
Multiparadigm Programming
with Python
Chapter 6

H. Conrad Cunningham

05 April 2022

Contents
6 Python Program Components 2

6.1 Chapter Introduction . 2
6.2 Statements . 2

6.2.1 Simple statements . 2
6.2.1.1 pass statement 2
6.2.1.2 Expression statement 3
6.2.1.3 Assignment statement 3
6.2.1.4 del statement 4

6.2.2 Compound Statements . 4
6.2.3 if statement . 4
6.2.4 while statement . 5
6.2.5 for statement . 5

6.3 Function Definitions . 6
6.4 Class Definitions . 8
6.5 Module Definitions . 10

6.5.1 Using import . 10
6.5.2 Using from import . 11
6.5.3 Programming conventions 12
6.5.4 Using importlib directly 12

6.6 Statement Execution and Variable Scope 13
6.7 Nested Function Definitions . 13
6.8 Lexical Scope . 15
6.9 Closures . 16
6.10 Function Calling Conventions . 17
6.11 What Next? . 19
6.12 Chapter Source Code . 19
6.13 Exercises . 19
6.14 Acknowledgements . 19

1

6.15 Terms and Concepts . 20
6.16 References . 20

Copyright (C) 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

2

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

6 Python Program Components
6.1 Chapter Introduction
The basic building blocks of Python programs include statements, functions,
classes, and modules. This chapter (6) examines key features of those building
blocks.

Chapter 7 examines classes, objects, and object orientation in more detail.

Note: In this book, we use the term Python to mean Python 3. The various
examples use Python 3.7 or later.

6.2 Statements
Python statements consist primarily of assignment statements and other mutator
statements and of constructs to control the order in which those are executed.

Statements execute in the order given in the program text (as shown below). Each
statement executes in an environment (i.e., a dictionary holding the names in
the namespace) that assigns values to the names (e.g., of variables and functions)
that occur in the statement.

statement1
statement2
statement3
...

A statement may modify the environment by changing the values of variables,
creating new variables, reading input, writing output, etc.

A statement may be simple or compound. We discuss selected simple and
compound statements in the following subsections.

6.2.1 Simple statements

A simple statment is a statement that does not contain other statements. This
subsection examines four simple statements. We discuss other simple statements
later in this textbook.

TODO: Make last sentence above more explicit.

6.2.1.1 pass statement The simple statement

pass

is a null operation. It does nothing. We can use it when the syntax requires a
statement but no action is needed.

3

6.2.1.2 Expression statement An expression statement is a simple state-
ment with the form:

expression1, expression2, ...

If the expression list has only one element, then the result of the statement is
the result of the expression’s execution.

If the expression list has two or more elements, then the result of the statement
is a sequence (e.g., tuple) of the expressions in the list.

In program scripts, expression statements typically occur where an expression
is executed for its side effects (e.g., a procedure call) rather than the value it
returns. A procedure call always returns the value None to indicate there is no
meaningful return value.

However, if called from the Python REPL and the value is not None, the REPL
converts the result to a string (using built-in function repr()) and writes the
string to the standard output.

6.2.1.3 Assignment statement A typical Python assignment statement
has the form:

target1, target2, ... = expression1, expression2, ...

The assignment statement evaluates the expression list and generates a sequence
object (e.g., tuple). If the target list and the sequence have the same length,
the statement assigns the elements of the sequence to the targets left to right.
Otherwise, if there is a single target on the left, then the sequence object itself
is assigned to the target.

Consider the following REPL session:

>>> x, y = 1, 2
>>> x
1
>>> y
2
>>> x = 1, 2, 3
>>> x
(1, 2, 3)
>>> x, y = 1, 2, 3
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: too many values to unpack (expected 2)

One of the targets may be prefixed by an asterisk (*). In this case, that target
packs zero or more values into a list.

Consider the following REPL session:

4

>>> x, *y, z = 1, 2
>>> y
[]
>>> x, *y, z = 1, 2, 3
>>> y
[2]
>>> x, *y, z = 1, 2, 3, 4, 5
>>> y
[2, 3, 4]

Note: See the Python 3 Language Reference manual [10] for a more complete
explanation of the syntax and semantics of assignment statements.

