
Multiparadigm Programming
with Python
Chapter 7

H. Conrad Cunningham

05 April 2022

Contents
7 Python Object Orientation 2

7.1 Chapter Introduction . 2
7.2 Class and Instance Attributes . 2
7.3 Object Dictionaries . 5
7.4 Special Methods and Operator Overloading 5
7.5 Object Orientation . 8

7.5.1 Inheritance . 8
7.5.1.1 Understanding relationships among classes . . . 11
7.5.1.2 Replacement and refinement 13

7.5.2 Subtype polymorphism 13
7.5.3 Multiple Inheritance . 14

7.6 What Next? . 14
7.7 Chapter Source Code . 15
7.8 Exercises . 15
7.9 Acknowledgements . 15
7.10 Terms and Concepts . 15
7.11 References . 15

Copyright (C) 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

7 Python Object Orientation
7.1 Chapter Introduction
Chapter 6 examined the basic building blocks of Python programs—statements,
functions, classes, and modules.

This chapter (7) examines classes, objects, and object orientation in more detail.

TODO: Chapter goals.

Note: In this book, we use the term Python to mean Python 3. The various
examples use Python 3.7 or later.

7.2 Class and Instance Attributes
As we saw in Chapter 6, classes are objects. The class objects can have attributes.
Instances of the class are also objects with their own attributes.

Consider the following class Dummy which has a class-level variable r. This
attribute exists even if no instance has been created.

Instances of Dummy have instance variables s and t and an instance method
in_meth.

class Dummy:
r = 1
def __init__(self, s, t):

self.s = s
self.t = t

def in_meth(self):
print('In instance method in_meth')

Now consider the following Python REPL session with the above definition.

>>> Dummy.r
1
>>> d = Dummy(2,3)
>>> d.s
2
>>> d.in_meth()
>>> In instance method method

In the above, we see that:

• Dummy.r accesses the value of class variable r of the class object for the
class Dummy.

• d.s accesses the value of instance variable s of an instance object created
by the constructor call and assignment d = Dummy(2).

• d.in_meth() calls instance method in_meth of instance object d.

2

These usages are similar to those of other object-oriented languages such as Java.

A class can have three different kinds of methods in Python [10]:

1. An instance method is a function associated with an instance of the class.
It requires a reference to an instance object to be passed as the first non-
optional argument, which is by convention named self. If that reference
is missing, the call results in a TypeError.

It can access the values of any of the instance’s attributes (via the self
argument) as well as the class’s attributes.

Note in_meth in the Dummy code below.

2. A class method is a function associated with a class object. It requires a
reference to the class object to be passed as the first non-optional argument,
which is by convention named cls. If that reference is missing, the call
results in a TypeError.

It can access the values of any of the class’s attributes (via the cls
argument). For example, cls() can create a new instance of the class.
However, it cannot access the attributes of any of the class’s instances.

Note cl_meth in the Dummy code below.

Class methods can be overriden in subclasses.

Because Python does not support method overloading, class methods are
useful in circumstances where overloading might be used in a language
like Java. For example, we can use class methods to implement factory
methods as alternative constructors for instances of the class.

3. A static method is a function associated with the class object, but it does
not require any non-optional argument to be passed

A static method is just a function attached to the class’s namespace. It
cannot access any of the attributes of the class or instances except in a
way that any function in the program can (e.g., by using the name of the
class explicitly, by being passed an object as an argument, etc.)

Note s_meth in the Dummy code below.

Static methods cannot be overrides in subclasses.

class Dummy: # extended definition
r = 1

def __init__(self, s, t):
self.s = s
self.t = t

def in_meth(self):
print('In instance method in_meth')

3

@classmethod
def cl_meth(cls):

print(f'In class method cl_meth for {cls}')

@staticmethod
def st_meth():

print('In static method st_meth')

In the example, the decorators @classmethod and @staticmethod transform
the attached functions into class and static methods, respectively. We discuss
decorators in Chapter 9.

Now consider a Python REPL session with the extended definition.

>>> d = Dummy(2,3)
>>> d.in_meth()
In instance method in_meth
>>> d.r
1
>>> Dummy.cl_meth()
In class method cl_meth for Dummy
>>> Dummy.st_meth()
In static method st_meth
>>> Dummy.in_meth()
Traceback (most recent call last):
...
TypeError: in_meth() missing 1 required positional argument:

'self'
>>> type(d.in_meth)
<class 'method'>
>>> type(Dummy.cl_meth)
<class 'method'>
>>> type(Dummy.st_meth)
<class 'function'>
>>> din = d.in_meth # get method obj, store in var din
>>> din() # call method object in din
In instance method in_meth
None
>>> type(din)
<class 'method'>

Note that the types of the references d.in_meth and Dummy.cl_meth are both
method. A method object is essentially a function that binds in a reference to
the required first positional argument. A method object is, of course, a first-class
object that can be stored and invoked later as illustrated by variable din above.

