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5 Python Types
5.1 Chapter Introduction
The goals of this chapter (5) are to:

• examine the general concepts of type systems

• explore Python’s type system and built-in types

Note: In this book, we use the term Python to mean Python 3. The various
examples use Python 3.7 or later.

5.2 Type System Concepts
The term type tends to be used in many different ways in programming languages.
What is a type?

Chapter 7) on object-based paradigms discusses the concept of type in the
context of object-oriented languages. This chapter first examines the concept
more generally and then examines Python’s builtin types.

5.2.1 Types and subtypes

Conceptually, a type is a set of values (i.e., possible states or objects) and a set
of operations defined on the values in that set.

Similarly, a type S is (a behavioral) subtype of type T if the set of values of
type S is a “subset” of the values in set T an set of operations of type S is a
“superset” of the operations of type T. That is, we can safely substitute elements
of subtype S for elements of type T because S’s operations behave the “same” as
T’s operations.

This is known as the Liskov Substitution Principle [12,20].

Consider a type representing all furniture and a type representing all chairs. In
general, we consider the set of chairs to be a subset of the set of furniture. A
chair should have all the general characteristics of furniture, but it may have
additional characteristics specific to chairs.

If we can perform an operation on furniture in general, we should be able to
perform the same operation on a chair under the same circumstances and get
the same result. Of course, there may be additional operations we can perform
on chairs that are not applicable to furniture in general.

Thus the type of all chairs is a subtype of the type of all furniture according to
the Liskov Substitution Principle.

5.2.2 Constants, variables, and expressions

Now consider the types of the basic program elements.
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A constant has whatever types it is defined to have in the context in which it
is used. For example, the constant symbol 1 might represent an integer, a real
number, a complex number, a single bit, etc., depending upon the context.

A variable has whatever types its value has in a particular context and at a
particular time during execution. The type may be constrained by a declaration
of the variable.

An expression has whatever types its evaluation yields based on the types of the
variables, constants, and operations from which it is constructed.

5.2.3 Static and dynamic

In a statically typed language, the types of a variable or expression can be
determined from the program source code and checked at “compile time” (i.e.,
during the syntactic and semantic processing in the front-end of a language
processor). Such languages may require at least some of the types of variables
or expressions to be declared explicitly, while others may be inferred implicitly
from the context.

Java, Scala, and Haskell are examples of statically typed languages.

In a dynamically typed language, the specific types of a variable or expression
cannot be determined at “compile time” but can be checked at runtime.

Lisp, Python, JavaScript, and Lua are examples of dynamically typed languages.

Of course, most languages use a mixture of static and dynamic typing. For
example, Java objects defined within an inheritance hierarchy must be bound
dynamically to the appropriate operations at runtime. Also Java objects declared
of type Object (the root class of all user-defined classes) often require explicit
runtime checks or coercions.

5.2.4 Nominal and structural

In a language with nominal typing, the type of value is based on the type name
assigned when the value is created. Two values have the same type if they have
the same type name. A type S is a subtype of type T only if S is explicitly
declared to be a subtype of T.

For example, Java is primarily a nominally typed language. It assigns types to
an object based on the name of the class from which the object is instantiated
and the superclasses extended and interfaces implemented by that class.

However, Java does not guarantee that subtypes satisfy the Liskov Substitution
Principle. For example, a subclass might not implement an operation in a
manner that is compatible with the superclass. (The behavior of subclass objects
are this different from the behavior of superclass objects.) Ensuring that Java
subclasses preserve the Substitution Principle is considered good programming
practice in most circumstances.
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In a language with structural typing, the type of a value is based on the structure
of the value. Two values have the same type if they have the “same” structure;
that is, they have the same public data attributes and operations and these are
themselves of compatible types.

In structurally typed languages, a type S is a subtype of type T only if S has
all the public data values and operations of type T and the data values and
operations are themselves of compatible types. Subtype S may have additional
data values and operations not in T.

Haskell is an example of a primarily structurally typed language.

5.2.5 Polymorphic operations

Polymorphism refers to the property of having “many shapes”. In programming
languages, we are primarily interested in how polymorphic function names (or
operator symbols) are associated with implementations of the functions (or
operations).

