
Plain Text Specification Notation

H. Conrad Cunningham

22 April 2022

Contents
Plain Text Specification Notation 1

Chapter Introduction . 1
Program States and Specification . 2
Predicate Logic . 2
Other Quantifications . 4
Sets . 6
Relations . 7
Bags . 7
Sequences . 8
What Next? . 8
Acknowledgements . 8
References . 9

Copyright (C) 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

Plain Text Specification Notation
Chapter Introduction
This chapter informally defines the mathematical and logical notation we use
to express the semantics of program units such as functions, procedures, meth-
ods, modules, and classes. We use it to specify abstract models, invariants,

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

preconditions, and postconditions.

We adopt a plain-text notation that can be typed as comments in program
source code, not the notation that would be typeset in a mathematics or logic
textbook. The logic notation follows that popularized by David Gries [9,10],
Edsger Dijkstra [7,8], and others [3–5,12,14] in the formal methods community.

We assume that the readers of our specifications are familiar with basic mathe-
matical concepts such as logical connectives, sets, relations, functions, etc. The
primary purpose of this chaper is to introduce the plain-text notation.

Program States and Specification
The state of a program is a mapping of all the variables to their respective values.
Here we use the term “variable” flexibly to enable this notation to be used for
a variety of languages and circumstances. It includes all the program’s named
constants, variables, parameters, and types and perhaps other entities such as
the program counter(s), input/output channels, and program metadata.

A state space for a program is the set of all possible states.

If E is an expression defined in some state space, x is a variable, and v is a possible
value for that variable, then the notation E(x := v) denotes the expression E
where all occurrences of the variable x are replaced by the value v. Similarly, the
notation E(x,y := u,v) denotes the expression E where all occurrences of the
variables x and y are simultaneously replaced by the values u and v, respectively.

To evaluate an expression in a state means to replace all the variables in the
expression by their respective values in that state and then compute the resulting
value.

In specifying computer programs, we use predicates (i.e., logical expressions) to
assert that a condition must hold at all points in the program’s state space.

Consider a function in a programming language. The functions precondition
predicate asserts what must be true about the program’s state and the values
of the function’s arguments at a program location where the function is called.
Note that a precondition implicitly includes an assertion about value of the
program counter. Similarly, the function’s postcondition predicate asserts what
must be true about the program’s state and the function’s return value at a
program location where the function returns.

Predicate Logic
A predicate is an expression that evaluates to either the Boolean value true
or the Boolean value false at a point in the state space in which predicate is
well-defined. In the following, we informally describe the syntax and semantics
of predicates.

• The primitive predicates include true and false.

2

Predicates true and false evaluate to true and false, respectively, in all
points of the state space.

• The primitive predicates also include the usual arithmetic relational ex-
pressions from mathematics and the computer programming language.

These expressions evaluate to true or false according to their usual meanings
at all points of the state space in which they are well defined.

Note: We use the operators == and != for equality and inequality. Similarly,
we use <, <=, >, and >= for the ordered relational operator. (However, in
some cases it is better to use whatever operator symbols are used in the
programming language.)

Note: To specify computer programs, it is necessary and useful to include
common operations from mathematics and the programming language.
However, these must be pure expressions, without side effects.

• The primitive predicates can also include Boolean functions defined in
the the programming language, its runtime library, or elsewhere in the
program being specified.

These expressions evaluate to true or false according to their usual meanings
at all points of the state space in which they are well defined.

Note: We can also use functions that return other types as components of
relational expressions.

• If P is a predicate, then NOT P is a predicate.

NOT P is the logical negation of P. The predicate NOT P evaluates to true in
any state in which P evaluates to false and evaluates to false in any state
in which P evaluates to true.

• If P and Q are predicates, then P && Q, P OR Q, P <=> Q, and P => Q are
also predicates.

– P && Q is logical conjunction (AND). The predicate
P && Q is true at every point of the state space where both P and Q
are true; it is false elsewhere.

– P OR Q is logical disjunction. The predicate P OR Q is false at every
point of the state space where both P and Q are false; it is true
elsewhere.

– P <=> Q is logical equivalence. The predicate P <=> Q is true at every
point of the state space where the values of P and Q are equal; it is
false elsewhere.

– P => Q is implication. The predicate P => Q is false at every point
of the state space where P is true and Q is false; it is true elsewhere.

3

• If P, Q, and R are predicates, then if P then Q else R is a predicate.

The predicate if P then Q else R is equivalent to
(p => q) && (NOT p => r).

• If R and T are predicates and x is a variable, then (ForAll x : R :: T)
is a predicate. In quantified expressions like this one:

– x is a distinct new variable (called a dummy variable) whose scope is
between the parentheses

– R is the range
– T is the term

(ForAll x : R :: T) is a universal quantification; it is essentially a
generalized variant of logical conjunction (AND). In more formal logical
notation, we normally replace the plain-text symbol ForAll by ∀.