TODO: Discuss augmented assignment statements here?

6.2.1.4 del statement The simple statement

del target1, target2, ...

recursively deletes each target from left to right.

If target is a name, then the statement removes the binding of that name from
the local or global namespace. If the name is not bound, then the statement
raises a NameError exception.

If target is an attribute reference, subscription, or slicing, the interpreter passes
the operation to the primary object involved.

TODO: Expand on what the previous paragraph means. Using special methods?

6.2.2 Compound Statements

A compound statment is a construct that contains other statements. This
subsection examines three compound statements. We discuss other compound
statements later in this textbook.

TODO: Make last sentence above more explicit.

6.2.3 if statement

The if statement is a conditional statement typical of imperative languages. It
is a compound statement with the form

if cond1:
statement_list1

elif cond2: # else with nested if
statement_list2

elif cond3:
statement_list3

...

5

else:
statement_listZ

where the elif and else clauses are optional.

When executed, the conditional statement evaluates the cond expressions from
top to bottom and executes the corresponding statement_list for the first
condition evaluating to true. If none evaluate to true, then the compound
statement executes statement_listZ, if it is present.

Note colon terminates each clause header and that the statement_list must
be indented. Most compound statements are structured in this manner.

6.2.4 while statement

The while statement is a looping construct with the form

while cond:
statement_list1

else: # executed after normal exit, not on break
statement_list2

where the else clause is optional.

When executed, the while repeatedly evaluates the expression cond, and, if the
condition is true, then the while executes statement_list1. If the condition is
false, then the while executes statement_list2 and exits the loop.

A break statement executed in statement_list1 causes an exit from the loop
that does not execute the else clause.

A continue statement executed in statement_list1 skips the rest of
statement_list1 and continues with the next condition test.

6.2.5 for statement

The for statement is a looping construct that iterates over the elements of a
sequence. It has the form:

for target_list in expression_list:
statement_list1

else: # executed after normal exit, not on break
statement_list2

where the else clause is optional.

The interpreter:

• evaluates the expression_list once to get an iterable object (i.e., a
sequence)

• creates an iterator to step through the elements of the sequence

6

• executes statement_list1 once for each element of the sequence in the
order yielded by the iterator

It assigns each element to the target_list (as described above for the
assignment statement) before executing statement_list1. The variables
in the target_list may appear as free variables in statement_list1.

The for assigns the target_list zero or more times as ordinary variables
in the local scope. These override any existing values. Any final values are
available after the loop.

If the expression_list evaluates to an empty sequence, the the body of
the loop is not executed and the target_list variables are not changed.

• executes statement_list2 in the optional else, if present, after exhaust-
ing the elements of the sequence

The break and continue statement work as described above for the while
statement.

It is best to avoid modifying the iteration sequence in the body of the loop.
Modification can result in difficult to predict results.

6.3 Function Definitions
Python functions are program units that take zero or more arguments and return
a corresponding value.

When the interpreter executes a function definition, the interpreter binds the
function name in the current local namespace to a function object. The function
object holds a reference to the current global namespace. The interpreter uses
this global namespace when the function is called.

Execution of the function definition does not execute the function body. When
the function is called, the interpreter then executes the function body.

The code below shows the general structure of a function definition.

def my_func(x, y, z):
"""
Optional documentation string (docstring)
"""
statement1
statement2
statement3
return my_loc_var

The keyword def introduces a function definition. It is followed by the name of
the function, a comma-separated parameter list enclosed in parentheses, and a
colon.

7

The body of the functions follows on succeeding lines. The body must be indented
from the start of the function header.

Optionally, the first line of the body can be a string literal, called the docu-
mentation string (or docstring). If present, it is stored as the __doc__ of the
function object.

The simple statement

return expr1, expr2, ...

can only appear within the body of a function definition. When executed during
a function call, it evaluates the expressions in its expression list and returns
control to the caller of the function, passing back the sequence of values. If the
expression list is empty, then it returns the singleton object None.

If the last statement executed in a function is not a return, then the function
returns to its caller, returning the value None.

When a program calls a function, it passes a reference (pointer) to each argument
object. These references are bound to the corresponding parameter names, which
are local variables of the function.

