using special methods?

6.2.2 Compound Statements

A compound statment is a construct that contains other statements. This
subsection examines three compound statements. We discuss other compound
statements later in this textbook.

TODO: Make last sentence above more explicit.

6.2.3 if statement

The if statement is a conditional statement typical of imperative languages. It
is a compound statement with the form

if cond1:
statement_list1

elif cond2: # else with nested if
statement_list2

elif cond3:
statement_list3

...
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else:
statement_listZ

where the elif and else clauses are optional.

When executed, the conditional statement evaluates the cond expressions from
top to bottom and executes the corresponding statement_list for the first
condition evaluating to true. If none evaluate to true, then the compound
statement executes statement_listZ, if it is present.

Note colon terminates each clause header and that the statement_list must
be indented. Most compound statements are structured in this manner.

6.2.4 while statement

The while statement is a looping construct with the form

while cond:
statement_list1

else: # executed after normal exit, not on break
statement_list2

where the else clause is optional.

When executed, the while repeatedly evaluates the expression cond, and, if the
condition is true, then the while executes statement_list1. If the condition is
false, then the while executes statement_list2 and exits the loop.

A break statement executed in statement_list1 causes an exit from the loop
that does not execute the else clause.

A continue statement executed in statement_list1 skips the rest of
statement_list1 and continues with the next condition test.

6.2.5 for statement

The for statement is a looping construct that iterates over the elements of a
sequence. It has the form:

for target_list in expression_list:
statement_list1

else: # executed after normal exit, not on break
statement_list2

where the else clause is optional.

The interpreter:

• evaluates the expression_list once to get an iterable object (i.e., a
sequence)

• creates an iterator to step through the elements of the sequence
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• executes statement_list1 once for each element of the sequence in the
order yielded by the iterator

It assigns each element to the target_list (as described above for the
assignment statement) before executing statement_list1. The variables
in the target_list may appear as free variables in statement_list1.

The for assigns the target_list zero or more times as ordinary variables
in the local scope. These override any existing values. Any final values are
available after the loop.

If the expression_list evaluates to an empty sequence, the the body of
the loop is not executed and the target_list variables are not changed.

• executes statement_list2 in the optional else, if present, after exhaust-
ing the elements of the sequence

The break and continue statement work as described above for the while
statement.

It is best to avoid modifying the iteration sequence in the body of the loop.
Modification can result in difficult to predict results.

6.3 Function Definitions
Python functions are program units that take zero or more arguments and return
a corresponding value.

When the interpreter executes a function definition, the interpreter binds the
function name in the current local namespace to a function object. The function
object holds a reference to the current global namespace. The interpreter uses
this global namespace when the function is called.

Execution of the function definition does not execute the function body. When
the function is called, the interpreter then executes the function body.

The code below shows the general structure of a function definition.

def my_func(x, y, z):
"""
Optional documentation string (docstring)
"""
statement1
statement2
statement3
return my_loc_var

The keyword def introduces a function definition. It is followed by the name of
the function, a comma-separated parameter list enclosed in parentheses, and a
colon.
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The body of the functions follows on succeeding lines. The body must be indented
from the start of the function header.

Optionally, the first line of the body can be a string literal, called the docu-
mentation string (or docstring). If present, it is stored as the __doc__ of the
function object.

The simple statement

return expr1, expr2, ...

can only appear within the body of a function definition. When executed during
a function call, it evaluates the expressions in its expression list and returns
control to the caller of the function, passing back the sequence of values. If the
expression list is empty, then it returns the singleton object None.

If the last statement executed in a function is not a return, then the function
returns to its caller, returning the value None.

When a program calls a function, it passes a reference (pointer) to each argument
object. These references are bound to the corresponding parameter names, which
are local variables of the function.

If we assign a new object to the parameter variable in the called function, then
the variable binds to the new object. This new binding is not visible to the
calling program.

However, if we apply a mutator or destructor to the parameter and the argument
object is mutable, we can modify the actual argument object. The modified
value is visible to the calling program.

Of course, if the argument object is not mutable, we cannot modify it’s value.

Functions in Python are first-class objects. That is, they are (callable) objects of
type function and, hence, can be stored in data structures, passed as arguments
to functions, and returned as the value of a functions. Like other objects, they
can have associated data attributes.

To see this, consider the function add3 and the following series of commands in
the Python REPL.

>>> def add3(x, y, z):
... """Add 3 numbers"""
... return x + y + z
...
>>> add3(1,2,3)
6
>>> type(add3)
<class `function`>
>>> add3.__doc__
'Add 3 numbers'
>>> x = [add3,1,2,3,6] # store function object in list
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>>> x
[<function add3 at 0x10bf65ea0>, 1, 2, 3, 6]
>>> x[0](1,2,3) # retrieve and call function obj
6
>>> add3.author = 'Cunningham' # set attribute author
>>> add3.author # get attribute author
'Cunningham'

We call a function a higher-order function if it takes another function as its
parameter and/or returns a function as its return value.

6.4 Class Definitions
A Python class is a program construct that defines a new nominal type consisting
of data attributes and the operations on them.

When the interpreter executes a class definition, it binds the class name in the
current local namespace to the new class object it creates for the class. The
interpreter creates a new namespace (for the class’s local scope). If the class
body contains function or other definitions, these go into the new namespace. If
the class contains assignments to local variables, these variables also go into the
new namespace.

The class object represents the type. When a program calls a class name as a
function, it creates a new instance (i.e., an object) of the associated type.

We define an operation with a method bound to the class. A method is a function
that takes an instance (by convention named self) as its first argument. It can
access and modify the data attributes of the instance. The method is also an
attribute of the instance.

The code below shows the general structure of a class definition. The class calls
the special method __init__ (if present) to initialize a newly allocated instance
of the class.

Note: The special method __new__ allocates memory, constructs a new instance,
and then returns it. The interpreter passes the new instance to __init__, which
initialize the new object’s instance variables.

class P:
def __init__(self):

self.my_loc_var = None
def method1(self, args):

statement11
statement12
return some_value

def method2(self, args):
statement21
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statement22
return some_other_value

Consider the following simple example.

class P:
pass

>>> x = P()
>>> x
<__main__.P object at 0x1011a10b8>
>>> type(x)
<class '__main__.P'>
>>> isinstance(x,P)
True
>>> P
<class '__main__.P'>
>>> type(P)
<class 'type'>
>>> isinstance(P,type)
True
>>> int
<class 'int'>
>>> type(int)
<class 'type'>
>>> isinstance(int,type)
True

We observe the following:

• Variable x holds a value that is an object of type P; the object is an instance
of class P.

• Class P is an object of a built-in type named type; the object is an instance
of class type.

• Built-in type int is also an object of the type named type.

We call a class object like P a metaobject because it is a constructor of ordinary
objects [1,14].

We call a special class object like type a metaclass because it is a constructor
for metaobjects (i.e., class objects) [1,14].

We will look more deeply into these relationships in Chapter 7 when we examine
inheritance.
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6.5 Module Definitions
A Python module is defined in a file that contains a sequence of global variable,
function, and class definitions and executable statements. If the name of the file
is mymod.py, then the module’s name is mymod.

A Python package is a directory of Python modules.

A module definition collects the names and values of its global variables, functions,
and classes into its own private namespace (i.e., environment). This becomes the
global environment for all definitions and executable statements in the module.

When we execute a module definition as a script from the Python REPL, the
interpreter executes all the top-level statements in the module’s namespace. If
the module contains function or class definitions, then the interpreter checks
those for syntactic correctness and stores the definitions in the namespace for
use later during execution.

6.5.1 Using import

Suppose we have the following Python code in a file named testmod.py.

# This is module "testmod" in file "testmod.py"
testvar = -1

def test(x):
return x

We can execute this code in a Python REPL session as follows.

>>> import testmod # import module in file "testmod.py"
>>> testmod.testvar # access module's variable "testvar"
-1
>>> testmod.testvar = -2 # set variable to new value
>>> testmod.testvar
-2
>>> testmod.test(23) # call module's function "test"
23
>>> test(2) # must use module prefix "test"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'module' object is not callable
>>> testmod # below PATH = directory path
<module 'testmod' from 'PATH/testmod.py'>
>>> type(testmod)
<class 'module'>
>>> testmod.__name__
'testmod'
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>>> type(type(testmod))
<class 'type'>

The import statement causes the interpreter to execute all the top-level state-
ments from the module file and makes the namespace available for use in the
script or another module. In the above, the imported namespace includes the
variable testvar and the function definition test.

A name from one module (e.g., testmod) can be directly accessed from an
imported module by prefixing the name by the module name using the dot
notation. For example, testmod.testvar accesses variable testvar in module
testmod and testmod.test() calls function test in module testmod.

We also see that the imported module testmod is an object of type (class)
module.

6.5.2 Using from import

We can also import names selectively. In this case, the definitions of the selected
features are copied into the module.

Consider the module testimp below.

