
Notes on Software Patterns:
Introduction to Patterns

H. Conrad Cunningham

16 April 2022

Contents
1 Introduction to Patterns 2

1.1 Chapter Introduction . 2
1.2 What is a Pattern? . 2
1.3 Descriptions of Patterns . 3

1.3.1 Context . 3
1.3.2 Problem . 3
1.3.3 Solution . 4
1.3.4 Aside: Extending pattern elements 4

1.4 Categories of Patterns . 4
1.4.1 Architectural patterns . 5
1.4.2 Design patterns . 6
1.4.3 Idioms . 8

1.5 What Next? . 8
1.6 Acknowledgements . 9
1.7 Terms and Concepts . 9
1.8 References . 9

Copyright (C) 1998-2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

1 Introduction to Patterns
1.1 Chapter Introduction
The goal of this chapter is to introduce the basic concepts and terminology of
software patterns as used in software architecture, software engineering, and
programming.

The chapter approaches patterns mostly from the perspective of object-oriented
programming using languages such as Java and Scala. Classic works on software
“design patterns” include the Gamma et al. (i.e., the “Gang of Four”) [3] and
Buschmann et al. (i.e., “Siemens”) [2] books. In these notes, we primarily use
the terminology of Buschmann et al. [2].

Similar approaches may be used in functional languages such as Haskell, but often
functional languages will use first-class and higher-order functions to express the
patterns.

The accompanying set of HTML slides (not fully updated in 2022) is the following:

• Introduction to Patterns (HTML)

1.2 What is a Pattern?
When experts need to solve a problem, they seldom invent a totally new solution.
More often they will recall a similar problem they have solved previously and
reuse the essential aspects of the old solution to solve the new problem. They
tend to think in problem-solution pairs.

Identifying the essential aspects of specific problem-solution pairs leads to de-
scriptions of problem-solving patterns that can be reused.

The concept of a pattern as used in software architecture is borrowed from
the field of (building) architecture, in particular from the writings of architect
Christopher Alexander [1]. Buschmann et al. [2] defines pattern as follows in
the context of software architecture:

“A pattern for software architecture describes a particular recurring
design problem that arises in specific design contexts and presents a
well-proven generic scheme for its solution. The solution scheme is
specified by describing its constituent components, their responsibili-
ties and relationships, and the ways in which they collaborate.”

Where software architecture is concerned, the concept of a pattern described
here is essentially the same concept as an architectural style or architectural
idiom in Shaw and Garlan [9].

In general, patterns have the following characteristics [2]:

• A pattern describes a solution to a recurring problem that arises in specific
design situations.

2

IntroPatternsSlides.html

• Patterns are not invented; they are distilled from practical experience.

• Patterns describe a group of components (e.g., classes or objects), how the
components interact, and the responsibilities of each component. That is,
they are higher level abstractions than classes or objects.

• Patterns provide a vocabulary for communication among designers. The
choice of a name for a pattern is very important.

• Patterns help document the architectural vision of a design. If the vision
is clearly understood, it will less likely be violated when the system is
modified.

• Patterns provide a conceptual skeleton for a solution to a design prob-
lem and, hence, encourage the construction of software with well-defined
properties.

• Patterns are building blocks for the construction of more complex designs.

• Patterns help designers manage the complexity of the software. When a
recurring pattern is identified, the corresponding general solution can be
implemented productively to provide a reliable software system.

1.3 Descriptions of Patterns
Various authors use different formats (i.e., “languages”) for describing patterns.
Typically a pattern will be described with a schema that includes at least the
following three elements [2]:

1. Context

2. Problem

3. Solution

1.3.1 Context

The Context element describes the circumstances in which the problem arises.

1.3.2 Problem

The Problem element describes the specific problem that arises repeatedly in
the context.

In particular, the description describes the set of forces repeatedly arising in the
context. A force is some aspect of the problem that must be considered when
attempting a solution. Example types of forces include:

• requirements the solution must satisfy (e.g., efficiency)

• constraints that must be considered (e.g., use of a certain algorithm or
protocol)

3

• desirable properties of a solution (e.g., easy to modify)

Forces may complementary (i.e., can be achieved simultaneously) or contradictory
(i.e., can only be balanced).

1.3.3 Solution

The Solution section describes a proven solution to the problem.

The solution specifies a configuration of elements to balance the forces associated
with the problem.

• A pattern describes the static structure of the configuration, identifying
the components and the connectors (i.e., the relationships among the
components).

• A pattern also describes the dynamic runtime behavior of the configuration,
identifying the control structure of the components and connectors.