If we assign a new object to the parameter variable in the called function, then
the variable binds to the new object. This new binding is not visible to the
calling program.

However, if we apply a mutator or destructor to the parameter and the argument
object is mutable, we can modify the actual argument object. The modified
value is visible to the calling program.

Of course, if the argument object is not mutable, we cannot modify it’s value.

Functions in Python are first-class objects. That is, they are (callable) objects of
type function and, hence, can be stored in data structures, passed as arguments
to functions, and returned as the value of a functions. Like other objects, they
can have associated data attributes.

To see this, consider the function add3 and the following series of commands in
the Python REPL.

>>> def add3(x, y, z):
... """Add 3 numbers"""
... return x + y + z
...
>>> add3(1,2,3)
6
>>> type(add3)
<class `function`>
>>> add3.__doc__
'Add 3 numbers'
>>> x = [add3,1,2,3,6] # store function object in list

8

>>> x
[<function add3 at 0x10bf65ea0>, 1, 2, 3, 6]
>>> x[0](1,2,3) # retrieve and call function obj
6
>>> add3.author = 'Cunningham' # set attribute author
>>> add3.author # get attribute author
'Cunningham'

We call a function a higher-order function if it takes another function as its
parameter and/or returns a function as its return value.

6.4 Class Definitions
A Python class is a program construct that defines a new nominal type consisting
of data attributes and the operations on them.

When the interpreter executes a class definition, it binds the class name in the
current local namespace to the new class object it creates for the class. The
interpreter creates a new namespace (for the class’s local scope). If the class
body contains function or other definitions, these go into the new namespace. If
the class contains assignments to local variables, these variables also go into the
new namespace.

The class object represents the type. When a program calls a class name as a
function, it creates a new instance (i.e., an object) of the associated type.

We define an operation with a method bound to the class. A method is a function
that takes an instance (by convention named self) as its first argument. It can
access and modify the data attributes of the instance. The method is also an
attribute of the instance.

The code below shows the general structure of a class definition. The class calls
the special method __init__ (if present) to initialize a newly allocated instance
of the class.

Note: The special method __new__ allocates memory, constructs a new instance,
and then returns it. The interpreter passes the new instance to __init__, which
initialize the new object’s instance variables.

class P:
def __init__(self):

self.my_loc_var = None
def method1(self, args):

statement11
statement12
return some_value

def method2(self, args):
statement21

9

statement22
return some_other_value

Consider the following simple example.

class P:
pass

>>> x = P()
>>> x
<__main__.P object at 0x1011a10b8>
>>> type(x)
<class '__main__.P'>
>>> isinstance(x,P)
True
>>> P
<class '__main__.P'>
>>> type(P)
<class 'type'>
>>> isinstance(P,type)
True
>>> int
<class 'int'>
>>> type(int)
<class 'type'>
>>> isinstance(int,type)
True

We observe the following:

• Variable x holds a value that is an object of type P; the object is an instance
of class P.

• Class P is an object of a built-in type named type; the object is an instance
of class type.

• Built-in type int is also an object of the type named type.

We call a class object like P a metaobject because it is a constructor of ordinary
objects [1,8].

We call a special class object like type a metaclass because it is a constructor
for metaobjects (i.e., class objects) [1,8].

We will look more deeply into these relationships in Chapter 7 when we examine
inheritance.

10

6.5 Module Definitions
A Python module is defined in a file that contains a sequence of global variable,
function, and class definitions and executable statements. If the name of the file
is mymod.py, then the module’s name is mymod.

A Python package is a directory of Python modules.

A module definition collects the names and values of its global variables, functions,
and classes into its own private namespace (i.e., environment). This becomes the
global environment for all definitions and executable statements in the module.

When we execute a module definition as a script from the Python REPL, the
interpreter executes all the top-level statements in the module’s namespace. If
the module contains function or class definitions, then the interpreter checks
those for syntactic correctness and stores the definitions in the namespace for
use later during execution.

6.5.1 Using import

Suppose we have the following Python code in a file named testmod.py.

This is module "testmod" in file "testmod.py"
testvar = -1

def test(x):
return x

We can execute this code in a Python REPL session as follows.