The predicate (ForAll x : R :: T) is true at every point of the state
space in which, for any value v, R(x := v) => T(x := v) is true; it is
false elsewhere.

We can extend this notation to quantify over several variables such as in
(ForAll x, y, z : R :: T). In this case, we consider
R(x,y,z := u,v,w) => T(x,y,z := u,v,w)
for all distinct tuples of values (x,y,z).

If R is true, we can omit the range from the expression and just write
(ForAll x,y,z :: T).

Note: We can also extend the other quantification expressions below to
allow multiple variables and omission of a true domain predicate R.

• If R and T are predicates and x is a variable, then (Exists x : R :: T)
is a predicate.

(Exists x : R :: T) is an existential quantification; it is essentially a
generalized variant of logical disjunction (OR). In more formal logical
notation, we normally replace the plain-text symbol Exists by ∃.

The predicate (Exists x : R :: T) is true at every point of the state
space in which, for some value v, R(x := v) && T(x := v) is true; it is
false elsewhere.

Other Quantifications
In addition to the logical quantification above, we can also use quantified
expressions that involve other operators and yield other types of values (e.g.,
integers).

If OP is a binary operator on some type that is associative and commutative (or
symmetric) and has an identity element, then we can readily define a quantifica-
tion (OP x : R :: T) [10].

4

To evaluate the quantification (OP x : R :: T), we:

a. generate a “list” containing the values of term expression T(x := v) for
each value v of the dummy variable x that satisfies the range predicate
R(x := v)

b. insert the associative and commutative binary operator op between adjacent
elements of the list

c. compute the value of the generated expression

If the range is empty (i.e., there are no values of x for which Ris true), then the
value of the quantification is the identity element for binary operator OP.

Thus, in addition to universal and existential quantification discussed in the
previous section, we can define the following common arithmetic quantifications
according to above general rules:

• Summation. (+ x : R :: T) yields, for all values v of the same type as T
(e.g., integers), the sum of all values T(x := v) for which predicate R(x
:= v) is true. If the range is empty, then the value of the quantification is
0.

Note: In mathematics, the symbol Σ is often used to denote summation.

• Product. (* x : R :: T) yields, for all values v of the compatible type
(e.g., integers), the product of all values T(x := v) for which predicate R(x
:= v) is true. If the range is empty, then the value of the quantification is
1.

Note: In mathematics, the symbol Π is often used to denote summation.

In addition, we can define numerical quantification expressions as follows:

• (# x : R :: T) yields the value (+ x : R AND T :: 1), a count of all
distinct values of x for which logical predicate R AND T is true. If the range
is empty, then the value of the quantification is 0.

Consider the binary operators min and max. They are associative and commuta-
tive.

On the one hand, if we consider any set of values that is bounded above by a
maximum value, then the maximum value is the identity element for the min
operation on that set. Similarly, if we consider any set of values that is bounded
below by a minimum value, then the minimum value is the identity element for
the max operation on that set.

On the other hand, if we consider any set of values that is unbounded above
(e.g., the positive integers), then min does not have an identity element within
the set. Similarly, if we consider any set of values that is unbounded below (e.g.,
the negative integers), then max does not have an identity element within the
set. We could, however, assign some special values such as +∞ as the identity
element for min and −∞ as the identity element for max.

5

Thus, we can define two other useful quantifications:

• Minimization. (Min x : R :: T) yields, for all values v of the same
type as T (e.g., integers), the minimum of all values T(x := v) for which
predicate R(x := v) is true.

If restrict the type of T to be the integers, then, for an empty range, the
value of the quantification is +∞, which we can write as POS_INF.

• Maximization. (Max x : R :: T) yields, for all values v of the same
type as T (e.g., integers), the maximum of all values T(x := v) for which
predicate R(x := v) is true.

If restrict the type of T to be the integers, then, for an empty range, the
value of the quantification is −∞, which we can write as NEG_INF.

Note: Given that it may be impossible to represent POS_INF and NEG_INF in a
program, in most circumstances it is best to avoid use of minimimization and
maximization in specifying computer programs.

Sets
A set is an unordered collection of elements without duplicates.

• Operator IN denotes set membership. For any set C and value v, predicate
v IN C is true if and only if v is an element in set C. Similarly, v NOT_IN
C denotes NOT (v IN C).

• A programming language type consists of a set of values and a set of
operations. We sometimes say a value is IN a type to mean the value is an
element of the set associated with the type.

• Operator CARD denotes set cardinality. For any set C, function CARD(C)
yields the number of elements in the set C.

• Binary operator SUBSET_OF denotes the subset relationship between sets.
For sets C and D, predicate C SUBSET_OF D if and only if all the elements
in C are also elements in D.