1.3.4 Aside: Extending pattern elements

In a helpful tutorial on pattern writing, Wellhausen and Fiesser [13] separate out
the Forces and Consequence as separate element and state that the following
elements must be present in the given order:

• Pattern Name gives an evocative name for the pattern.

• Context describes the circumstances in which the problem occurs.

• Problem describes the specific problem to be solved.

• Forces describe why the problem is difficult to solve, giving different
considerations that must be balanced to solve the problem.

• Solution describes how the solution to the problem works at an appropriate
level of detail.

• Consequences describe what happens when a software designer applies the
pattern. It gives both the possible benefits and possible liabilities of using
the pattern.

All of the above elements except Consequences are also prescribed by the
Mandatory Elements Present pattern from Meszaros and Doble’s A Pattern
Language for Pattern Writing [4]. Their Optional Elements When Helpful
pattern suggests use of optional elements such as Examples, Code Samples, and
Rationale. Following their Readable References to Patterns pattern, we
refer to a pattern using its name in small capital letters.

1.4 Categories of Patterns
Patterns can be grouped into three categories according to their level of abstrac-
tion [2]:

4

1. Architectural patterns

2. Design patterns

3. Idioms

1.4.1 Architectural patterns

Buschmann et al. [2] defines an architectural pattern as follows:

“An architectural pattern expresses a fundamental structural organi-
zation schema for software systems. It provides a set of predefined
subsystems, specifies their responsibilities, and includes rules and
guidelines for organizing the relationships between them.”

In early work, Shaw and Garlan [9] used the term architectural style instead of
architectural pattern.

An architectural pattern is a high-level abstraction. The choice of the architec-
tural pattern to be used is a fundamental design decision in the development of
a software system. It determines the system-wide structure and constrains the
design choices available for the various subsystems. It is, in general, independent
of the implementation language used.

Examples of architectural patterns include the following.

• The Pipes and Filters (or Pipeline) pattern [2:53,8,9,15] defines a
structure for systems in which an independent set of computations—
called filters—transform one or more input streams—passing along pipes—
incrementally to create one or more output streams.

See the separate notes on the Pipes and Filters pattern or the set of
Powerpoint slides for more a more detailed discussion of this pattern.

In the UNIX operating system [6], for instance, a filter is a program that
reads a stream of bytes from its standard input and writes a transformed
stream to its standard output. These programs can be connected together
(e.g., in the interactive shell program) with the output of one filter becoming
the input of the next filter in the sequence via the pipe mechanism. Larger
systems can thus be constructed from simple components that otherwise
operate independently of one another.

• The Layered systems [2:31,8,9] pattern organizes a system hierarchically
with “each layer providing service to the layer above it and serving as a
client for the layer below” [9].

Communication protocols, operating systems, virtual machines, and appli-
cation programming interfaces (APIs) are often designed and implemented
as layered systems [2].

5

../Pipes/Pipes.html
../Pipes/sle_Pipes_Filters_Pattern.ppt

• The Blackboard pattern [2:71,8,9,16] defines a structure in which “a
collection of independent programs”—the knowledge sources—“work coop-
eratively on a common data structure”—the blackboard [2].

A Blackboard pattern is one of two subcategories of the Repository
pattern [8,9]. In a Blackboard system, the state of the blackboard
(i.e., the repository) triggers the activity of the knowledge sources (i.e.,
the independent programs). Such a structure is often useful in artificial
intelligence applications.

The other subcategory of the Repository pattern is for situations in which
the types of the inputs trigger the independent programs. In such systems,
the repository can be a traditional database that simply organizes the data
collected.

• The Model-View-Controller [2:125,14] pattern defines a structure for
interactive user interface programs (such as GUIs or Web applications). It
decomposes the application into three types of components [2]:

– The Model contains the application’s core functionality (i.e., its logic)
and data (e.g., accesses the application’s database).

– A View represents the data contained in the Model for display to a
user.

– A Controller handles user inputs associated with a View and interacts
with the View and Model to carry out the user’s commands.

An application has a single Model and one or more Views. Each View has
a unique Controller to enable the user to manipulate both that View and
the Model.

The Buschmann et al. book [2], Qian et al. book [5], and Shaw paper [9] elaborate
on these and other architectural patterns. (This link is to a local copy of a
preprint of the Shaw paper.)

1.4.2 Design patterns

Buschmann et al. [2] defines design pattern as follows:

“A design pattern provides a scheme for refining the subsystems
or components of a software system, or the relationships between
them. It describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context.”

A design pattern is a mid-level abstraction. The choice of a design pattern does
not affect the fundamental structure of the software system, but it does affect
the structure of a subsystem. Like the architectural pattern, the design pattern
tends to be independent of the implementation language to be used.