>>> import testmod # import module in file "testmod.py"
>>> testmod.testvar # access module's variable "testvar"
-1
>>> testmod.testvar = -2 # set variable to new value
>>> testmod.testvar
-2
>>> testmod.test(23) # call module's function "test"
23
>>> test(2) # must use module prefix "test"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'module' object is not callable
>>> testmod # below PATH = directory path
<module 'testmod' from 'PATH/testmod.py'>
>>> type(testmod)
<class 'module'>
>>> testmod.__name__
'testmod'

11

>>> type(type(testmod))
<class 'type'>

The import statement causes the interpreter to execute all the top-level state-
ments from the module file and makes the namespace available for use in the
script or another module. In the above, the imported namespace includes the
variable testvar and the function definition test.

A name from one module (e.g., testmod) can be directly accessed from an
imported module by prefixing the name by the module name using the dot
notation. For example, testmod.testvar accesses variable testvar in module
testmod and testmod.test() calls function test in module testmod.

We also see that the imported module testmod is an object of type (class)
module.

6.5.2 Using from import

We can also import names selectively. In this case, the definitions of the selected
features are copied into the module.

Consider the module testimp below.

This is module "testimp" in file "testimp.py"
from testmod import testvar, test

myvar = 10

def myfun(x, y, z):
mylocvar = myvar + testvar
return mylocvar

class P:
def __init__(self):

self.my_loc_var = None

def meth1(self, arg):
return test(arg)

def meth2(self, arg):
if arg == None:

return None
else:

my_loc_var= arg
return arg

The definitions of variable testvar and function test are copied from module
testmod into module testimp’s namespace. Module testimp can thus access
these without prefix testmod.

12

Module testimp could import all of the definitions from module testmod by
using the wildcard * instead of the explicit list.

We can execute the above code in a Python REPL session as follows.

>>> import testimp
>>> testimp.myvar
10
>>> testimp.myfun(1,2,3)
9
>>> pp = testimp.P()
>>> pp.meth1(23)
23
>>> pp.meth2(14)
14
>>> type(pp)
<class 'testimp.P'>
>>> type(testimp.testmod)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'testmod' is not defined

Note that the from testmod import statement does not create an object
testmod.

6.5.3 Programming conventions

Python programs typically observe the following conventions:

• All module import and import from statements should appear at the
beginning of the importing module.

• All from import statements should specify the imported names explicitly
rather than using the wildcard * to import all names. This avoids polluting
the importing module’s namespace with unneeded names. It also makes
the dependencies explicit.

• Any definition whose name begins with an _ (underscore) should be kept
private to a module and thus should not be imported into or accessed
directly from other modules.

6.5.4 Using importlib directly

TODO: Perhaps move the discussion below of the importlib a metaprogramming
feature, to a later chapter that deals with metaprogramming?

The Python core module importlib exposes the functionality underlying the
import statement to Python programs. In particular, we can use the function
call

13

importlib.import_module('modname') # argument is string

to find and import a module from the file named modname.py. Below we see
that this works like an explicit import.

>>> from importlib import import_module
>>> tm = import_module('testmod')
>>> tm # below PATH = directory path
<module 'testmod' from 'PATH/testmod.py'>
>>> type(tm)
<class 'module'>
>>> type(type(tm))
<class 'type'>

6.6 Statement Execution and Variable Scope
Statements perform the work of the program—computing the values of expres-
sions and assigning the computed values to variables or parts of data structures.

Statements execute in two scopes: global and local.

1. As described above, the global scope is the enclosing module’s environment
(a dictionary), as extended by imports of other modules.

2. As described above, the local scope is the enclosing function’s dictionary
(if the statement is in a function).

If statement is a string holding a Python statement, then we can execute
the statement dynamically using the exec library function as follows:

exec(statement)

By default, the statement is executed in the current global and local
environment, but these environments can be passed in explicitly in optional
arguments globals and locals:

exec(statement, globals)
exec(statement, globals, locals)

Inside a function, variables that are:

• referenced but not assigned a value are assumed to be global

• assigned a value are assumed to be local

In the latter case, we can explicitly declare the variable global. if the desired
target variable is defined in the global scope.