In general, two primary kinds of polymorphic operations exist in programming
languages:

1. Ad hoc polymorphism, in which the same function name (or operator
symbol) can denote different implementations depending upon how it is
used in an expression. That is, the implementation invoked depends upon
the types of function’s arguments and return value.

There are two subkinds of ad hoc polymorphism.

a. Overloading refers to ad hoc polymorphism in which the language’s
compiler or interpreter determines the appropriate implementation
to invoke using information from the context. In statically typed
languages, overloaded names and symbols can usually be bound to
the intended implementation at compile time based on the declared
types of the entities. They exhibit early binding.

Consider the language Java. It overloads a few operator symbols, such
as using the + symbol for both addition of numbers and concatenation
of strings. Java also overloads calls of functions defined with the same
name but different signatures (patterns of parameter types and return
value). Java does not support user-defined operator overloading; C++
does.

Haskell’s type class mechanism implements overloading polymorphism
in Haskell. There are similar mechanisms in other languages such as
Scala and Rust.

b. Subtyping (also known as subtype polymorphism or inclusion poly-
morphism) refers to ad hoc polymorphism in which the appropriate
implementation is determined by searching a hierarchy of types. The
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function may be defined in a supertype and redefined (overridden)
in subtypes. Beginning with the actual types of the data involved,
the program searches up the type hierarchy to find the appropriate
implementation to invoke. This usually occurs at runtime, so this
exhibits late binding.

The object-oriented programming community often refers to
inheritance-based subtype polymorphism as simply polymorphism.
This is the polymorphism associated with the class structure in Java.

Haskell does not support subtyping. Its type classes do support class
extension, which enables one class to inherit the properties of another.
However, Haskell’s classes are not types.

2. Parametric polymorphism, in which the same implementation can be
used for many different types. In most cases, the function (or class)
implementation is stated in terms of one or more type parameters. In
statically typed languages, this binding can usually be done at compile
time (i.e., exhibiting early binding).

The object-oriented programming (e.g., Java) community often calls this
type of polymorphism generics or generic programming.

The functional programming (e.g., Haskell) community often calls this
simply polymorphism.

5.2.6 Polymorphic variables

A polymorphic variable is a variable that can “hold” values of different types
during program execution.

For example, a variable in a dynamically typed language (e.g., Python) is
polymorphic. It can potentially “hold” any value. The variable takes on the
type of whatever value it “holds” at a particular point during execution.

Also, a variable in a nominally and statically typed, object-oriented language
(e.g., Java) is polymorphic. It can “hold” a value its declared type or of any of
the subtypes of that type. The variable is declared with a static type; its value
has a dynamic type.

A variable that is a parameter of a (parametrically) polymorphic function is
polymorphic. It may be bound to different types on different calls of the function.

5.3 Python Type System
What about Python’s type system?

5.3.1 Objects

Python is object-based [7, Ch. 3]; it treats all data as objects.
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A Python object has the following essential characteristics of objects [7, Ch. 3]:

a. a state (value) drawn from a set of possible values

The state may consist of several distinct data attributes. In this case, the
set of possible values is the Cartesian product of the sets of possible values
of each attribute.

b. a set of operations that access and/or mutate the state

c. a unique identity (e.g., address in memory)

A Python pbject has one of the two important but nonessential characteristics
of objects [7, Ch. 3]. Python does:

d. not enforce encapsulation of the state within the object, instead relying
upon programming conventions and name obfuscation to hide private
information

e. exhibit an independent lifecycle (i.e., has a different lifetime than the code
that created it)

As we see in Chapter 7, each object has a distinct dictionary, the directory, that
maps the local names to the data attributes and operations.

Python typically uses dot notation to access an object’s data attributes and
operations:

• obj.data accesses the attribute data of obj

• obj.op accesses operation op of obj

• obj.op() invokes operation op of obj, passing any arguments in a comma-
separated list between the parentheses

Some objects are immutable and others are mutable. The states (i.e., values) of:

• immutable objects (e.g., numbers, booleans, strings, and tuples) cannot be
changed after creation

• mutable objects (e.g., lists, dictionaries, and sets) can be changed in place
after creation

Caveat: We cannot modify a Python tuple’s structure (i.e., length) after its
creation. However, if the components of a tuple are themselves mutable objects,
they can be changed in-place.