• Binary operator UNION denotes set union. For any sets C and D, operation C
UNION D yields the set consisting of all the elements in C and in D, including
those in both C and D.

• Binary operator INTERSECT denotes set intersection. For any sets C and
D, operation C INTERSECT D yields the set consisting only of the elements
that are in both C and D.

• Binary operator DIFF denotes set difference. For any sets C and D, operation
C DIFF D yields the set C with all elements of set D removed.

• A set comprehension has the form { x : R :: T }, which has a syntax
and semantics like the quantifications described above. x is a dummy

6

variable whose scope is inside the braces, R is a range predicate, and T is
the term.

The set { x : R :: T } consists of all elements T(x:=v) where v ranges
over all values for which R(x:=v) is true.

Relations
• A Cartesian product of two sets C and D is the set of all ordered pairs (x,y)

where x IN C and y IN D.

We extend this concept to any finite number of sets. We also call these
fixed-length ordered groupings tuples.

• A relation on sets C and D is a subset of the Cartesian product of C and D.
That is, a set of tuples.

• A function on sets C and D is a special case of a relation on (domain) C
and (range) D where each element in C occurs in at most one tuple in the
relation.

– A total function is a function defined for all elements in its domain.

– A partial function is a function defined for a subset of its domain.

Bags
Mathematically, a bag (or multiset) is a function from some arbitrary set of ele-
ments (the domain) to the set of nonnegative integers (the range) [10:11.7,15,16].
We interpret the nonnegative integer as the number of occurrences of the element
in the bag. Zero means the element does not occur. The number of occurrences
of an element in a bag is also called its multiplicity.

From another perspective, a bag is an unordered collection of elements. Each
element may occur one or more times in the bag. (It is like a set except values
can occur multiple times.)

• The literal {| |} denotes an empty bag.

• The literal {| 2, 3, 2, 1 |} denotes a bag containing four integers
including two 2’s, one 3, and one 1. The order is not significant! There
may be one or more occurrences of an element.

• Operator IN also denotes the bag membership operation. x IN C is true
if and only if there are one or more occurrences of the value x in bag C.
Similarly, x NOT_IN C denotes the negation of x IN C.

• Operator OCCURRENCES denotes occurrence counting. For any bag C,
OCCURENCES(x,C) yields the number of times element x occurs in bag
C (i.e., the multiplicity of x.)

7

OCCURRENCES(1,{| 1, 1, 2, 1 |}) = 3
OCCURRENCES(3,{| 1, 1, 2, 1 }}) = 0

• Operator CARD denotes cardinality. CARD(C) is the total number of occur-
rences of all elements in bag C.

CARD({| 1, 1, 2, 1 |}) = 4
CARD({| |) = 0

• REPEAT(e,n) denotes a bag containing exactly n occurrences of e or an
empty bag if n < 1.

• Binary operator UNION also denotes bag union. For any bags C and D, C
UNION D yields the bag consisting of all elements in C and in D, or in both;
the number of occurrences of an element in the union is the number in C
or in D, whichever is greater (i.e., the maximum multiplicity).

{| 3, 1, 1, 3 |} UNION {| 1, 2 |} = {| 1,1,2,3,3 |}

• Binary operator SUM denotes bag sum. The sum of bags C and D yields
the bag consisting of all elements in C and in D, or in both; the number of
occurrences of an element is the sum of the occurrences in C and D.

{| 3, 1, 1, 3 |} SUM {| 1, 2 |} = {| 1,1,1,2,3,3 |}

• Binary operator INTERSECT also denotes bag intersection. For any bags C
and D, C INTERSECT D yields the bag consisting of all elements that occur
both in C and in D; the number of occurrences of an element is the number
in C or in D, whichever is lesser (i.e., the minimum multiplicity).

{| 3, 1, 1, 3 |} INTERSECT {| 1, 2 |} = {| 1 |}

• Operator DIFF also denotes bag difference. For any bags C and D, C DIFF D
yields the bag consisting of all the elements of C that occur in D fewer times;
the number of occurrences of an element is the number of occurrences in C
minus the number in D. (If there are more occurrence in D than C, then
the result has no occurrences.)

{| 1, 1, 2, 1 |} DIFF {| 2,1,1,3 |} = {| 1 |}

Sequences
TODO

What Next?
This document defines the plain-text notation we use to specify the semantics of
programs. Source code comments and other documents can refer to this chapter
rather than describe the notation used.