# This is module "testimp" in file "testimp.py"
from testmod import testvar, test

myvar = 10

def myfun(x, y, z):
mylocvar = myvar + testvar
return mylocvar

class P:
def __init__(self):

self.my_loc_var = None

def meth1(self, arg):
return test(arg)

def meth2(self, arg):
if arg == None:

return None
else:

my_loc_var= arg
return arg

The definitions of variable testvar and function test are copied from module
testmod into module testimp’s namespace. Module testimp can thus access
these without prefix testmod.
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Module testimp could import all of the definitions from module testmod by
using the wildcard * instead of the explicit list.

We can execute the above code in a Python REPL session as follows.

>>> import testimp
>>> testimp.myvar
10
>>> testimp.myfun(1,2,3)
9
>>> pp = testimp.P()
>>> pp.meth1(23)
23
>>> pp.meth2(14)
14
>>> type(pp)
<class 'testimp.P'>
>>> type(testimp.testmod)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'testmod' is not defined

Note that the from testmod import statement does not create an object
testmod.

6.5.3 Programming conventions

Python programs typically observe the following conventions:

• All module import and import from statements should appear at the
beginning of the importing module.

• All from import statements should specify the imported names explicitly
rather than using the wildcard * to import all names. This avoids polluting
the importing module’s namespace with unneeded names. It also makes
the dependencies explicit.

• Any definition whose name begins with an _ (underscore) should be kept
private to a module and thus should not be imported into or accessed
directly from other modules.

6.5.4 Using importlib directly

TODO: Perhaps move the discussion below of the importlib a metaprogramming
feature, to a later chapter that deals with metaprogramming?

The Python core module importlib exposes the functionality underlying the
import statement to Python programs. In particular, we can use the function
call
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importlib.import_module('modname') # argument is string

to find and import a module from the file named modname.py. Below we see
that this works like an explicit import.

>>> from importlib import import_module
>>> tm = import_module('testmod')
>>> tm # below PATH = directory path
<module 'testmod' from 'PATH/testmod.py'>
>>> type(tm)
<class 'module'>
>>> type(type(tm))
<class 'type'>

6.6 Statement Execution and Variable Scope
Statements perform the work of the program—computing the values of expres-
sions and assigning the computed values to variables or parts of data structures.

Statements execute in two scopes: global and local.

1. As described above, the global scope is the enclosing module’s environment
(a dictionary), as extended by imports of other modules.

2. As described above, the local scope is the enclosing function’s dictionary
(if the statement is in a function).

If statement is a string holding a Python statement, then we can execute
the statement dynamically using the exec library function as follows:

exec(statement)

By default, the statement is executed in the current global and local
environment, but these environments can be passed in explicitly in optional
arguments globals and locals:

exec(statement, globals)
exec(statement, globals, locals)

Inside a function, variables that are:

• referenced but not assigned a value are assumed to be global

• assigned a value are assumed to be local

In the latter case, we can explicitly declare the variable global. if the desired
target variable is defined in the global scope.

6.7 Nested Function Definitions
Above we only considered module-level function definitions and instance method
definitions defined within classes.
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Python allows function definitions to be nested within other function definitions.
Nested functions have several characteristics:

• Encapsulation. The outer function hides the inner function definitions from
the global scope. The inner functions can only be called from within the
outer function.

In contrast, Python classes and modules do not provide airtight encapsu-
lation. Their hiding of information is mostly by convention, with some
support from the language.

• Abstraction. The inner function is a procedural abstraction that is named
and separated from the outer function’s code. This enables the inner
function to be used several times within the outer function. The abstraction
can enable the algorithm to be simplified and understood more easily.

Of course, modules and classes also support abstraction, but not in combi-
nation with encapsulation.

• Closure construction. The outer function can take one or more functions
as arguments, combine them in various ways (perhaps with inner function
definitions), and construct and return a specialized function as a closure.
The closure can bind in parameters and other local variables of the outer
function.

Closures enable functional programming techniques such as currying, par-
tial evaluation, function composition, construction of combinators, etc.

We discuss closures in more depth in Section 6.9.

Closure are powerful mechanisms that can be used to implement metapro-
gramming solutions (e.g., Python’s decorators). We discuss those in
Chapter 9.

As an example of use of nested function definitions to promote encapsulation
and abstraction, consider a recursive function sqrt(x) to compute the square
root of nonnegative number x using Newton’s Method. (This is adapted from
section 1.1.7 of Abelson and Sussmann [2].)

def sqrt(x):
def square(x):

return x * x
def good_enough(guess,x):

return abs(square(guess) - x) < 0.001
def average(x,y):

return (x + y) / 2
def improve(guess,x):

return average(guess,x/guess)
def sqrt_iter(guess,x): # recursive version

if good_enough(guess,x):
return guess
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else:
return sqrt_iter(improve(guess,x),x)

if x >= 0:
return sqrt_iter(1, x)

else:
print(

f'Cannot compute sqrt of negative number {x}')

A more “Pythonic” implementation of the sqrt_iter function would use a loop
as follows:

def sqrt_iter(guess,x): # looping version
while not good_enough(guess,x):

guess = improve(guess,x)
return guess

Note: The Python 3.7+ source code for the recursive version of sqrt is available
at this link{type=“text/plain} and the looping version at another link.

6.8 Lexical Scope
Nested function definitions introduce a third category of variables—local variables
of outer functions—in addition to the (function-level) local and (module-level)
global scopes we have discussed so far.

Python searches lexical scope (also called static scope) of a function for variable
accesses. (The section on procedural programming paradigm ELIFP [13] Chapter
2 also discusses this concept.)

Inside a function, variables that are:

• referenced but not assigned a value are assumed to be either defined in an
outer function scope or in the global scope.

The Python interpreter first searches for the nearest enclosing function
scope with a definition. If there is none, it then searches the global scope.

• assigned a value are assumed to be local

In the latter case, we can explicitly declare the variable as nonlocal if the
desired variable to be assigned is defined in an enclosing function scope or as
global if it is defined in the global scope.

Suppose we want to add an iteration counter c to the sqrt function above. We
can create and initialize variable c in the outer function sqrt, but we must
increment it in nested function sqrt_iter. For the nested function to change an
outer function variable, we must declare the variable as nonlocal in the nested
function’s scope.

def sqrt(x):
c = 0 # create c in outer function
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# same defs of square, good_enough, average, improve
def sqrt_iter(guess,x): # new local x, hide outer x

nonlocal c # declare c nonlocal
while not good_enough(guess,x):

c += 1 # increment c
guess = improve(guess,x)

return (guess,c) # return c
if x >= 0:

return sqrt_iter(1, x)
else:

print(f'Cannot compute sqrt of negative number {x}')

Note: The Python 3.7+ source code for this version of sqrt is available at this
link.

6.9 Closures
As discussed in Section 6.7, Python function definitions can be nested inside
other functions. Among other capabilities, this enables a Python function to
create and return a closure.

A closure is a function object plus a reference to the enclosing environment.

For example, consider the following:

def make_multiplier(x, y):
def mul():

return x * y
return mul

If we call this function interactively from the Python 3 REPL, we see that the
values of the local variables x and y are captured by the function returned.

>>> amul = make_multiplier(2, 3)
>>> bmul = make_multiplier(10, 20)
>>> type(amul)
<class 'function'>
>>> amul()
6
>>> bmul()
200

Function make_multiplier is a higher order function because it returns a
function (or closure) as its return value. Higher order functions may also take
functions (or closures) as parameters.

We can compose two conforming single argument functions using the following
compose2 function. Function comp captures the two arguments of compose2 in
a closure [23].
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def compose2(f, g):
def comp(x):

return f(g(x))
return comp

Given that f(g(x)) is a simple expression without side effects, we can replace
the comp function with an anonymous lambda function as follows:

def compose2(f, g):
return lambda x: f(g(x))

If we call this function from the Python 3 REPL, we see that the values of the
local variables x and y are captured by the function returned.

>>> def square(x):
... return x * x
...
>>> def inc(x):
... return x + 1
...
>>> inc_then_square = compose2(square, inc)
>>> inc_then_square(10)
121

Note: The Python 3.7+ source code for compose2 is available at this link.

6.10 Function Calling Conventions
Consider a module-level function. A function may include a combination of:

• positional parameters

• keyword parameters

There are several different ways we can specify the arguments of function calls
described below.