6.7 Nested Function Definitions
Above we only considered module-level function definitions and instance method
definitions defined within classes.

14

Python allows function definitions to be nested within other function definitions.
Nested functions have several characteristics:

• Encapsulation. The outer function hides the inner function definitions from
the global scope. The inner functions can only be called from within the
outer function.

In contrast, Python classes and modules do not provide airtight encapsu-
lation. Their hiding of information is mostly by convention, with some
support from the language.

• Abstraction. The inner function is a procedural abstraction that is named
and separated from the outer function’s code. This enables the inner
function to be used several times within the outer function. The abstraction
can enable the algorithm to be simplified and understood more easily.

Of course, modules and classes also support abstraction, but not in combi-
nation with encapsulation.

• Closure construction. The outer function can take one or more functions
as arguments, combine them in various ways (perhaps with inner function
definitions), and construct and return a specialized function as a closure.
The closure can bind in parameters and other local variables of the outer
function.

Closures enable functional programming techniques such as currying, par-
tial evaluation, function composition, construction of combinators, etc.

We discuss closures in more depth in Section 6.9.

Closure are powerful mechanisms that can be used to implement metapro-
gramming solutions (e.g., Python’s decorators). We discuss those in
Chapter 9.

As an example of use of nested function definitions to promote encapsulation
and abstraction, consider a recursive function sqrt(x) to compute the square
root of nonnegative number x using Newton’s Method. (This is adapted from
section 1.1.7 of Abelson and Sussmann [2].)

def sqrt(x):
def square(x):

return x * x
def good_enough(guess,x):

return abs(square(guess) - x) < 0.001
def average(x,y):

return (x + y) / 2
def improve(guess,x):

return average(guess,x/guess)
def sqrt_iter(guess,x): # recursive version

if good_enough(guess,x):
return guess

15

else:
return sqrt_iter(improve(guess,x),x)

if x >= 0:
return sqrt_iter(1, x)

else:
print(

f'Cannot compute sqrt of negative number {x}')

A more “Pythonic” implementation of the sqrt_iter function would use a loop
as follows:

def sqrt_iter(guess,x): # looping version
while not good_enough(guess,x):

guess = improve(guess,x)
return guess

Note: The Python 3.7+ source code for the recursive version of sqrt is available
at this link{type=“text/plain} and the looping version at another link.

6.8 Lexical Scope
Nested function definitions introduce a third category of variables—local variables
of outer functions—in addition to the (function-level) local and (module-level)
global scopes we have discussed so far.

Python searches lexical scope (also called static scope) of a function for variable
accesses. (The section on procedural programming paradigm ELIFP [7] Chapter
2 also discusses this concept.)

Inside a function, variables that are:

• referenced but not assigned a value are assumed to be either defined in an
outer function scope or in the global scope.

The Python interpreter first searches for the nearest enclosing function
scope with a definition. If there is none, it then searches the global scope.

• assigned a value are assumed to be local

In the latter case, we can explicitly declare the variable as nonlocal if the
desired variable to be assigned is defined in an enclosing function scope or as
global if it is defined in the global scope.

Suppose we want to add an iteration counter c to the sqrt function above. We
can create and initialize variable c in the outer function sqrt, but we must
increment it in nested function sqrt_iter. For the nested function to change an
outer function variable, we must declare the variable as nonlocal in the nested
function’s scope.

def sqrt(x):
c = 0 # create c in outer function

16

sqrt1.py
sqrt2.py

same defs of square, good_enough, average, improve
def sqrt_iter(guess,x): # new local x, hide outer x

nonlocal c # declare c nonlocal
while not good_enough(guess,x):

c += 1 # increment c
guess = improve(guess,x)

return (guess,c) # return c
if x >= 0:

return sqrt_iter(1, x)
else:

print(f'Cannot compute sqrt of negative number {x}')

Note: The Python 3.7+ source code for this version of sqrt is available at this
link.

6.9 Closures
As discussed in Section 6.7, Python function definitions can be nested inside
other functions. Among other capabilities, this enables a Python function to
create and return a closure.