However, note that Dummy.st_meth has type function.

4

The Python 3.7+ source code for the class Dummy is available in file dummy1,py.

7.3 Object Dictionaries
As we noted in Chapter 5, each Python object has a distinct dictionary that maps
the local names to the data attributes and operations (i.e., its environment).
Each object’s attribute __dict__ holds its dictionary. Python programs can
access this dictionary directly.

Again consider the Dummy class we examined in Section 7.2. Let’s look at
dictionary for this class and an instance in the Python REPL.

>>> d = Dummy(2,3)
>>> d.__dict__
{'s': 2, 't': 3}
>>> Dummy.__dict__["r"]
1
>>> Dummy.__dict__["in_meth"]
<function Dummy.in_meth at 0x10191abf8>
>>> Dummy.__dict__["cl_meth"]
<classmethod object at 0x101928c50>
>>> Dummy.__dict__["st_meth"]
<staticmethod object at 0x101928c88>

TODO: Investigate and explain last two types returned above?

7.4 Special Methods and Operator Overloading
Almost everything about the behavior of Python classes and instances can be
customized. A key way to do this is by defining or redefining special methods
(sometimes called magic methods).

Python uses special methods to provide an operator overloading capability. There
are special methods associated with certain operations that are invoked by builtin
operators (such as arithmetic and comparison operators, subscripting) and with
other functionality (such as initializing newly class instance).

The names of special methods both begin and end with double underscores __
(and thus are sometimes called “dunder” methods). For example, in an earlier
subsection, we defined the special method __init__ to specify how a newly
created instance is initialized. In other class-based examples, we have defined
the __str__ special method to implement a custom string conversion for an
instance’s state.

Consider the class Dum that overrides the definition of the addition operator to
do the same operation as multiplication.

class Dum:
def __init__(self,x):

5

dummy1.py

self.x = x
def __add__(a,b):

return a.x * b.x

Now let’s see how Dum works.

>>> y = Dum(2)
>>> z = Dum(4)
>>> y + z
8

Consider the rudimentary SparseArray collection below. It uses the special
methods __init__, __str__, __getitem__, __setitem__, __delitem__, and
__contains__ to tie this new collection into the standard access mechanisms.
(This example stores the sparse array in a dictionary internally, but “hides” that
from the user.)

The Boolean __contains__ functionality searches the SparseArray instance for
an item. The class also provides a separate Boolean method has_index to check
wether an index has a corresponding value. Alternatively, we could have tied
the __contains__ functionality to the latter and provided a has_item method
for the former.

In addition, the method from_assoc loads an “association list” into a sparse
array instance. Here, the term association list refers to any iterable object
yielding a finite sequence of index-value pairs.

Similarly, the method to_assoc unloads the entire sparse array into a sorted
list of index-value pairs (which is an iterable object).

For simplicity, the implementation below just prints error messages. It probably
should raise exception instead.

class SparseArray:

def __init__(self, assoc=None):
self._arr = {}
if assoc is not None:

self.from_assoc(assoc)

def from_assoc(self,assoc):
for p in assoc:

if len(p) == 2:
(i,v) = p
if type(i) is int:

self._arr[i] = v
else:

print(
f'Index not int in assoc list: {str(i)}')

else:

6

print(
f'Invalid pair in assoc list: {str(p)}')

def has_index(self, index):
if type(index) is int:

return index in self._arr
else:

print(
f'Warning: Index not int: {index}')

return False

def __getitem__(self, index): #arr[index]
if type(index) is int:

return self._arr[index]
else:

print(f'Index not int: {index}')

def __setitem__(self, index, value): #arr[index]=value
if type(index) is int:

self._arr[index] = value
else:

print(f'Index not int: {index}')

def __delitem__(self, index): #del arr[index]
if type(index) is int:

del self._arr[index]
else:

print(f'Index not int: {index}')

def __contains__(self, item): #item value in arr
return item in self._arr.values()

def to_assoc(self):
return sorted(self._arr.items())

def __str__(self):
return str(self.to_assoc())

Now consider a Python REPL session with the above class definition.