1. Using positional arguments

def myfunc(x, y, z):
statement1
statement2
...

myfunc(10, 20, 30)

2. Using keyword arguments

def myfunc(x, y, z):
statement1
statement2
...
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myfunc(z=30, x=10, y=20)
# note different order than in signature

3. Using default arguments set at definition time—using only immutable
values (e.g., False, None, string, tuple) for defaults

def myfunc(x, trace = False, vars = None):
if vars is None:

vars = []
...

myfunc(10)
# x=10, trace=False, vars=None

myfunc(10, vars=['x', 'y'])
# x=10, trace=False, vars=['x', 'y'])

4. Using required positional and variadic positional arguments

def myfunc(x, *args):
# x is a required argument in position 1
# args is tuple of variadic positional args
# name "args" is just convention
...

myfunc(10, 20, 30)
# x = 10
# args = (20, 30)

5. Using required positional, variadic positional, and keyword arguments

def myfunc(x, *args, y):
# x is a required argument in position 1
# args is tuple of variadic positional args
# y is keyword argument (occurs after variadic positional)
...

myfunc(10, 20, 30, y = 40)
# x = 10
# args = (20, 30)
# y = 40

6. Using required positional, variadic positional, keyword, and variadic key-
word arguments

def myfunc(x, *args, y = 40, **kwargs):
# x is a required argument in position 1
# args is tuple of variadic positional args
# y is a regular keyword argument with default
# kwargs is a dictionary of variadic keyword args
# names 'args' and 'kwargs' are conventions
...

myfunc(10, 20, 30, y = 40, r = 50, s = 60, t = 70)
# x = 10
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# args = (20, 30)
# y = 40
# kwargs = { 'r': 50, 's': 60, 't': 70 }

7. Using required positional and keyword arguments—where named argu-
ments appearing after * can only be passed by keyword

def myfunc(x, *, y, **kwargs):
# x is a required argument in position 1
# y is a regular keyword argument
# kwargs is a dictionary of keyword args

...
myfunc(10, y = 40, r = 50, s = 60, t = 70)

# x = 10
# y = 40
# kwargs = { 'r': 50, 's': 60, 't': 70 }

8. Using a fully variadic general signature

def myfunc(*args, **kwargs):
# args is tuple of all positional args
# kwargs is a dictionary of all keyword args
...

myfunc(10, 20, y = 40, 30, r = 50, s = 60, t = 70)
# args = (10, 20, 30)
# kwargs = { 'y': 40, 'r': 50, 's': 60, 't': 70 }

6.11 What Next?
This chapter (6) examined the basic building blocks of Python programs—
statements, functions, classes, and modules. Chapter 7 examines classes, objects,
and object orientation in more detail.

6.12 Chapter Source Code
TODO

6.13 Exercises
TODO

6.14 Acknowledgements
In Spring 2018, I drafted what is now this chapter as part of the document Basic
Features Supporting Metaprogramming, which is Chapter 2 of the 3 chapters of
the booklet Python 3 Reflexive Metaprogramming [9]. The Spring 2018 material
used Python 3.6.
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The overall booklet Python 3 Reflexive Metaprogramming is inspired by David
Beazley’s Python 3 Metaprogramming tutorial slides from PyCon’2013 [3]. In
particular, I adapted and extended the “Basic Features” material from the terse
introductory section of Beazley’s tutorial; I attempted to answer questions I had
as a person new to Python. Beazley’s tutorial draws on material from his and
Brian K. Jones’ book Python Cookbook [4].

In Fall 2018, I divided the Basic Features Supporting Metaprogramming doc-
ument into 3 chapters—Python Types, Python Program Components (this
chapter), and Python Object Orientation. I then revised and expanded each [10].
These 2018 chapers use Python 3.7.

This chapter seeks to be compatible with the concepts, terminology, and ap-
proach of my textbook Exploring Languages with Interpreters and Functional
Programming [13], in particular of Chapters 2, 3, 5, 6, 7, 11, and 21.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began
refining the existing content, integrating (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

6.15 Terms and Concepts
TODO
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7 Python Object Orientation
7.1 Chapter Introduction
Chapter 6 examined the basic building blocks of Python programs—statements,
functions, classes, and modules.

This chapter (7) examines classes, objects, and object orientation in more detail.

TODO: Chapter goals.

Note: In this book, we use the term Python to mean Python 3. The various
examples use Python 3.7 or later.

7.2 Class and Instance Attributes
As we saw in Chapter 6, classes are objects. The class objects can have attributes.
Instances of the class are also objects with their own attributes.

Consider the following class Dummy which has a class-level variable r. This
attribute exists even if no instance has been created.

Instances of Dummy have instance variables s and t and an instance method
in_meth.

class Dummy:
r = 1
def __init__(self, s, t):

self.s = s
self.t = t

def in_meth(self):
print('In instance method in_meth')

Now consider the following Python REPL session with the above definition.

>>> Dummy.r
1
>>> d = Dummy(2,3)
>>> d.s
2
>>> d.in_meth()
>>> In instance method method

In the above, we see that:

• Dummy.r accesses the value of class variable r of the class object for the
class Dummy.

• d.s accesses the value of instance variable s of an instance object created
by the constructor call and assignment d = Dummy(2).

• d.in_meth() calls instance method in_meth of instance object d.
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These usages are similar to those of other object-oriented languages such as Java.

A class can have three different kinds of methods in Python [35]:

1. An instance method is a function associated with an instance of the class.
It requires a reference to an instance object to be passed as the first non-
optional argument, which is by convention named self. If that reference
is missing, the call results in a TypeError.

It can access the values of any of the instance’s attributes (via the self
argument) as well as the class’s attributes.

Note in_meth in the Dummy code below.

2. A class method is a function associated with a class object. It requires a
reference to the class object to be passed as the first non-optional argument,
which is by convention named cls. If that reference is missing, the call
results in a TypeError.

It can access the values of any of the class’s attributes (via the cls
argument). For example, cls() can create a new instance of the class.
However, it cannot access the attributes of any of the class’s instances.

Note cl_meth in the Dummy code below.

Class methods can be overriden in subclasses.

Because Python does not support method overloading, class methods are
useful in circumstances where overloading might be used in a language
like Java. For example, we can use class methods to implement factory
methods as alternative constructors for instances of the class.

3. A static method is a function associated with the class object, but it does
not require any non-optional argument to be passed

A static method is just a function attached to the class’s namespace. It
cannot access any of the attributes of the class or instances except in a
way that any function in the program can (e.g., by using the name of the
class explicitly, by being passed an object as an argument, etc.)

Note s_meth in the Dummy code below.

Static methods cannot be overrides in subclasses.

class Dummy: # extended definition
r = 1

def __init__(self, s, t):
self.s = s
self.t = t

def in_meth(self):
print('In instance method in_meth')
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@classmethod
def cl_meth(cls):

print(f'In class method cl_meth for {cls}')

@staticmethod
def st_meth():

print('In static method st_meth')

In the example, the decorators @classmethod and @staticmethod transform
the attached functions into class and static methods, respectively. We discuss
decorators in Chapter 9.

Now consider a Python REPL session with the extended definition.

>>> d = Dummy(2,3)
>>> d.in_meth()
In instance method in_meth
>>> d.r
1
>>> Dummy.cl_meth()
In class method cl_meth for Dummy
>>> Dummy.st_meth()
In static method st_meth
>>> Dummy.in_meth()
Traceback (most recent call last):
...
TypeError: in_meth() missing 1 required positional argument:

'self'
>>> type(d.in_meth)
<class 'method'>
>>> type(Dummy.cl_meth)
<class 'method'>
>>> type(Dummy.st_meth)
<class 'function'>
>>> din = d.in_meth # get method obj, store in var din
>>> din() # call method object in din
In instance method in_meth
None
>>> type(din)
<class 'method'>

Note that the types of the references d.in_meth and Dummy.cl_meth are both
method. A method object is essentially a function that binds in a reference to
the required first positional argument. A method object is, of course, a first-class
object that can be stored and invoked later as illustrated by variable din above.

However, note that Dummy.st_meth has type function.
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The Python 3.7+ source code for the class Dummy is available in file dummy1,py.

7.3 Object Dictionaries
As we noted in Chapter 5, each Python object has a distinct dictionary that maps
the local names to the data attributes and operations (i.e., its environment).
Each object’s attribute __dict__ holds its dictionary. Python programs can
access this dictionary directly.

Again consider the Dummy class we examined in Section 7.2. Let’s look at
dictionary for this class and an instance in the Python REPL.

>>> d = Dummy(2,3)
>>> d.__dict__
{'s': 2, 't': 3}
>>> Dummy.__dict__["r"]
1
>>> Dummy.__dict__["in_meth"]
<function Dummy.in_meth at 0x10191abf8>
>>> Dummy.__dict__["cl_meth"]
<classmethod object at 0x101928c50>
>>> Dummy.__dict__["st_meth"]
<staticmethod object at 0x101928c88>

TODO: Investigate and explain last two types returned above?

7.4 Special Methods and Operator Overloading
Almost everything about the behavior of Python classes and instances can be
customized. A key way to do this is by defining or redefining special methods
(sometimes called magic methods).

Python uses special methods to provide an operator overloading capability. There
are special methods associated with certain operations that are invoked by builtin
operators (such as arithmetic and comparison operators, subscripting) and with
other functionality (such as initializing newly class instance).

The names of special methods both begin and end with double underscores __
(and thus are sometimes called “dunder” methods). For example, in an earlier
subsection, we defined the special method __init__ to specify how a newly
created instance is initialized. In other class-based examples, we have defined
the __str__ special method to implement a custom string conversion for an
instance’s state.

Consider the class Dum that overrides the definition of the addition operator to
do the same operation as multiplication.

class Dum:
def __init__(self,x):
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self.x = x
def __add__(a,b):

return a.x * b.x

Now let’s see how Dum works.