All Python objects have a type.

5.3.2 Types

In terms of the discussion in Section {#sec:type-system-concepts}, all Python
objects can be considered as having one or more conceptual types at a particular
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point in time. The types may change over time because the program can change
the possible set of data attributes and operations associated with the object.

A Python variable is bound to an object by an assignment statement or its equiv-
alent. Python variables are thus dynamically typed, as are Python expressions.

Although a Python program usually constructs an object within a particular
nominal type hierarchy (e.g., as an instance of a class), this may not fully describe
the type of the object, even initially. And the ability to dynamically add, remove,
and modify attributes (both data fields and operations) means the type can
change as the program executes.

The type of a Python object is determined by what it can do—what data it
can hold and what operations it can perform on that data—rather than how it
was created. We sometimes call this dynamic, structural typing approach duck
typing. (If it walks like a duck and quacks like a duck, then it is a duck, even if
is declared as a snake.)

For example, we can say that any object is of an iterable type if it implements
an __iter__ operation that returns a valid iterator object. An iterator object
must implement a __next__ operation that retrieves the next element of the
“collection” and must raise a StopIteration exception if no more elements are
available.

In Python, we sometimes refer to a type like iterable as a protocol. That is, it is
an, perhaps informal, interface that objects are expected to satisfy in certain
circumstances.

5.4 Built-in Types
Python provides several built-in types and subtypes, which are named and
implemented in the core language. When displayed, these types are shown as
follows:

<class 'int'>

That is, the value is an instance of a class named int. Python uses the term
class to describe its nominal types.

We can query the nominal type of an object obj with the function call type(obj).
In the following discussion, we show the results from calling this function
interactively in Python REPL (Read-Evaluate-Print Loop) sessions.

For the purpose of our discussion, the primary built-in types include:

• Singleton types
• Number types
• Sequence types
• Mapping types
• Set types
• Other types (e.g., callable, class, module, and user-defined object types)
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TODO: Probably should elaborate the “other types” more than currently.

5.4.1 Singleton types

Python has single-element types used for special purposes. These include None
and NotImplemented.

5.4.1.1 None The name None denotes a value of a singleton type. That is,
the type has one element written as None.

Python programs normally use None to mean there is no meaningful value of
another type. For example, this is the value returned by Python procedures.

5.4.1.2 NotImplemented The name NotImplemented also denotes a value of
a singleton type. Python programs normally use this value to mean that an
arithmetic or comparison operation is not implemented on the operand objects.

5.4.2 Number types

Core Python supports four types of numbers:

• integers
• real numbers
• complex numbers
• Booleans

5.4.2.1 Integers (int) Type int denotes the set of integers. They are
encoded in a variant of two’s complement binary numbers in the underlyng
hardware. They are of unbounded precision, but they are, of course, limited in
size by the available virtual memory.

>>> type(1)
<class 'int'>
>>> type(-14)
<class 'int'>
>>> x = 2
>>> type(x)
<class 'int'>
>>> type(99999999999999999999999999999999)
<class 'int'>

5.4.2.2 Real numbers (float) Type float denotes the subset of the real
numbers that can be encoded as double precision floating point numbers in the
underlying hardware.

>>> type(1.01)
<class 'float'>
>>> type(-14.3)
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<class 'float'>
>>> x = 2
>>> type(x)
<class 'int'>
>>> y = 2.0
>>> type(y)
<class 'float'>
>>> x == y # Note result of equality comparison
True

5.4.2.3 Complex numbers (complex) Type complex denotes a subset of
the complex numbers encoded as a pair of floats, one for the real part and one
for the imaginary part.

>>> type(complex('1+2j')) # real part 1, imaginary part 2
<class 'complex'>
>>> complex('1') == 1.0 # Note result of comparison
True
>>> complex('1') == 1 # Note result of comparison
True

5.4.2.4 Booleans (bool) Type bool denotes the set of Boolean values False
and True. In Python, this is a subtype of int with False and True having the
values 0 and 1, respectively.