A closure is a function object plus a reference to the enclosing environment.

For example, consider the following:

def make_multiplier(x, y):
def mul():

return x * y
return mul

If we call this function interactively from the Python 3 REPL, we see that the
values of the local variables x and y are captured by the function returned.

>>> amul = make_multiplier(2, 3)
>>> bmul = make_multiplier(10, 20)
>>> type(amul)
<class 'function'>
>>> amul()
6
>>> bmul()
200

Function make_multiplier is a higher order function because it returns a
function (or closure) as its return value. Higher order functions may also take
functions (or closures) as parameters.

We can compose two conforming single argument functions using the following
compose2 function. Function comp captures the two arguments of compose2 in
a closure [9].

17

sqrt3.py
sqrt3.py

def compose2(f, g):
def comp(x):

return f(g(x))
return comp

Given that f(g(x)) is a simple expression without side effects, we can replace
the comp function with an anonymous lambda function as follows:

def compose2(f, g):
return lambda x: f(g(x))

If we call this function from the Python 3 REPL, we see that the values of the
local variables x and y are captured by the function returned.

>>> def square(x):
... return x * x
...
>>> def inc(x):
... return x + 1
...
>>> inc_then_square = compose2(square, inc)
>>> inc_then_square(10)
121

Note: The Python 3.7+ source code for compose2 is available at this link.

6.10 Function Calling Conventions
Consider a module-level function. A function may include a combination of:

• positional parameters

• keyword parameters

There are several different ways we can specify the arguments of function calls
described below.

1. Using positional arguments

def myfunc(x, y, z):
statement1
statement2
...

myfunc(10, 20, 30)

2. Using keyword arguments

def myfunc(x, y, z):
statement1
statement2
...

18

compose.py

myfunc(z=30, x=10, y=20)
note different order than in signature

3. Using default arguments set at definition time—using only immutable
values (e.g., False, None, string, tuple) for defaults

def myfunc(x, trace = False, vars = None):
if vars is None:

vars = []
...

myfunc(10)
x=10, trace=False, vars=None

myfunc(10, vars=['x', 'y'])
x=10, trace=False, vars=['x', 'y'])

4. Using required positional and variadic positional arguments

def myfunc(x, *args):
x is a required argument in position 1
args is tuple of variadic positional args
name "args" is just convention
...

myfunc(10, 20, 30)
x = 10
args = (20, 30)

5. Using required positional, variadic positional, and keyword arguments

def myfunc(x, *args, y):
x is a required argument in position 1
args is tuple of variadic positional args
y is keyword argument (occurs after variadic positional)
...

myfunc(10, 20, 30, y = 40)
x = 10
args = (20, 30)
y = 40

6. Using required positional, variadic positional, keyword, and variadic key-
word arguments

def myfunc(x, *args, y = 40, **kwargs):
x is a required argument in position 1
args is tuple of variadic positional args
y is a regular keyword argument with default
kwargs is a dictionary of variadic keyword args
names 'args' and 'kwargs' are conventions
...

myfunc(10, 20, 30, y = 40, r = 50, s = 60, t = 70)
x = 10

19

args = (20, 30)
y = 40
kwargs = { 'r': 50, 's': 60, 't': 70 }

7. Using required positional and keyword arguments—where named argu-
ments appearing after * can only be passed by keyword

def myfunc(x, *, y, **kwargs):
x is a required argument in position 1
y is a regular keyword argument
kwargs is a dictionary of keyword args

...
myfunc(10, y = 40, r = 50, s = 60, t = 70)

x = 10
y = 40
kwargs = { 'r': 50, 's': 60, 't': 70 }

8. Using a fully variadic general signature

def myfunc(*args, **kwargs):
args is tuple of all positional args
kwargs is a dictionary of all keyword args
...

myfunc(10, 20, y = 40, 30, r = 50, s = 60, t = 70)
args = (10, 20, 30)
kwargs = { 'y': 40, 'r': 50, 's': 60, 't': 70 }

6.11 What Next?
This chapter (6) examined the basic building blocks of Python programs—
statements, functions, classes, and modules. Chapter 7 examines classes, objects,
and object orientation in more detail.