>>> y = Dum(2)
>>> z = Dum(4)
>>> y + z
8

Consider the rudimentary SparseArray collection below. It uses the special
methods __init__, __str__, __getitem__, __setitem__, __delitem__, and
__contains__ to tie this new collection into the standard access mechanisms.
(This example stores the sparse array in a dictionary internally, but “hides” that
from the user.)

The Boolean __contains__ functionality searches the SparseArray instance for
an item. The class also provides a separate Boolean method has_index to check
wether an index has a corresponding value. Alternatively, we could have tied
the __contains__ functionality to the latter and provided a has_item method
for the former.

In addition, the method from_assoc loads an “association list” into a sparse
array instance. Here, the term association list refers to any iterable object
yielding a finite sequence of index-value pairs.

Similarly, the method to_assoc unloads the entire sparse array into a sorted
list of index-value pairs (which is an iterable object).

For simplicity, the implementation below just prints error messages. It probably
should raise exception instead.

class SparseArray:

def __init__(self, assoc=None):
self._arr = {}
if assoc is not None:

self.from_assoc(assoc)

def from_assoc(self,assoc):
for p in assoc:

if len(p) == 2:
(i,v) = p
if type(i) is int:

self._arr[i] = v
else:

print(
f'Index not int in assoc list: {str(i)}')

else:
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print(
f'Invalid pair in assoc list: {str(p)}')

def has_index(self, index):
if type(index) is int:

return index in self._arr
else:

print(
f'Warning: Index not int: {index}')

return False

def __getitem__(self, index): #arr[index]
if type(index) is int:

return self._arr[index]
else:

print(f'Index not int: {index}')

def __setitem__(self, index, value): #arr[index]=value
if type(index) is int:

self._arr[index] = value
else:

print(f'Index not int: {index}')

def __delitem__(self, index): #del arr[index]
if type(index) is int:

del self._arr[index]
else:

print(f'Index not int: {index}')

def __contains__(self, item): #item value in arr
return item in self._arr.values()

def to_assoc(self):
return sorted(self._arr.items())

def __str__(self):
return str(self.to_assoc())

Now consider a Python REPL session with the above class definition.

>>> arr = SparseArray()
>>> type(arr)
<class '__main__.SparseArray'>
>>> arr
[]
>>> arr[1] = "one"
>>> arr
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[(1, `one`)]
>>> arr.has_index(1)
True
>>> arr.has_index(2)
False
>>> arr.from_assoc([(2,"two"),(3,"three")])
{1: 'one', 2: 'two', 3: 'three'}
>>>
>>> arr[10] = "ten"
>>> arr
[(1,'one'), (2, 'two'), (3, 'three'), (10, 'ten')]
>>> del arr[3]
>>> arr
[(1,'one'), (2, 'two'), (10, 'ten')]
>>> 'ten' in arr
True

The Python 3.7+ source code for the class SparseArray is available in file
sparse_arrat1,py.

7.5 Object Orientation
TODO: Remove any unnecessary duplication among this discussion and similar
discussions in Chapters 3 and 5.

Chapter 3, Object-Based Paradigms, of Exploring Languages with Interpreters
and Functional Programming (ELIFP) [13] discusses object orientation in terms of
a general object model. The general object model includes four basic components:

1. objects
2. classes
3. inheritance
4. subtype polymorph

We discuss Python’s objects in Chapter 5 and classes in Chapter 6.

Now let’s consider the other two components of the general object model in
relation to Python.

7.5.1 Inheritance

In programming languages in general, inheritance involves defining hierarchical
relationships among classes. From a pure perspective, a class C inherits from
class P if C’s objects form a subset of P’s objects in the following sense:

• Class C’s objects must support all of class P’s operations (but perhaps are
carried out in a special way).

We can say that a C object is a P object or that a class C object can be
substituted for a class P object whenever the latter is required.
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• Class C may support additional operations and an extended state (i.e.,
more data attributes fields).

We use the following terminology.

• Class C is called a subclass or a child or derived class.

• Class P is called a superclass or a parent or base class.

• Class P is sometimes called a generalization of class C; class C is a special-
ization of class P.

In terms of the discussion in the Type System Concepts section, the parent class
P defines a conceptual type and child class C defines a behavioral subtype of P’s
type. The subtype satisfies the Liskov Substitution Principle [24,39].

Even in a statically typed language like Java, the language does not enforce this
subtype relationship. It is possible to create subclasses that are not subtypes.
However, using inheritance to define subtype relationships is considered good
object-oriented programming practice in most circumstances.

In a dynamically typed like Python, there are fewer supports than in statically
typed languages. But using classes to define subtype relationships is still a good
practice.

The importance of inheritance is that it encourages sharing and reuse of both
design information and program code. The shared state and operations can be
described and implemented in parent classes and shared among the child classes.

The following code fragment shows how to define a single inheritance relationship
among classes in Python. Instance method process is defined in the parent
class P and overridden (i.e., redefined) in child class C but not overriden in child
class D. In turn, C ’s instance method process is overridden in its child class G.

class P:
def __init__(self,name=None):

self.name = name
def process(self):

return f'Process at parent P level'

class C(P): # class C inherits from class P
def process(self):

result = f'Process at child C level'
# Call method in parent class
return f'{result} \n {super().process()}'

class D(P): # class D inherits from class P
pass

class G(C): # class G inherits from class C
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def process(self):
return f'Process at grandchild G level'

Now consider a (lengthy) Python REPL session with the above class definition.

>>> p1 = P()
>>> c1 = C()
>>> d1 = D()
>>> g1 = G()
>>> p1.process()
'Process at parent P level'
>>> c1.process()
'Process at child C level'
'Process at parent P level'
>>> d1.process()
'Process at parent P level'
>>> g1.process()
'Process at grandchild G level'
#
>>> type(P)
<class 'type'>
>>> type(C)
<class 'type'>
>>> type(G)
<class 'type'>
>>> issubclass(P,object)
True
>>> issubclass(C,P)
True
>>> issubclass(G,C)
True
>>> issubclass(G,P)
True
>>> issubclass(G,object)
True
>>> issubclass(C,G)
False
>>> issubclass(G,D)
False
>>> issubclass(P,type)
False
>>> isinstance(P,type)
True
>>> isinstance(C,type)
True
>>> isinstance(G,type)
True
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>>> type(type)
<class 'type'>
>>> issubclass(type,object)
True
>>> isinstance(type,type)
True
>>> type(object)
<class 'type'>
>>> isinstance(object,type)
True
>>> issubclass(object,type)
False

Note: The Python 3.7+ source code for the above version of the P class hierarchy
is available in file inherit1.py.

7.5.1.1 Understanding relationships among classes By examining the
REPL session above, we can observe the following:

• Top-level user-defined classes like P implicitly inherit from the object root
class. They have the issubclass relationship with object.

• A user-defined subclass like C inherits explicitly from its superclass P, which
inherits implicitly from root class object. Class C thus has issubclass
relationships with both P and object.

• By default, all Python classes (including subclasses) are instances of the
root metaclass type (or one of its subtypes as we see later). But non-class
objects are not instances of type.

As we noted in Chapter 6, we call class objects metaobjects; they are constructors
for ordinary objects [1,14].

Also as we noted in Chapter 6, we call special class objects like type metaclasses;
they are constructors for metaobjects (i.e., class objects) [1,14].

Note that classes object and type have special – almost “magical” – relationships
with one another [31:593–595].

• Class object is an instance of class type (i.e., it is a Python class object).

• Class type is an instance of itself (i.e., it is a Python class object) and a
subclass of class object.

The diagram in Figure 7.1 shows the relationships among user-definfed class P and
built-in classes int, object, and type. Solid lines denote subclass relationships;
dashed lines denote “instance of” relationships.

7.5.1.2 Replacement and refinement There are two general approaches
for overriding methods in subclasses [8]:
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Figure 7.1: Python Class Model
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• Replacement, in which the child class method totally replaces the parent
class method

This is the usual approach in most “American school” object-oriented
languages in use today—Smalltalk (where it originated), Java, C++, C#,
and Python.

• Refinement, in which the language merges the behaviors of the parent and
child classes to form a new behavior

This is the approach taken in Simula 67 (the first object-oriented language)
and its successors in the “Scandinavian school” of object-oriented languages.
In these languages, the child class method typically wraps around a call to
the parent class method.

The refinement approach supports the implementation of pure subtyping re-
lationships better than replacement does. The replacement approach is more
flexible than refinement.

A language that takes the replacement approach usually provides a mechanism
for using refinement. For example in the Python class hierarchy example above,
the expression super().process() in subclass C calls the process method of
its superclass P.

7.5.2 Subtype polymorphism

The concept of polymorphism (literally “many forms”) means the ability to hide
different implementations behind a common interface. As we saw in Chapter
5, polymorphism appears in several forms in programming languages. Here we
examine one form.

In the Python class hierarchy example above, the method process forms part of
the common interface for this hierarchy. Parent class P defines the method, child
class C overrides P ’s definition by refinement, and grandchild class G overrides
C ’s definition by replacement. However, child class D does not override P ’s
definition.