8

Acknowledgements
In the early 1990s, I wrote A Programmer’s Introduction to Predicate Logic
[4] as a supplement for my students in the CSci 550 (Program Semantics and
Derivation) [5] and Engr 664 (Theory of Concurrent Programming) courses.
For CSci 555, I used the textbooks by Gries [9] and Cohen [3] and gradually
developed my own set of mostly compatible notes [4,5]. My use of predicate logic
and equational reasoning was also influenced by Jan Tijmen Udding from whom I
took my first course on program derivation in the 1980s, my dissertation advisor
Gruia-Catalin Roman, Dijkstra [7,8], Gries’s discrete mathematics textbook [10],
and other sources [1,2,11,12,14].

In Fall 1996, I began teaching courses on object-oriented programming and
software architecture. For those courses, I informally used approaches such
as constructive semantics for abstract data types (e.g., as described in my
notes on Data Abstraction [6]) and Meyer’s design-by-contract [13]. I also
developed example programs written in various languages (e.g., Java, Ruby,
Scala, Lua, Elixir, and Python and annotated the programs with comments
giving preconditions, postconditions, and invariants, usually without much
explanation of the specification notation I was using. Over the years, I wrote a
number of partial and often incompatible explanations of the notation.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on possible textbooks based on the course
materials I had developed during my three decades as a faculty member. In
January 2022, I began refining the existing content, integrating separately
developed materials together, reformatting the documents, constructing a unified
bibliography (e.g., using citeproc), and improving my build workflow and use of
Pandoc.

I wrote this document in 2022 to unify the description of the notation I have
used in mt example programs (e.g., the CookieJar, CandyBowl, and Digraph
ADTs) and other documents.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

References
[1] Richard Bird and Philip Wadler. 1988. Introduction to functional pro-

gramming (First ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.
[2] K. Mani Chandy and Jayadev Misra. 1988. Parallel program design: A

foundation. Addison-Wesley, Boston, Massachusetts, USA.
[3] Edward Cohen. 1990. Programming in the 1990’s: An introduction to

the calculation of programs. Springer, New York, New York, USA.

9

[4] H. Conrad Cunningham. 2006. A programmer’s introduction to predicate
logic. University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/docs/PredicateLogicNotes/Programmers_Introduction
_to_Predicate-Logic.pdf

[5] H. Conrad Cunningham. 2006. Notes on program semantics and de-
rivation. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/reports/umcis-1994-02.pdf

[6] H. Conrad Cunningham. 2019. Notes on data abstraction. University of
Mississippi, Department of Computer and Information Science, University,
Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/
DataAbstraction/DataAbstraction.html

[7] Edsger W. Dijkstra and Wim H. J. Feijen. 1988. A method of programming.
Addison-Wesley, Boston Massachusetts, USA.

[8] Edsger W. Dijkstra and Carel S. Scholten. 1990. Predicate calculus and
program semantics. Springer, New York, New York, USA.

[9] David Gries. 1981. Science of programming. Springer, New York, New
York, USA.

[10] David Gries and Fred B. Schneider. 1993. A logical approach to discrete
math. Springer, New York, New York, USA.

[11] Robert R. Hoogerwoord. 1989. The design of functional programs: A
calculational approach. PhD thesis. Eindhoven Technical University,
Eindhoven, The Netherlands.

[12] Anne Kaldewaij. 1990. Programming: The derivation of algorithms.
Prentice Hall, New York, New York, USA.

[13] Bertrand Meyer. 1997. Object-oriented program construction (Second
ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

[14] Antonetta J. M. van Gasteren. 1990. On the shape of mathematical
arguments. Springer, Berlin, Germany.

[15] Wikpedia: The Free Encyclopedia. 2022. Multiset. Retrieved from
https://en.wikipedia.org/wiki/Multiset

[16] Wolfram Research, Inc. 2022. Multiset. Retrieved from https://mathwo
rld.wolfram.com/Multiset.html

10

https://john.cs.olemiss.edu/~hcc/docs/PredicateLogicNotes/Programmers_Introduction_to_Predicate-Logic.pdf
https://john.cs.olemiss.edu/~hcc/docs/PredicateLogicNotes/Programmers_Introduction_to_Predicate-Logic.pdf
https://john.cs.olemiss.edu/~hcc/docs/PredicateLogicNotes/Programmers_Introduction_to_Predicate-Logic.pdf
https://john.cs.olemiss.edu/~hcc/reports/umcis-1994-02.pdf
https://john.cs.olemiss.edu/~hcc/reports/umcis-1994-02.pdf
https://john.cs.olemiss.edu/~hcc/docs/DataAbstraction/DataAbstraction.html
https://john.cs.olemiss.edu/~hcc/docs/DataAbstraction/DataAbstraction.html
https://en.wikipedia.org/wiki/Multiset
https://mathworld.wolfram.com/Multiset.html
https://mathworld.wolfram.com/Multiset.html

	Plain Text Specification Notation
	Chapter Introduction
	Program States and Specification
	Predicate Logic
	Other Quantifications
	Sets
	Relations
	Bags
	Sequences
	What Next?
	Acknowledgements
	References