>>> arr = SparseArray()
>>> type(arr)
<class '__main__.SparseArray'>
>>> arr
[]
>>> arr[1] = "one"
>>> arr

7

[(1, `one`)]
>>> arr.has_index(1)
True
>>> arr.has_index(2)
False
>>> arr.from_assoc([(2,"two"),(3,"three")])
{1: 'one', 2: 'two', 3: 'three'}
>>>
>>> arr[10] = "ten"
>>> arr
[(1,'one'), (2, 'two'), (3, 'three'), (10, 'ten')]
>>> del arr[3]
>>> arr
[(1,'one'), (2, 'two'), (10, 'ten')]
>>> 'ten' in arr
True

The Python 3.7+ source code for the class SparseArray is available in file
sparse_arrat1,py.

7.5 Object Orientation
TODO: Remove any unnecessary duplication among this discussion and similar
discussions in Chapters 3 and 5.

Chapter 3, Object-Based Paradigms, of Exploring Languages with Interpreters
and Functional Programming (ELIFP) [6] discusses object orientation in terms of
a general object model. The general object model includes four basic components:

1. objects
2. classes
3. inheritance
4. subtype polymorph

We discuss Python’s objects in Chapter 5 and classes in Chapter 6.

Now let’s consider the other two components of the general object model in
relation to Python.

7.5.1 Inheritance

In programming languages in general, inheritance involves defining hierarchical
relationships among classes. From a pure perspective, a class C inherits from
class P if C’s objects form a subset of P’s objects in the following sense:

• Class C’s objects must support all of class P’s operations (but perhaps are
carried out in a special way).

We can say that a C object is a P object or that a class C object can be
substituted for a class P object whenever the latter is required.

8

sparse_array1.py

• Class C may support additional operations and an extended state (i.e.,
more data attributes fields).

We use the following terminology.

• Class C is called a subclass or a child or derived class.

• Class P is called a superclass or a parent or base class.

• Class P is sometimes called a generalization of class C; class C is a special-
ization of class P.

In terms of the discussion in the Type System Concepts section, the parent class
P defines a conceptual type and child class C defines a behavioral subtype of P’s
type. The subtype satisfies the Liskov Substitution Principle [8,11].

Even in a statically typed language like Java, the language does not enforce this
subtype relationship. It is possible to create subclasses that are not subtypes.
However, using inheritance to define subtype relationships is considered good
object-oriented programming practice in most circumstances.

In a dynamically typed like Python, there are fewer supports than in statically
typed languages. But using classes to define subtype relationships is still a good
practice.

The importance of inheritance is that it encourages sharing and reuse of both
design information and program code. The shared state and operations can be
described and implemented in parent classes and shared among the child classes.

The following code fragment shows how to define a single inheritance relationship
among classes in Python. Instance method process is defined in the parent
class P and overridden (i.e., redefined) in child class C but not overriden in child
class D. In turn, C ’s instance method process is overridden in its child class G.

class P:
def __init__(self,name=None):

self.name = name
def process(self):

return f'Process at parent P level'

class C(P): # class C inherits from class P
def process(self):

result = f'Process at child C level'
Call method in parent class
return f'{result} \n {super().process()}'

class D(P): # class D inherits from class P
pass

class G(C): # class G inherits from class C

9

def process(self):
return f'Process at grandchild G level'

Now consider a (lengthy) Python REPL session with the above class definition.

>>> p1 = P()
>>> c1 = C()
>>> d1 = D()
>>> g1 = G()
>>> p1.process()
'Process at parent P level'
>>> c1.process()
'Process at child C level'
'Process at parent P level'
>>> d1.process()
'Process at parent P level'
>>> g1.process()
'Process at grandchild G level'
#
>>> type(P)
<class 'type'>
>>> type(C)
<class 'type'>
>>> type(G)
<class 'type'>
>>> issubclass(P,object)
True
>>> issubclass(C,P)
True
>>> issubclass(G,C)
True
>>> issubclass(G,P)
True
>>> issubclass(G,object)
True
>>> issubclass(C,G)
False
>>> issubclass(G,D)
False
>>> issubclass(P,type)
False
>>> isinstance(P,type)
True
>>> isinstance(C,type)
True
>>> isinstance(G,type)
True

10

>>> type(type)
<class 'type'>
>>> issubclass(type,object)
True
>>> isinstance(type,type)
True
>>> type(object)
<class 'type'>
>>> isinstance(object,type)
True
>>> issubclass(object,type)
False

Note: The Python 3.7+ source code for the above version of the P class hierarchy
is available in file inherit1.py.

