
Multiparadigm Programming
with Python
Chapter 8

H. Conrad Cunningham

05 April 2022

Contents
Metaprogramming 2

Chapter Introduction . 2
Definition . 2
Reflexive Metaprogramming . 2
Why Study Reflexive Metaprogramming? 3
Reflexive Metaprogramming in Python 4
What Next? . 4
Chapter Source Code . 4
Exercises . 4
Acknowledgements . 4
Terms and Concepts . 5
References . 5

Copyright (C) 2018, 2019, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

Metaprogramming
Chapter Introduction
TODO: Introduction and other missing parts. These are updated consistently
for use with other chapters.

Note: In this book, we use the term Python to mean Python 3. The various
examples use Python 3.7 or later.

Definition
Basically, metaprogramming is writing code that writes code [9,10].

Metaprogramming: the writing of computer programs that can treat com-
puter programs as their data. A program can read, generate, analyze,
and/or transform other programs, or even modify itself while running)

We often do metaprogramming in our routine programming tasks but do not
call it that.

• Our web applications may generate HTML, JavaScript, and CSS code to
enable development of a browser-based user interface.

• Our Java programs may use instanceof to check the type of objects or
otherwise manipulate itself with the Java reflection package.

• Our C programs may use macros to define new features in terms of existing
features [8].

• The PIC little language processor takes a program expressed in an external
textual language that describes a picture and generates output expressed
in another language that gives instructions to a display program [6,7].

Under the above definition, much of our study of domain-specific languages uses
metaprogramming.

Reflexive Metaprogramming
TODO: Decide how to consistently refer to my DSL course examples. Should be
consistent with the separate longer Domain-Specific Languages document.

The internal Survey DSL and Lair Configuration DSL are examples of reflexive
(or reflective) metaprogramming [9,10].

Reflexive metaprogramming: the writing of computer programs that ma-
nipulate themselves as data.

This manipulation may be at compile time, involving a phase of transformations
in the code before the final program is generated. Or it may be at runtime,
involving manipulation of the program’s metamodel or generation of new code
that is dynamically executed within the program.

2

The Survey DSL is a Ruby internal DSL. It takes advantage of Ruby’s metapro-
gramming facilities such as the abilities to trap calls to undefined methods, add
methods or variables dynamically to existing objects at runtime, and execute
dynamically generated strings as Ruby code. It also uses Ruby’s first-class
functions (closures) and flexible syntax – although these are not technically
metaprogramming features of Ruby.

The Lair Configuration DSL programs use the metaprogramming features of
Lua and Python in similar ways.

Consider relatively common languages and their metaprogramming features.

• Java is a statically typed, compiled language. What are metaprogramming
features available in Java?

It has dynamic class loaders, a reflection API, annotation processing,
dynamic method invocation (a JVM feature), JVM bytecode manipulation
(mostly with external tools), etc. Java 8+ also has first-class functions and
other features useful in metaprogramming.

• Lua is a dynamically typed, interpreted language. What are the metapro-
gramming features available in Lua?

It has metatables, metamethods, manipulation of environments, a de-
bug library (introspection/reflection features), loadfile and loadstring
functions to dynamically execute code, extensions in C, etc.

What about Python?

The reflexive metaprogramming features of Python 3.7 and beyond is the primary
topic of this set of lecture notes.

Why Study Reflexive Metaprogramming?
In everyday application programming, we often use the products developed by
metaprogrammers, but we seldom use the techniques directly.

In everyday programming, use of reflexive metaprogramming techniques should
not be one of our first approaches to a problem. We first should explore techniques
supported by core language, its standard libraries, and stable extension packages.

If no acceptable solution can be found, then we can consider solutions that use
reflexive metaprogramming techniques. We should approach metaprogramming
with great care because these techniques can make programs difficult to under-
stand and can introduce vulnerabilities into our programs. We should design,
implement, test, and document the programs rigorously.

However, reflexive metaprogramming can be an important tool in a master
programmer’s toolbox. If our jobs are to develop software frameworks, libraries,
APIs, or domain-specific languages, we can use these techniques and features

3

../../SurveyDSL/SurveyDSL.html
../../LairDSL/LairDSL.html

to develop powerful products that hide the complexity from the application
programmer.

Even when our jobs are primarily application programming, understanding
reflexive metaprogramming techniques can improve our abilities to use software
frameworks, libraries, and APIs effectively.