Subtype polymorphism (sometimes called polymorphism by inheritance, inclusion
polymorphism, or subtyping) means the association of an operation invocation
(e.g., method call) with the appropriate operation implementation in an inheri-
tance (i.e., subtype) hierarchy.

This form of polymorphism is usually carried out at run time. Such an imple-
mentation is called dynamic binding.

In general, given an object (i.e., class instance) to which an operation is applied,
the runtime system first searches for an implementation of the operation associ-
ated with the object’s class. If no implementation is found, the system checks
the parent class, and so forth up the hierarchy until it finds an implementation
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and then invokes it. Implementations of the operation may appear at several
levels of the hierarchy.

The combination of dynamic binding with a well-chosen inheritance hierarchy
allows the possibility of an instance of one subclass being substituted for an
instance of a different subclass during execution. Of course, this can only be
done when none of the extended operations of the subclass are being used.

In a statically typed language like Java, we declare a variable of some ancestor
class type. We can then store any descendant class instance in that variable.
Polymorphism allows the program to apply any of the ancestor class operations
to the instance.

Because of dynamically typed variables, polymorphism is even more flexible in
Python than in Java.

In Python, an instance object may also have its own implementation of a method,
so the runtime system searches the instance before searching upward in the class
hierarchy.

Also (as we noted in an earlier section) Python uses duck typing. Objects can
have a common interface even if they do not have common ancestors in a class
hierarchy. If the runtime system can find an compatible operation associated
with an instance, it can execute it.

Thus Python’s approach to subtype polymorphism gives considerable flexibility
in structuring programs. However, unlike statically typed languages, the compiler
provides little help in ensuring the compatibility of method implementations.

Again consider the simple inheritance hierarchy above in the following Python
REPL session.

>>> d1 = D()
>>> g1 = G()
>>> obj = d1 # variables support polymorphism
>>> obj.process()
'Process at parent P level'
>>> obj = g1 # variables support polymorphism
>>> obj.process()
'Process at grandchild G level'

7.5.3 Multiple Inheritance

TODO: Discuss multiple inheritance. Issues include the diamond problem,
Python syntax and semantics, and method resolution order.

7.6 What Next?
TODO
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7.7 Chapter Source Code
TODO

7.8 Exercises
TODO

7.9 Acknowledgements
In Spring 2018, I drafted what is now this chapter as part of the document Basic
Features Supporting Metaprogramming, which is Chapter 2 of the 3 chapters of
the booklet Python 3 Reflexive Metaprogramming [9]. The Spring 2018 material
used Python 3.6.

The overall booklet Python 3 Reflexive Metaprogramming is inspired by David
Beazley’s Python 3 Metaprogramming tutorial slides from PyCon’2013 [3]. In
particular, I adapted and extended the “Basic Features” material from the terse
introductory section of Beazley’s tutorial; I attempted to answer questions I had
as a person new to Python. Beazley’s tutorial draws on material from his and
Brian K. Jones’ book Python Cookbook [4].

In Fall 2018, I divided the Basic Features Supporting Metaprogramming docu-
ment into 3 chapters—Python Types, Python Program Components, and Python
Object Orientation (this chapter). I then revised and expanded each [10]. These
2018 chapers use Python 3.7.

This chapter seeks to be compatible with the concepts, terminology, and ap-
proach of my textbook Exploring Languages with Interpreters and Functional
Programming [13], in particular of Chapters 2, 3, 5, 6, 7, 11, and 21.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began
refining the existing content, integrating (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

7.10 Terms and Concepts
TODO
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8 Metaprogramming
8.1 Chapter Introduction
TODO: Introduction and other missing parts. These are updated consistently
for use with other chapters.

Note: In this book, we use the term Python to mean Python 3. The various
examples use Python 3.7 or later.

8.2 Definition
Basically, metaprogramming is writing code that writes code [45,46].

Metaprogramming: the writing of computer programs that can treat com-
puter programs as their data. A program can read, generate, analyze,
and/or transform other programs, or even modify itself while running)

We often do metaprogramming in our routine programming tasks but do not
call it that.

• Our web applications may generate HTML, JavaScript, and CSS code to
enable development of a browser-based user interface.

• Our Java programs may use instanceof to check the type of objects or
otherwise manipulate itself with the Java reflection package.

• Our C programs may use macros to define new features in terms of existing
features [36].

• The PIC little language processor takes a program expressed in an external
textual language that describes a picture and generates output expressed
in another language that gives instructions to a display program [22,32].

Under the above definition, much of our study of domain-specific languages uses
metaprogramming.

8.3 Reflexive Metaprogramming
TODO: Decide how to consistently refer to my DSL course examples. Should be
consistent with the separate longer Domain-Specific Languages document.

The internal Survey DSL and Lair Configuration DSL are examples of reflexive
(or reflective) metaprogramming [45,46].

Reflexive metaprogramming: the writing of computer programs that ma-
nipulate themselves as data.

This manipulation may be at compile time, involving a phase of transformations
in the code before the final program is generated. Or it may be at runtime,
involving manipulation of the program’s metamodel or generation of new code
that is dynamically executed within the program.
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The Survey DSL is a Ruby internal DSL. It takes advantage of Ruby’s metapro-
gramming facilities such as the abilities to trap calls to undefined methods, add
methods or variables dynamically to existing objects at runtime, and execute
dynamically generated strings as Ruby code. It also uses Ruby’s first-class
functions (closures) and flexible syntax – although these are not technically
metaprogramming features of Ruby.

The Lair Configuration DSL programs use the metaprogramming features of
Lua and Python in similar ways.

Consider relatively common languages and their metaprogramming features.

• Java is a statically typed, compiled language. What are metaprogramming
features available in Java?

It has dynamic class loaders, a reflection API, annotation processing,
dynamic method invocation (a JVM feature), JVM bytecode manipulation
(mostly with external tools), etc. Java 8+ also has first-class functions and
other features useful in metaprogramming.

• Lua is a dynamically typed, interpreted language. What are the metapro-
gramming features available in Lua?

It has metatables, metamethods, manipulation of environments, a de-
bug library (introspection/reflection features), loadfile and loadstring
functions to dynamically execute code, extensions in C, etc.

What about Python?

The reflexive metaprogramming features of Python 3.7 and beyond is the primary
topic of this set of lecture notes.

8.4 Why Study Reflexive Metaprogramming?
In everyday application programming, we often use the products developed by
metaprogrammers, but we seldom use the techniques directly.

In everyday programming, use of reflexive metaprogramming techniques should
not be one of our first approaches to a problem. We first should explore techniques
supported by core language, its standard libraries, and stable extension packages.

If no acceptable solution can be found, then we can consider solutions that use
reflexive metaprogramming techniques. We should approach metaprogramming
with great care because these techniques can make programs difficult to under-
stand and can introduce vulnerabilities into our programs. We should design,
implement, test, and document the programs rigorously.

However, reflexive metaprogramming can be an important tool in a master
programmer’s toolbox. If our jobs are to develop software frameworks, libraries,
APIs, or domain-specific languages, we can use these techniques and features

53

Ch08/../../SurveyDSL/SurveyDSL.html
Ch08/../../LairDSL/LairDSL.html


to develop powerful products that hide the complexity from the application
programmer.

Even when our jobs are primarily application programming, understanding
reflexive metaprogramming techniques can improve our abilities to use software
frameworks, libraries, and APIs effectively.

8.5 Reflexive Metaprogramming in Python
TODO: Update this to better reflect, what the final notes cover and include
forward references as appropriate.

The reflexive metaprogramming features of Python include:

1. Decorators
2. Metaclasses
3. Descriptors
4. Import hooks
5. Context managers
6. Annotations (e.g., type hints)
7. Abstract Syntax Tree (AST) manipulation
8. Frame hacks
9. Execution of strings as Python 3 code (exec, eval)

10. Monkeypatching (i.e., direct dynamic manipulation of attributes and meth-
ods at runtime)

We have already used the final two in our implementation of domain-specific
languages. We will look at some of the others in these notes. In particular,
Chapter 9 looks at use of decorators and metaclasses.

8.6 What Next?
TODO

8.7 Chapter Source Code
TODO

8.8 Exercises
TODO: Decide if any are appropriate.

8.9 Acknowledgements
I developed these notes in Spring 2018 for use in CSci 658 Software Language
Engineering [9]. The Spring 2018 version used Python 3.6.

Teaching a special topics course on “Ruby and Software Development” in Fall
2006 kindled my interests in domain-specific languages and metaprogramming.
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Building on these interests, I taught another special topics course on “Software
Language Engineering” in which I focused on Martin Fowler’s work on domain-
specific languages [15]; I subsequently formalized this as CSci 658. (I have
collected some overall ideas on in my notes on Domain Specific Languages [12].)

The overall set of notes on Python 3 Reflexive Metaprogramming is inspired by
David Beazley’s Python 3 Metaprogramming tutorial from PyCon’2013 [3]. In
particular, some chapters adapt Beazley’s examples. Beazley’s tutorial draws on
material from his and Brian K. Jones’ book Python Cookbook [4].