>>> type(False)
<class 'bool'>
>>> type(True)
<class 'bool'>
>>> True == 1
True

Making bool a subtype of int is an unfortunate legacy design choice from the
early days of Python. It is better not to rely on this feature in modern Python
programs.

5.4.2.5 Truthy and falsy values Python programs can test any object as
if it was a Boolean (e.g., within the condition of an if or while statement or as
an operand of a Boolean operation).

An object is falsy (i.e., considered as False) if its class defines

• a special method __bool__() that, when called on the object, returns
False

• a special method __len__() that returns 0

Note: We discuss special methods Chapter 7.
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Otherwise, the object is truthy (i.e., considered as True).

The singleton value NotImplemented is explicitly defined as truthy.

Falsy built-in values include:

• constants False and None

• numeric values of zero such as 0, 0.0, and 0j

• empty sequences and collections such as '' , (), [], and {} (defined below)

Unless otherwise documented, any function expected to return a Boolean result
should return False or 0 for false and True or 1 for true. However, the Boolean
operations or and and should always return one of their operands.

5.4.3 Sequence types

A sequence denotes a serially ordered collection of zero or more objects. An
object may occur more than once in a sequence.

Python supports a number of core sequence types. Some sequences have im-
mutable structures and some have mutable.

5.4.3.1 Immutable sequences An immutable sequence is a sequence in
which the structure cannot be changed after initialization.

5.4.3.1.1 str Type str (string) denotes sequences of text characters—that
is, of Unicode code points in Python. We can express strings syntactically by
putting the characters between single, double, or triple quotes. The latter
supports multi-line strings.

Python does not have a separate character type; a characer is a single-element
str.

>>> type('Hello world')
<class 'str'>
>>> type("Hi Earth")
<class 'str'>
>>> type('''
... Can have embedded newlines
... ''')
<class 'str'>

5.4.3.1.2 tuple Type tuple type denotes fixed length, heterogeneous se-
quences of objects. We can express tuples syntactically as sequences of comma-
separated expressions in parentheses.

The tuple itself is immutable, but the objects in the sequence might themselves
be mutable.
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>>> type(()) # empty tuple
<class 'tuple'>
>>> type((1,)) # one-element tuple, note comma
<class 'tuple'>
>>> x = (1,'Ole Miss') # mixed element types
>>> type(x)
<class 'tuple'>
>>> x[0] # access element with index 0
1
>>> x[1] # access element with index 1
'Ole Miss'

5.4.3.1.3 range The range type denotes an immutable sequence of numbers.
It is commonly used to specify loop controls.

• range(stop) denotes the sequence of integers that starts from 0, increases
by steps of 1, and stops at stop-1; if stop <= 0, the range is empty.

• range(start, stop) denotes the sequence of integers that starts from
start, increases by steps of 1, and stops at stop-1; if stop <= start,
the range is empty.

• range(start, stop, step) denotes the sequence of integers that starts
from start with a nonzero stepsize of step.

If step is positive, the sequence increases toward stop-1; if stop <=
start, the range is empty.

if negative, the sequence decreases toward stop+1.

A range is a lazy data structure. It only yields a value if the output is
needed.

>>> list(range(5))
[0, 1, 2, 3, 4]
>>> list(range(1, 5))
[1, 2, 3, 4]
>>> list(range(0, 9, 3))
[0, 3, 6]
>>> list(range(0, 10, 3))
[0, 3, 6, 9]
>>> list(range(5, 0, -1))
[5, 4, 3, 2, 1]
>>> list(range(0))
[]
>>> list(range(1, 0))
[]
>>> list(range(0, 0))
[]
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5.4.3.1.4 bytes Type bytes type denotes sequences of 8-bit bytes. We can
express these syntactically as ASCII character strings prefixed by a “b”.

>>> type(b'Hello\n World!')
<class 'bytes>

5.4.3.2 Mutable sequences A mutable sequence is a sequence in which
the structure can be changed after initialization.

5.4.3.2.1 list Type list denotes variable-length, heterogeneous sequences
of objects. We can express lists syntactically as comma-separated sequence of
expressions between square brackets.