6.12 Chapter Source Code
TODO

6.13 Exercises
TODO

6.14 Acknowledgements
In Spring 2018, I drafted what is now this chapter as part of the document Basic
Features Supporting Metaprogramming, which is Chapter 2 of the 3 chapters of
the booklet Python 3 Reflexive Metaprogramming [5]. The Spring 2018 material
used Python 3.6.

20

The overall booklet Python 3 Reflexive Metaprogramming is inspired by David
Beazley’s Python 3 Metaprogramming tutorial slides from PyCon’2013 [3]. In
particular, I adapted and extended the “Basic Features” material from the terse
introductory section of Beazley’s tutorial; I attempted to answer questions I had
as a person new to Python. Beazley’s tutorial draws on material from his and
Brian K. Jones’ book Python Cookbook [4].

In Fall 2018, I divided the Basic Features Supporting Metaprogramming doc-
ument into 3 chapters—Python Types, Python Program Components (this
chapter), and Python Object Orientation. I then revised and expanded each [6].
These 2018 chapers use Python 3.7.

This chapter seeks to be compatible with the concepts, terminology, and ap-
proach of my textbook Exploring Languages with Interpreters and Functional
Programming [7], in particular of Chapters 2, 3, 5, 6, 7, 11, and 21.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began
refining the existing content, integrating (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

6.15 Terms and Concepts
TODO

6.16 References
[1] 1991. The art of the metaobject protocol. MIT Press, Cambridge, Massa-

chusetts, USA.
[2] Harold Abelson and Gerald Jay Sussman. 1996. Structure and interpreta-

tion of computer programs (SICP) (Second ed.). MIT Press, Cambridge,
Massachusetts, USA. Retrieved from https://mitpress.mit.edu/sicp/

[3] David Beazley. 2013. Python 3 metaprogramming (tutorial). Retrieved
from http://www.dabeaz.com/py3meta/

[4] David Beazley and Brian K. Jones. 2013. Python cookbook (Third ed.).
O’Reilly Media, Sebastopol, California, USA.

[5] H. Conrad Cunningham. 2018. Python 3 reflexive metaprogramming.
University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.
html

21

http://www.dabeaz.com/py3meta
https://mitpress.mit.edu/sicp/
http://www.dabeaz.com/py3meta/
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html
https://john.cs.olemiss.edu/~hcc/csci658/notes/PythonMetaprogramming/Py3RefMeta.html

[6] H. Conrad Cunningham. 2018. Multiparadigm programming with Python
3. University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/csci556/Py3MPP/Ch05/05_Python_Types.html

[7] H. Conrad Cunningham. 2022. Exploring programming languages with in-
terpreters and functional programming (ELIFP). University of Mississippi,
Department of Computer and Information Science, University, Mississippi,
USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/ELIFP/EL
IFP.pdf

[8] Ira R. Forman and Scott Danforth. 1999. Putting metaclasses to work: A
new dimension in object-oriented programming. Addison-Wesley, Boston
Massachusetts, USA.

[9] Mathieu Larose. 2013. Function composition in python (blog post).
Retrieved from https://mathieularose.com/function-composition-in-
python

[10] Python Software Foundation. 2022. Python 3 documentation. Retrieved
from https://docs.python.org/3/

22

https://john.cs.olemiss.edu/~hcc/csci556/Py3MPP/Ch05/05_Python_Types.html
https://john.cs.olemiss.edu/~hcc/csci556/Py3MPP/Ch05/05_Python_Types.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://mathieularose.com/function-composition-in-python
https://mathieularose.com/function-composition-in-python
https://docs.python.org/3/

	Python Program Components
	Chapter Introduction
	Statements
	Simple statements
	pass statement
	Expression statement
	Assignment statement
	del statement

	Compound Statements
	if statement
	while statement
	for statement

	Function Definitions
	Class Definitions
	Module Definitions
	Using import
	Using from import
	Programming conventions
	Using importlib directly

	Statement Execution and Variable Scope
	Nested Function Definitions
	Lexical Scope
	Closures
	Function Calling Conventions
	What Next?
	Chapter Source Code
	Exercises
	Acknowledgements
	Terms and Concepts
	References