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began
refining the existing content, integrating (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

8.10 Terms and Concepts
TODO: Update

Metaprogramming, reflexive metaprogramming.
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9 Python Decorators and Metaclasses
In this chapter, we look at metaprogramming using Python decorators and
metaclasses. To do so, we consider a simple tracing debugger case study, adapted
from David Beazley’s debugly example from his metaprogramming tutorial [3].

TODO: Chapter goals.

Note: In this book, we use the term Python to mean Python 3. The various
examples use Python 3.7 or later.

9.1 Basic Function-Level Debugging
9.1.1 Motivating example

Suppose we have a Python function add:

def add(x, y):
'Add x and y'
return x + y

A simple way we can approach debugging is to insert a print statement into
the function to trace execution, as follows:

def add(x, y):
'Add x and y'
print('add')
return x + y

However, suppose we need to debug several similar functions simultaneously.
Following the above approach, we might have code similar to that in the example
below.

def add(x, y):
'Add x and y'
print('add')
return x + y

def sub(x, y):
'Subtract y from x'
print('sub')
return x - y

def mul(x, y):
'Multiply x and y'
print('mul')
return x * y

def div(x, y):
'Divide x by y'

56



print('div')
return x / y

We insert basically the same code into every function.

This code is unpleasant because it violates the Abstraction Principle.

9.1.2 Abstraction Principle, staying DRY

The Abstraction Principle states, “Each significant piece of functionality in a
program should be implemented in just one place in the source code.” [29:339].
If similar functionality is needed in several places, then the common parts of the
functionality should be separated from the variable parts.

The common parts become a new programming abstraction (e.g., a function,
class, abstract data type, design pattern, etc.) and the variable parts become
different ways in which the abstraction can be customized (e.g.„ its parameters).

The approach encourages reuse of both design and code. Perhaps more impor-
tantly, it can make it easier to keep the similar parts consistent as the program
evolves.

Andy Hunt and Dave Thomas [20:26–33] articulate a more general software
development principle Don’t Repeat Yourself, known by the acronym DRY.

In an interview [38], Thomas states, “DRY says that every piece of system
knowledge should have one authoritative, unambiguous representation. . . . A
system’s knowledge is far broader than just its code. It refers to database
schemas, test plans, the build system, even documentation.”

Our goal is to keep our Python code DRY, not let it get WET (“Write Everything
Twice” or “Wasting Everyone’s Time” or “We Enjoy Typing” [47].)

9.1.3 Function decorators

To introduce an appropriate abstraction into the previous set of functions, we
can use a Python function decorator.

A function decorator is a higher-order function that takes a function as its
argument, wraps another function around the argument, and returns the wrapper
function.

The wrapper function has the same parameters and same return value as the
function it wraps, except it does extra processing when it is called. That is, it
“decorates” the original function.

TODO: Show Wikipedia citation because of link.

Remember that Python functions are objects. Python’s decorator function
concept is thus a special case of the Decorator design pattern, one of the classic
Gang of Four patterns for object-oriented programming [16]. The idea of this
pattern is to wrap one object with another object, the decorator, that has the
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same interface but enhanced behavior. The decoration is usually done at runtime
even in a statically typed language like Java.

TODO: Perhaps expand on the Decorator design pattern and give a diagram.

9.1.4 Constructing a debug decorator

In the motivating example above, we want to decorate a function like add(x,y)
by wrapping it with another function that prints the function name add before
doing the addition operation. The wrapped function can then take the place of
the original add in the program.

Let’s construct an appropriate decorator in steps.

In general, suppose we want to decorate a function named func that takes some
number of positional and/or keyword arguments. That is, the function has the
general signature:

func(*args, **kwargs)

Note: For more information on the above function calling syntax, see the
discussion on Function Calling Conventions in Chapter 6.

In addition, suppose we want to print the content of the variable msg before we
execute func.

As our first step, we define function wrapper as follows:

def wrapper(*args, **kwargs):
print(msg)
return func(*args, **kwargs)

As our second step, we define a decorator function debug that takes a function
func as its argument, sets local variable msg to func’s name, and then creates
and returns the function wrapper.

Function debug can retrieve the function name by accessing the __qualname__
attribute of the func object. Attribute __qualname__ holds the fully qualified
name.

def debug(func):
msg = func.__qualname__
def wrapper(*args, **kwargs):

print(msg)
return func(*args, **kwargs)

return wrapper

Function debug returns a closure that consists of the function wrapper plus
the the local environment in which wrapper is defined. The local environment
includes the argument func and the variable msg and their values.
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Note: For more information about the concepts and techniques used above, see
the discussion of Nested Function Definitions, Lexical Scope, and Closures in
Chapter 6.

It seems sufficient to assign the closure returned by debug to the name of func
as shown below for add.

def add(x, y):
'Add x and y' # docstring (documentation)
return x + y

add = debug(add)

But this does not work as expected as shown in the following REPL session.

>>> add(2,5)
add
7
>>> add.__qualname__
debug.<locals>.wrapper
>>> add.__doc__
None

The closure returned by debug computes the correct result. However, it does
not have the correct metadata, as illustrated above by the display of the name
(__qualname__) and the docstring (__doc__) metadata.

To make the use of the decorator debug transparent to the user, we can apply
the function decorator @wraps defined in the standard module functools as
follows.

def debug(func):
msg = func.__qualname__
@wraps(func)
def wrapper(*args, **kwargs):

print(msg)
return func(*args, **kwargs)

return wrapper

def add(x, y):
'Add x and y' # docstring (documentation)
return x + y

add = debug(add)

The @wraps(func) decorator call above sets function wrapper’s metadata —
it’s attributes __module__, __name__, __qualname__, __annotations__, and
__doc__ — to the same values as func’s metadata.

With this new version of the debug decorator, the decoration of add now works
transparently.
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>>> add(2,5)
add
7
>>> add.__qualname__ add
>>> add.__doc__
Add x and y

Finally, because the definition of a function like add and the application of
the debug decorator function usually occur together, we can use the decorator
syntactic sugar @debug to conveniently designate the definition of a decorated
function. The debug decorator function can be defined in a separate module.

@debug
def add(x, y):

'Add x and y'
return x + y

9.1.5 Using the debug decorator

Given the debug decorator as defined in the previous subsection, we can now
simplify the motivating example.

We decorate each function with @debug but give no other details of the imple-
mentation here. The debug facility is implemented in one place but used in
many places. The implementation supports the DRY principle.

@debug
def add(x, y):

'Add x and y'
return x + y

@debug
def sub(x, y):

'Subtract y from x'
return x - y

@debug
def mul(x, y):

'Multiply x and y'
return x * y

@debug
def div(x, y):

'Divide x by y'
return x / y

Note: The Python 3.7+ source code for the above version of debug is available
in linked file debug4.py.
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9.1.6 Case study review

So far in this case study, we have implemented a simple debugging facility that:

• is implemented once in a place separate from its use

• is thus easy to modify or disable totally

• can be used without knowing its implementation details

9.1.7 Variations

Now let’s consider a couple of variations of the debugging decorator implementa-
tion.

9.1.7.1 Logging One variation would be to use the Python logging module
to log the messages instead of just printing them [3].

The details of logging are not important here, but note that we only need to
make three changes to the debug implementation. We do not need to change
the user code.

from functools import wraps
import logging # (1) logging module

def debug(func):
# (2) get the Logger for func's module
log = logging.getLogger(func.__module__)
msg = func.__qualname__
@wraps(func)
def wrapper(*args, **kwargs):

log.debug(msg) # (3) log msg
return func(*args, **kwargs)

return wrapper

Note: The Python 3.7+ source code for the above version of debug is available
in linked file debuglog1.py.

9.1.7.2 Optional disable Another variation of the debugging decorator
would be to only enable debugging when a particular environment variable
is set [3]. In this variation, we only need to make two changes to the debug
implementation.

from functools import wraps
import os # (1) import os interface

def debug(func):
# (2) debug only if environment variable set
if 'DEBUG' not in os.environ:

return func
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msg = func.__qualname__
@wraps(func)
def wrapper(*args, **kwargs):

print(msg)
return func(*args, **kwargs)

return wrapper

Note: The Python 3.7+ source code for the above version of debug is available
in linked file debugopt1.py.

9.2 Extended Function-Level Debugging
Now we can extend the capability of our simple tracing debugger [3].

9.2.1 Motivating example

Suppose, for whatever reason, we want to add a prefix string to the debugging
message that may differ from one use of @debug to another. Again consider the
set of arithmetic functions.

def add(x, y):
'Add x and y'
print('***add')
return x + y

def sub(x, y):
'Subtract y from x'
print('@@@sub')
return x - y

def mul(x, y):
'Multiply x and y'
print('***sub')
return x * y

def div(x, y):
'Divide x by y'
print('div')
return x / y

We implement the needed capability by using function decorators with arguments.

9.2.2 Decorators with arguments

We can construct decorators that take arguments other than the function to be
decorated.