Reflexive Metaprogramming in Python
TODO: Update this to better reflect, what the final notes cover and include
forward references as appropriate.

The reflexive metaprogramming features of Python include:

1. Decorators
2. Metaclasses
3. Descriptors
4. Import hooks
5. Context managers
6. Annotations (e.g., type hints)
7. Abstract Syntax Tree (AST) manipulation
8. Frame hacks
9. Execution of strings as Python 3 code (exec, eval)

10. Monkeypatching (i.e., direct dynamic manipulation of attributes and meth-
ods at runtime)

We have already used the final two in our implementation of domain-specific
languages. We will look at some of the others in these notes. In particular,
Chapter 9 looks at use of decorators and metaclasses.

What Next?
TODO

Chapter Source Code
TODO

Exercises
TODO: Decide if any are appropriate.

Acknowledgements
I developed these notes in Spring 2018 for use in CSci 658 Software Language
Engineering [3]. The Spring 2018 version used Python 3.6.

Teaching a special topics course on “Ruby and Software Development” in Fall
2006 kindled my interests in domain-specific languages and metaprogramming.

4

Building on these interests, I taught another special topics course on “Software
Language Engineering” in which I focused on Martin Fowler’s work on domain-
specific languages [5]; I subsequently formalized this as CSci 658. (I have collected
some overall ideas on in my notes on Domain Specific Languages [4].)

The overall set of notes on Python 3 Reflexive Metaprogramming is inspired by
David Beazley’s Python 3 Metaprogramming tutorial from PyCon’2013 [1]. In
particular, some chapters adapt Beazley’s examples. Beazley’s tutorial draws on
material from his and Brian K. Jones’ book Python Cookbook [2].

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began
refining the existing content, integrating (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain these notes as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the notes to
HTML, PDF, and other forms as needed.

Terms and Concepts
TODO: Update

Metaprogramming, reflexive metaprogramming.

References
[1] David Beazley. 2013. Python 3 metaprogramming (tutorial). Retrieved

from http://www.dabeaz.com/py3meta/
[2] David Beazley and Brian K. Jones. 2013. Python cookbook (Third ed.).

O’Reilly Media, Sebastopol, California, USA.
[3] H. Conrad Cunningham. 2018. Python 3 reflexive metaprogramming.

University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.
html

[4] H. Conrad Cunningham. 2022. Domain-specific languages. University of
Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/
DSLs/DomainSpecificLanguages.html

[5] Martin Fowler and Rebecca Parsons. 2010. Domain specific languages.
Addison-Wesley, Boston, Massachusetts, USA.

[6] Brian W. Kernighan. 1984. PIC—a graphics language for typesetting,
revised user manual. Bell Laboratories, Computing Science, Murray Hill,
New Jersey, USA. Retrieved from http://doc.cat-v.org/unix/v8/picmem
o.pdf

5

../../DSLs/DomainSpecificLanguages.html
http://www.dabeaz.com/py3meta
http://www.dabeaz.com/py3meta/
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/docs/DSLs/DomainSpecificLanguages.html
https://john.cs.olemiss.edu/~hcc/docs/DSLs/DomainSpecificLanguages.html
http://doc.cat-v.org/unix/v8/picmemo.pdf
http://doc.cat-v.org/unix/v8/picmemo.pdf

[7] Eric S. Raymond. 1995. Making pictures with GNU PIC. Retrieved from
https://lists.gnu.org/r/groff/2011-08/pdfbLauVhlfQs.pd

[8] Richard M. Stallman and Zachary Weinberg. 2022. The c preprocessor.
Retrieved from https://gcc.gnu.org/onlinedocs/cpp/

[9] Wikpedia: The Free Encyclopedia. 2022. Metaprogramming. Retrieved
from https://en.wikipedia.org/wiki/Metaprogramming

[10] Wikpedia: The Free Encyclopedia. 2022. Reflective programming. Re-
trieved from https://en.wikipedia.org/wiki/Reflective_programming

6

https://lists.gnu.org/r/groff/2011-08/pdfbLauVhlfQs.pd
https://gcc.gnu.org/onlinedocs/cpp/
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Reflective_programming

	Metaprogramming
	Chapter Introduction
	Definition
	Reflexive Metaprogramming
	Why Study Reflexive Metaprogramming?
	Reflexive Metaprogramming in Python
	What Next?
	Chapter Source Code
	Exercises
	Acknowledgements
	Terms and Concepts
	References