>>> type([])
<class 'list'>
>>> type([3])
<class 'list'>
>>> x = [1,2,3] + ['four','five'] # concatenation
>>> x
[1, 2, 3, 'four', 'five']
>>> type(x)
<class 'list'>
>>> y = x[1:3] # get slice of list
>>> y
[2, 3]
>>> y[0] = 3 # assign to list index 0
[3, 3]

5.4.3.2.2 bytearray Type bytearray denotes mutable sequences of 8-bit
bytes, that is otherwise like type bytes. They are constructed by calling the
function bytearray().

>>> type(bytearray(b'Hello\n World!'))
<class 'bytes>

5.4.4 Mapping types

Type dict (dictionary) denotes mutable finite sets of key-value pairs, where the
key is an index into the set for the value with which it is paired.

The key can be any hashable object. That is, the key can be any immutable object
or an object that always gives the same hash value. However, the associated
value objects may be mutable and the membership in the set may change.

We can express dictionaries syntactically in various ways such as comma-separated
lists of key-value pairs with braces.

>>> x = { 1 : "one" }
>>> x
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{1: 'one'}
>>> type(x)
<class 'dict'>
>>> x[1]
'one'
>>> x.update({ 2 : "two" }) # add to dictionary
>>> x
{1: 'one', 2: 'two'}
>>> type(x)
<class 'dict'>
>>> del x[1] # delete element with key
>>> x
{2: 'two'}

5.4.5 Set Types

A set is an unordered collection of distinct hashable objects.

There are two built-in set types—set and frozenset.

5.4.5.1 set Type set denotes a mutable collection.

We can create a nonempty set by putting a comma-separated list of elements
between braces as well as by using the set constructor.

For example, sets sx and sy below have the same elements. The operation |=
adds the elements of the right operand to the left.

>>> sx = { 'Dijkstra', 'Hoare', 'Knuth' }
>>> sx
{'Knuth', 'Hoare', 'Dijkstra'}
>>> sy = set(['Knuth', 'Dijkstra', 'Hoare'])
>>> sy

< {'Knuth', 'Hoare', 'Dijkstra'}
>>> sx == sy
True
>>> sx.add('Turing') # add element to mutable set
>>> sx
{'Turing', 'Knuth', 'Hoare', 'Dijkstra'}

5.4.5.2 frozenset Type frozenset denotes an immutable collection.

We can extend the set example above as follows:

>>> fx = frozenset(['Dijkstra', 'Hoare', 'Knuth'])
>>> fx
frozenset({'Knuth', 'Hoare', 'Dijkstra'})
>>> fy = frozenset(sy)
>>> fy
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frozenset({'Knuth', 'Hoare', 'Dijkstra'})
>>> fx.add('Turing')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'add'

5.4.6 Other object types

We discuss callable objects (e.g., functions), class objects, module objects, and
user-defined types (classes) in later chapters.

TODO: Perhaps be more specific about later chapters.

5.5 What Next?
TODO

5.6 Chapter Source Code
TODO, if needed.

5.7 Exercises
TODO
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• the Wikipedia articles on the Liskov Substitution Principle [20], Polymor-
phism [21], Ad Hoc Polymorphism [23], Parametric Polymorphism [24],
Subtyping [25], and Function Overloading [22]

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a unified bibliography
(e.g., using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

5.9 Terms and Concepts
TODO: revise for the current content

Object, object characteristics (state, operations, identity, encapsulation, inde-
pendent lifecycle), immutable vs. mutable, type, subtype, Liskov Substitution
Principle, types of constants, variables, and expressions, static vs. dynamic
types, declared and inferred types, nominal vs. structural types, polymorphic
operations (ad hoc, overloading, subtyping, parametric/generic), early vs. late
binding, compile time vs. runtime, polymorphic variables, duck typing, protocol,
interface, REPL, singleton types (None and NotImplemented), number types
(int, float, complex, bool, False, falsy, True, truthy), immutable sequence
types (str, tuple, range, bytes), mutable sequence types (list, bytearray),
mapping types (dict, key and value), set types (set, frozenset),other types.
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