Consider the following use of decorator deco:
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@deco(args)
def func():

# some body code

The above translates into the following decorator call and assignment:

func = deco(args)(func)

The right-hand side denotes the chaining of two function calls. The system first
calls function deco passing it the first argument list (args). This call returns a
function, which is in turn called with the second argument list, variable (func).

The outer function call establishes a local environment in which the variables in
args are defined. In this environment, we define a normal decorator as we did
before.

9.2.3 Prefix decorator

We can thus define the outer layer of a prefix decorator with a function with
parameter prefix that defaults to the empty string.

def debug(prefix=''):
def deco(func):

# normal debug decorator body
return deco

The full definition of the prefix decorator is shown below. If no argument is given
to debug, the behavior is (almost) the same as the previous debug decorator
function.

from functools import wraps

def debug(prefix=''):
def deco(func):

msg = prefix + func.__qualname__
@wraps(func)
def wrapper(*args, **kwargs):

print(msg)
return func(*args, **kwargs)

return wrapper
return deco

In this formulation, prefix can be given as either a positional or keyword
argument.

We can apply the new prefix debug decorator to our motivating example functions
as follows. Note that the prefix strings vary among the different occurrences.

@debug(prefix='***')
def add(x,y):

'Add x and y'

63



return x+y

@debug(prefix='@@@')
def sub(x, y):

'Subtract y from x'
return x - y

@debug('***')
def mul(x, y):

'Multiply x and y'
return x * y

@debug() # parentheses needed!
def div(x, y):

'Divide x by y'
return x / y

Note: The Python 3.7+ source code for the above version of debugprefix is
available in linked file debugprefix1.py.

9.2.4 Reformulated prefix decorator

By a clever use of default arguments and partial application of a function to its
arguments, we can transform the definition of the prefix decorator above to one
that does not involve a nested definition.

from functools import wraps, partial

def debug(func = None, *, prefix = ''):
if func is None:

return partial(debug, prefix=prefix)
msg = prefix + func.__qualname__
@wraps(func)
def wrapper(*args, **kwargs):

print(msg)
return func(*args, **kwargs)

return wrapper

If we call the debug decorator function with the single keyword argument prefix,
then the func argument defaults to None. In this case, the if statement causes
debug to call itself with that prefix argument and the decorated function
(that follows the @debug annotation in the user-level code or occurs in a second
argument list) as the func argument.

Note: The functools.partial function takes a function (object) and a group
of positional and/or keyword arguments, partially applies the function to those
arguments, then returns the resulting function (object). The returned function
behaves like the original function except that it has the argument values supplied
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to partial as its default parameter values.

If we call the debug decorator function with no keyword arguments, then para-
meter prefix defaults to the empty string and func is the decorated function
(e.g., that follows the @debug annotation).

If we call debug with both func and prefix arguments, then it works as we
expect. This case is not used with the @debug annotation.

@debug(prefix='***')
def add(x,y):

'Add x and y'
return x+y

@debug(prefix='@@@')
def sub(x, y):

'Subtract y from x'
return x - y

@debug(prefix='***')
def mul(x, y):

'Multiply x and y'
return x * y

@debug # no parentheses required, but okay if given
def div(x, y):

'Divide x by y'
return x / y

Unlike the previous formulation of the prefix decorator, the prefix string must
be supplied as a prefix argument.

Note: The Python 3.7+ source code for the above version of debugprefix is
available in linked file debugprefix2.py.

9.3 Class-Level Debugging
9.3.1 Motivating example

Consider the class Account below for a simple bank account.

Suppose we want to debug all the methods using the simple debugging package
we developed above.

class Account:
def __init__(self):

self._bal = 0

@debug
def deposit(self,amt):
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self._bal += amt

@debug
def withdraw(self,amt):

if amt <= self._bal:
self._bal -= amt

else:
print(f'Insufficient funds for withdrawal of {amt}')

@debug
def get_balance(self):

return self._bal

def __str__(self):
return f'Account with balance {self._bal}'

Note: The Python 3.7+ source code for the above version of Account is available
in linked file account2.py.

9.3.2 Class-level debugger

The Account example above is repetitive (not DRY). Can we do the decoration
all at once?

Yes, we can define a class decorator debugmethods as shown below (where debug
is the function-level prefix decorator defined above). A class decorator is a
higher-order function that takes a class as its argument, modifies the class in
some way, and then returns the modified class.

def debugmethods(cls): # Notes
for name, val in vars(cls).items(): # (1) (2) (3)

if callable(val): # (4)
setattr(cls, name, debug(val)) # (5) (6)

return cls # (7)

The idea here is that the program walks through the class dictionary, identifies
callable objects (e.g., methods), and wraps each with a function decorator.

Consider the numbered comments in the above code.

1. The built-in function call vars(cls) returns the dictionary (i.e., __dict__)
associated with the (class) object cls.

2. The dictionary method call items() returns the list of key-value pairs in
the dictionary.

3. The “for name, val in” statement loops through the pairs in the list,
successively binding each key to name and value to val.
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4. The built-in function call callable(val) returns True if val appears
callable, False if not. (These are likely instance methods.)

5. The call debug(val) applies the function-level prefix debugger we defined
above to the method val. That is, it wraps the method with function
decorator debug.

6. The built-in function call setattr(cls, name, debug(val)) sets
the name attribute of object cls (i.e., in its dictionary) to the value
debug(val).

7. The decorator function debugmethods returns the modified class object
cls in place of the original class.

The code below shows the application of this new decorator to the Account
class.

@debugmethods
class Account:

def __init__(self):
self._bal = 0

def deposit(self,amt):
self._bal += amt

def withdraw(self,amt):
if amt <= self._bal:

self._bal -= amt
else:

print(f'Insufficient funds for withdrawal of {amt}')

def get_balance(self):
return self._bal

def __str__(self):
return f'Account with balance {self._bal}'

Note: The Python 3.7+ source code for the above version of Account is available
in linked file account3.py.

A single decorator application handles all the method definitions within the
class.

Well, not quite!

It does not decorate class or static methods, such as the following which can be
added to class Account.

class Account:
...

@classmethod
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def classname(cls):
return cls.__name__

@staticmethod
def warn(msg):

print(f'Warning: {msg}')

Note: The Python 3.7+ source code for the extended version of Account is
available in linked file account4.py.

TODO: Explain why this does not work.

9.3.3 Variation: Attribute access debugging

Suppose instead of printing a message on every call of a method, we do so for
each access to an attribute.

We can do this by rewriting part of the class as shown below. In particular, we
give a new implementation for the special method __getattribute__.

def debugattr(cls):
orig_getattribute = cls.__getattribute__

def __getattribute__(self, name):
print(f'Get: {name}')
return orig_getattribute(self, name)

cls.__getattribute__ = __getattribute__
return cls

The special method __getattribute__ is called to implement accesses to “regu-
lar” attributes of the class. It is not called on accesses to other special methods
such as __init__ and __str__.

In the above, we save the original implementation of the method and then call it
to complete the access once we have printed an appropriate debugging message.

In the example below, we decorate the Account class with @debugattr.

@debugattr
class Account:

def __init__(self):
self._bal = 0

def deposit(self,amt):
self._bal += amt

def withdraw(self,amt):
if amt <= self._bal:

self._bal -= amt
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else:
print(f'Insufficient funds for withdrawal of {amt}')

def get_balance(self):
return self._bal

def __str__(self):
return f'Account with balance {self._bal}'

Note: The Python 3.7+ source code for the above version of Account is available
in linked file account5.py.

We can see the effects of the decorator in the following REPL session.

>>> acct = Account()
>>> str(acct)
Get: _bal
'Account with balance 0'
>>> acct.deposit(100)
Get: deposit
Get: _bal
>>> str(acct)
Get: _bal
'Account with balance 100'
>>> acct.withdraw(60)
Get: withdraw
Get: _bal
Get: _bal
>>> str(acct)
Get: _bal
'Account with balance 40'
>>> acct.get_balance()
Get: get_balance
Get: _bal
40
>>> str(acct)
'Account with balance 40'

Note that both calls to the methods and the accesses to the “private” data
attribute _bal are shown. (If we want to exclude accesses to the private instance
variables, we can modify debugattr to exclude attributes whose names begin
with a single underscore.)
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9.4 Class Hierarchy Debugging
9.4.1 Motivating example

Now let’s set up class-level debugging on the inheritance hierarchy P example
from Chapter 7.

@debugmethods
class P:

def __init__(self,name=None):
self.name = name

def process(self):
return f'Process at parent P level'

@debugmethods
class C(P): # class C inherits from class P

def process(self):
result = f'Process at child C level'
# Call method in parent class
return f'{result} \n {super().process()}'

@debugmethods
class D(P): # class D inherits from class P

pass

@debugmethods
class G(C): # class G inherits from class C

def process(self):
return f'Process at grandchild G level'

Note: The Python 3.7+ source code for the above version of the P class hierarchy
is available in linked file inherit2.py.

So, we have another occurrence of code redundancy that we saw at the class
level in the previous section. Let’s see if we can DRY out the code more.

To do this, the program needs to process the whole class hierarchy rooted at
class P. Let’s review the nature of the Python object model to see how to do
this.