7.5.1.1 Understanding relationships among classes By examining the
REPL session above, we can observe the following:

• Top-level user-defined classes like P implicitly inherit from the object root
class. They have the issubclass relationship with object.

• A user-defined subclass like C inherits explicitly from its superclass P, which
inherits implicitly from root class object. Class C thus has issubclass
relationships with both P and object.

• By default, all Python classes (including subclasses) are instances of the
root metaclass type (or one of its subtypes as we see later). But non-class
objects are not instances of type.

As we noted in Chapter 6, we call class objects metaobjects; they are constructors
for ordinary objects [1,7].

Also as we noted in Chapter 6, we call special class objects like type metaclasses;
they are constructors for metaobjects (i.e., class objects) [1,7].

Note that classes object and type have special – almost “magical” – relationships
with one another [9:593–595].

• Class object is an instance of class type (i.e., it is a Python class object).

• Class type is an instance of itself (i.e., it is a Python class object) and a
subclass of class object.

The diagram in Figure 7.1 shows the relationships among user-definfed class P and
built-in classes int, object, and type. Solid lines denote subclass relationships;
dashed lines denote “instance of” relationships.

7.5.1.2 Replacement and refinement There are two general approaches
for overriding methods in subclasses [4]:

11

inherit1.py

Figure 7.1: Python Class Model

12

• Replacement, in which the child class method totally replaces the parent
class method

This is the usual approach in most “American school” object-oriented
languages in use today—Smalltalk (where it originated), Java, C++, C#,
and Python.

• Refinement, in which the language merges the behaviors of the parent and
child classes to form a new behavior

This is the approach taken in Simula 67 (the first object-oriented language)
and its successors in the “Scandinavian school” of object-oriented languages.
In these languages, the child class method typically wraps around a call to
the parent class method.

The refinement approach supports the implementation of pure subtyping re-
lationships better than replacement does. The replacement approach is more
flexible than refinement.

A language that takes the replacement approach usually provides a mechanism
for using refinement. For example in the Python class hierarchy example above,
the expression super().process() in subclass C calls the process method of
its superclass P.

7.5.2 Subtype polymorphism

The concept of polymorphism (literally “many forms”) means the ability to hide
different implementations behind a common interface. As we saw in Chapter
5, polymorphism appears in several forms in programming languages. Here we
examine one form.

In the Python class hierarchy example above, the method process forms part of
the common interface for this hierarchy. Parent class P defines the method, child
class C overrides P ’s definition by refinement, and grandchild class G overrides
C ’s definition by replacement. However, child class D does not override P ’s
definition.

Subtype polymorphism (sometimes called polymorphism by inheritance, inclusion
polymorphism, or subtyping) means the association of an operation invocation
(e.g., method call) with the appropriate operation implementation in an inheri-
tance (i.e., subtype) hierarchy.

This form of polymorphism is usually carried out at run time. Such an imple-
mentation is called dynamic binding.

In general, given an object (i.e., class instance) to which an operation is applied,
the runtime system first searches for an implementation of the operation associ-
ated with the object’s class. If no implementation is found, the system checks
the parent class, and so forth up the hierarchy until it finds an implementation

13

and then invokes it. Implementations of the operation may appear at several
levels of the hierarchy.

The combination of dynamic binding with a well-chosen inheritance hierarchy
allows the possibility of an instance of one subclass being substituted for an
instance of a different subclass during execution. Of course, this can only be
done when none of the extended operations of the subclass are being used.

In a statically typed language like Java, we declare a variable of some ancestor
class type. We can then store any descendant class instance in that variable.
Polymorphism allows the program to apply any of the ancestor class operations
to the instance.

Because of dynamically typed variables, polymorphism is even more flexible in
Python than in Java.

In Python, an instance object may also have its own implementation of a method,
so the runtime system searches the instance before searching upward in the class
hierarchy.

Also (as we noted in an earlier section) Python uses duck typing. Objects can
have a common interface even if they do not have common ancestors in a class
hierarchy. If the runtime system can find an compatible operation associated
with an instance, it can execute it.

Thus Python’s approach to subtype polymorphism gives considerable flexibility
in structuring programs. However, unlike statically typed languages, the compiler
provides little help in ensuring the compatibility of method implementations.

Again consider the simple inheritance hierarchy above in the following Python
REPL session.

>>> d1 = D()
>>> g1 = G()
>>> obj = d1 # variables support polymorphism
>>> obj.process()
'Process at parent P level'
>>> obj = g1 # variables support polymorphism
>>> obj.process()
'Process at grandchild G level'

7.5.3 Multiple Inheritance

TODO: Discuss multiple inheritance. Issues include the diamond problem,
Python syntax and semantics, and method resolution order.

7.6 What Next?
TODO

14

7.7 Chapter Source Code
TODO

7.8 Exercises
TODO

7.9 Acknowledgements
In Spring 2018, I drafted what is now this chapter as part of the document Basic
Features Supporting Metaprogramming, which is Chapter 2 of the 3 chapters of
the booklet Python 3 Reflexive Metaprogramming [5]. The Spring 2018 material
used Python 3.6.

The overall booklet Python 3 Reflexive Metaprogramming is inspired by David
Beazley’s Python 3 Metaprogramming tutorial slides from PyCon’2013 [2]. In
particular, I adapted and extended the “Basic Features” material from the terse
introductory section of Beazley’s tutorial; I attempted to answer questions I had
as a person new to Python. Beazley’s tutorial draws on material from his and
Brian K. Jones’ book Python Cookbook [3].

In Fall 2018, I divided the Basic Features Supporting Metaprogramming docu-
ment into 3 chapters—Python Types, Python Program Components, and Python
Object Orientation (this chapter). I then revised and expanded each. These
2018 chapers use Python 3.7.

This chapter seeks to be compatible with the concepts, terminology, and ap-
proach of my textbook Exploring Languages with Interpreters and Functional
Programming [6], in particular of Chapters 2, 3, 5, 6, 7, 11, and 21.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began
refining the existing content, integrating (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

7.10 Terms and Concepts
TODO

7.11 References
[1] 1991. The art of the metaobject protocol. MIT Press, Cambridge, Massa-

chusetts, USA.

15

http://www.dabeaz.com/py3meta

[2] David Beazley. 2013. Python 3 metaprogramming (tutorial). Retrieved
from http://www.dabeaz.com/py3meta/

[3] David Beazley and Brian K. Jones. 2013. Python cookbook (Third ed.).
O’Reilly Media, Sebastopol, California, USA.

[4] Timothy Budd. 2002. An introduction to object oriented programming
(Third ed.). Addison-Wesley, Boston, Massachusetts, USA. Retrieved
from https://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/to
c.pdf

[5] H. Conrad Cunningham. 2018. Python 3 reflexive metaprogramming.
University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.
html

[6] H. Conrad Cunningham. 2022. Exploring programming languages with in-
terpreters and functional programming (ELIFP). University of Mississippi,
Department of Computer and Information Science, University, Mississippi,
USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/ELIFP/EL
IFP.pdf

[7] Ira R. Forman and Scott Danforth. 1999. Putting metaclasses to work: A
new dimension in object-oriented programming. Addison-Wesley, Boston
Massachusetts, USA.

[8] Barbara Liskov. 1987. Keynote address—Data abstraction and hierarchy.
In Proceedings on object-oriented programming systems, languages, and
applications (OOPSLA ’87): addendum, ACM, Orlando, Florida, USA,
17–34.

[9] Luciano Ramalho. 2013. Fluent Python: Clear, concise, and effective
programming. O’Reilly Media, Sebastopol, California, USA.

[10] StackOverflow. 2012. Meaning of @classmethod and @staticmethod for
beginner? Retrieved from https://stackoverflow.com/questions/12179271
/meaning-of-classmethod-and-staticmethod-for-beginner

[11] Wikpedia: The Free Encyclopedia. 2022. Liskov substitution principle.
Retrieved from https://en.wikipedia.org/wiki/Liskov_substitution_prin
ciple

16

http://www.dabeaz.com/py3meta/
https://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/toc.pdf
https://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/toc.pdf
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://stackoverflow.com/questions/12179271/meaning-of-classmethod-and-staticmethod-for-beginner
https://stackoverflow.com/questions/12179271/meaning-of-classmethod-and-staticmethod-for-beginner
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle

	Python Object Orientation
	Chapter Introduction
	Class and Instance Attributes
	Object Dictionaries
	Special Methods and Operator Overloading
	Object Orientation
	Inheritance
	Understanding relationships among classes
	Replacement and refinement

	Subtype polymorphism
	Multiple Inheritance

	What Next?
	Chapter Source Code
	Exercises
	Acknowledgements
	Terms and Concepts
	References