9.4.2 Review of objects and types

In Chapters 5-7 of these notes, we learned:

• All Python values are objects.

• All objects have types.

• A class defines a new type.
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• A class is a callable (i.e., function) that creates instances; the class is the
type of the instances it creates. Hence, in some sense, a class is a type
consisting of its potential instances and the operations it defines.

• A class itself is an object. It is an instance of other classes. Thus it has a
type.

• The built-in class type is the root class (i.e., top-level metaclass) for all
other classes (i.e., types). When a program invokes type as a constructor,
it creates a new type (i.e., class) object.

• Classes may inherit (i.e., be a subclass of) other classes.

• The built-in class object is the root class for all other top-level user-defined
and built-in classes.

TODO: Maybe repeat diagram below here.

Note: See the diagram in Figure 7-1 from Chapter 7.

The following Python REPL session illustrates these concepts.

>>> class PP:
... pass
...
>>> class CC(PP):
... pass
...
>>> PP
<class '__main__.PP'>
>>> type(PP)
<class 'type'>
>>> issubclass(P,object)
True
>>> CC
<class '__main__.CC'>
>>> type(CC)
<class 'type'>
>>> issubclass(CC,PP)
True
>>> x = PP()
>>> x
<__main__.PP object at 0x10cd3d048>
>>> isinstance(x,PP)
True
>>> type(x)
<class '__main__.PP'>
>>> type
<class 'type'>
>>> type(type)
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<class 'type'>
>>> issubclass(type,object)
True
>>> object
<class 'object'>
>>> type(object)
<class 'type'>

9.4.3 Class definition process

Now let’s examine how the Python interpreter elaborates class definitions at
runtime. Consider the class MyClass defined as follows:

class MyClass(Parent):
def __init__(self, id):

self.id = id
def hello(self):

print(f'Hello from MyClass.hello, id = {self.id}')"

This class definition has three components.

• Name: "MyClass"

• Base classes: (Parent,)

• Functions: (___init___, hello)

The interpreter takes the following steps during class definition.

1. It isolates the body of the class. (Note the multiline string below.)

body = '''
def __init__(self, myid):

self.myid = myid
def hello(self):

print(f'Hello from MyClass.hello, myid = {self.myid}')
'''

2. It creates the class dictionary.

clsdict = type.__prepare__('MyClass', (Parent,))

Method type.__prepare__ is a class method on the root metaclass type.
In the process of creating the new class object for a class, the interpreter
calls the __prepare__ method before it calls the __new__ method on type
[31:701–3].

In addition to metaclass argument (i.e., type), the __prepare__ class
method takes two additional arguments:

• the name of the class being created (e.g.,'MyClass' above)

• a tuple of the one or more base classes (e.g., (Parent,) above)
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Method __prepare__ returns a dictionary that can be subsequently passed
to the __new__ and __init__ methods. This dictionary serves as the local
namespace for the statements in the class body.

3. It executes the body dynamically (using exec) in the current global name-
space (returned by the call globals()) and the local namespace defined
by the class dictionary clsdict.

exec(body, globals(), clsdict)

This step populates clsdict.

>>> clsdict
{'__init__': <function __init__ at 0x10cc21ea0>,
'hello': <function hello at 0x10d2b9bf8>}

4. It constructs the class object using its name, its base classes, and the
dictionary populated in the previous step.

>>> MyClass = type('MyClass', (Parent,), clsdict)
>>> MyClass
<class '__main__.MyClass'>
>>> mc = MyClass('Conrad')
<__main__.MyClass object at 0x100f96c50>
>>> mc.myid
Conrad
>>> mc.hello()
Hello from MyClass.hello, myid = Conrad

The call type('MyClass', (Parent,), clsdict) constructs an instance
of metaclass type with name MyClass, superclass Parent, and object
dictionary clsdict. This is the class object for MyClass.

Note: The Python 3.7+ source code for the above creation of class MyClass is
available in linked file MyClass1.py.

9.4.4 Changing the metaclass

A Python class definition has a keyword parameter named metaclass whose
default value is type. So the parent class P from the motivating example for this
section is equivalent to the following.

class P(metaclass=type):
def __init__(self,name=None):

self.name = name
def process(self):

return f'Process at parent P level'

This keyword parameter sets the class for creating the new type for the class.
Although the default is type, we can change it to some other metaclass.
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To define a new metaclass, we typically define a type that inherits from type
and gives a new definition for one or both of the special methods __new__ and
__init__.

class mytype(type):
def __new__(cls, name, bases, clsdict):

# possible preprocessing of arguments
clsobj = super().__new__(cls, name, bases, clsdict)
# possible postprocessing of object
return clsobj

The special method __new__ allocates memory, constructs a new instance (i.e.,
object), and then returns it. The interpreter passes this new instance to special
method __init__, which initializes the new instance variables.

We do not normally override __new__, but in a metaclass we may want to do
some additional work either before or after the basic construction processing.

A metaclass can access information about a class definition at the time the class
is defined. It can inspect the data and, if needed, modify the data.

Given the above definition, we can use the new metaclass as follows:

class P(metaclass=mytype):
...

9.4.5 Debugging using a metaclass

Now we have the tools we need to remove the code redundancy from the
motivating example. We can introduce the metaclass shown in the example
below.

class debugmeta(type):
def __new__(cls, clsname, bases, clsdict):

clsobj = super().__new__(cls,clsname,bases,clsdict) #1
clsobj = debugmethods(clsobj) #2
return clsobj #3

The approach above:

1. creates the class normally (using super().__new__)

2. immediately wraps the class object with the class-level debug decorator
debugmethods we developed previously

3. then returns the wrapped class object

Given the above metaclass definition, we can apply it to the inheritance example
as sketched below.

class P(metaclass = debugmeta):
...
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class C(P):
...

class D(P):
...

class G(C):
...

Note: The Python 3.7+ source code for the above version of the P class hierarchy
is available in linked file inherit3.py.

Now consider a Python REPL session using the above code with the custom
metaclass.

>>> from inherit3 import *
>>> type(P)
<class 'inherit3.debugmeta'>
>>> issubclass(P,object)
True
>>> type(C)
<class 'inherit3.debugmeta'>
>>> issubclass(C,P)
True
>> type(G)
<class 'inherit3.debugmeta'>
>>> issubclass(G,C)
True
>>> issubclass(G,P)
True
>>> p1 = P()
P.__init__
>>> type(p1)
<class 'inherit3.P'>
>>> c1 = C()
P.__init__
>>> type(c1)
<class 'inherit3.C'>
>>> g1 = G()
P.__init__
>>> type(g1)
<class 'inherit3.C'>
>>> p1.process()
P.process
'Process at parent P level'
>>> c1.process()
C.process
P.process
'Process at child C level \n Process at parent P level'
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>>> g1.process()
G.process
'Process at grandchild G level'

9.4.6 Why metaclasses?

As we have seen, we can transform a class in similar ways using either a class
decorator or a metaclass.

Given that a class decorator is easier to set up and apply, when and why should
we use a metaclass?

One advantage to metaclasses is that they can propagate down class <hierarchies.
Consider our motivating example again.

class P(metaclass = debugmeta):
...

class C(P): # metaclass = debugmeta
...

class D(P): # metaclass = debugmeta
...

class G(C): # metaclass = debugmeta
...

As we can see in the REPL session output in the previous subsection, use of the
metaclass in parent class P is passed down automatically to all its descendants.
No changes are needed to the descendant classes.

In some sense, the metaclass mutates the DNA of the parent class and that
mutation is passed on to the children. In this example, debugging is applied
across the entire hierarchy. The code is kept DRY.

9.5 What Next?
In this case study, we used Python metaprogramming facilities to debug suc-
cessively larger program units. But regardless of the level, the method mostly
involved wrapping and rewriting the program units.

• We used function decorators to wrap and rewrite functions.

• We used class decorators to wrap and rewrite classes.

• We used metaclasses to wrap and rewrite class hierarchies.

So far, we have mostly used “classic” metaprogramming techniques that were
available in Python 2 with only a few Python 3 features.

In the coming chapters, we use more advanced features of Python 3. (These
chapters are planned but not yet drafted.)
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9.6 Chapter Source Code
TODO

9.7 Exercises
TODO

9.8 Acknowledgements
I originally developed these notes in Spring 2018 for use in CSci 658 Software
Language Engineering [9]. The Spring 2018 version used Python 3.6. I updated
them some for use in CSci 556 Multiparadigm Programming, which used Python
3.7.

The overall set of notes on Python 3 Reflexive Metaprogramming is inspired by
David Beazley’s Python 3 Metaprogramming tutorial from PyCon’2013 [3]. In
particular, some chapters adapt Beazley’s examples. Beazley’s tutorial draws on
material from his and Brian K. Jones’ book Python Cookbook [4].

In particular, this chapter adapts Beazley’s debugly example presentation from
his Python 3 Metaprogramming tutorial at PyCon’2013 [3].

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began
refining the existing content, integrating (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

9.9 Terms and Concepts
TODO
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