A design pattern might not, however, be independent of the programming

6

paradigm. A pattern that is meaningful for a statically typed, object-oriented
language without first-class functions may not be as meaningful for a dynamically
typed language or for a functional language with first-class functions.

Examples of design patterns include the following.

• The Adapter (or Wrapper) pattern [3:139,10,17] converts the interface
of one existing type of object to have the same interface as a different
existing type of object.

For example, suppose a Java program has a base class Stack to represent
stack data structures. Also suppose the program has instances of the builtin
class Vector that we wish to use as Stack objects. We can implement a
new subclass of Stack, say VectorAsStack, that wraps a Vector object
and implements the operations of Stack by delegating them appropriately
to the Vector object but hides the non-stack features of the Vector.

As another example, consider Schmid’s paper “Creating Applications from
Components: A Manufacturing Framework Design” [7]. The application
framework presented in the paper uses the Adapter pattern. It adapts
the portal robot machine class so that its instances can be used in place of
transport service class instances.

• The Iterator pattern [3:257,11,18] defines a way to access the elements of
a container (data structure) sequentially without exposing the container’s
representation.

Iterator objects for standard collections are now common in most program-
ming language libraries. Programmers can also implement iterators for
their own custom collections.

• The Strategy (or Policy) pattern [3:315,12,19] defines an interface to a
family of related algorithms so that any algorithm in the family can be
dynamically substituted for another at runtime.

Suppose we have an container class C whose elements we wish to be able to
sort using one of several different sorting algorithms selected at runtime. To
apply the Strategy pattern, we design C so that it delegates the sorting
of its elements to a method sort() on an object of type Sorter stored
its instance variable mySorter. We then implement a different subclass of
Sorter for each soring algorithm of interest. We can dynamically change
C’s sorting behavior by assigning a different Sorter object to mySorter.

We also see this pattern used in the Schmid article [7]. Schmid’s
third transformation involves breaking up the application logic class
ProcessingControl into several subclasses of a new ProcessingStrategy
class. The specific processing strategy can then be selected dynamically
based on the specific part-processing task.

See the Powerpoint slides on the Strategy pattern for more information.

7

../DesignPatternSlides/sle_Strategy_Pattern.ppt

1.4.3 Idioms

Buschann et al. [2] defines idiom as follows:

“An idiom is a low-level pattern specific to a programming language.
An idiom describes how to implement particular aspects of compo-
nents or the relationships between them using the features of the
given language.”

An idiom is a low-level abstraction. It is usually a language-specific pattern that
deals with some aspects of both design and implementation.

In some sense, use of a consistent program coding and formatting style can be
considered an idiom for the language being used. Such a style would provide
guidelines for naming variables, laying out declarations, indenting control struc-
tures, ordering the features of a class, determining how values are returned,
and so forth. A good style that is used consistently makes a program easier to
understand than otherwise would be the case.

In Java, the language-specific iterator defined to implement the Iterator inter-
face can be considered an idiom. It is a language-specific instance of the more
general Iterator design pattern.

Another example of an idiom is the use of the Counted Pointer (or Counted
Body or Reference Counting) technique for storage management of shared
objects in C++. In this idiom, we control access to a shared object through two
classes, a Body (representation) class and a Handle (access) class.

An object of the Body class holds the shared object and a count of the number
of references to the object.

An object of a Handle class holds a direct reference to a body object; all other
parts of the program must access the body indirectly through handle class
methods. The handle methods can increment the reference count when a new
reference is created and decrement the count when a reference is freed. When
a reference count goes to zero, the shared object and its body can be deleted.
Often the programmer using this pattern will want to override the operator->
of the handle class to give more transparent access to the shared object.

We can use a variant of the Counted Pointer idiom to implement a “copy on
write” mechanism. That is, the body is shared as long as only “read” access is
needed, but a copy is created whenever one of the holders makes a change to
the state of the object.

1.5 What Next?
TODO

8

1.6 Acknowledgements
I wrote the first version of these notes for my Spring 1998 graduate Special
Topics in Software Architecture class. I based the notes, in part, on:

• Chapter 1 of the “Siemens” book [2]

• Chapter 2 of Shaw and Garlan [9]

I revised the notes somewhat for related courses in 1999, 2000, 2001, 2002, and
2004. Also, in 2004 I revised the notes, created slides, and included them as a
part of the materials supported by a grant from the Acxiom Corporation titled
“The Acxiom Laboratory for Software Architecture and Component Engineering
(ALSACE)”. My ALSACE research team included PhD students Yi Liu and
Pallavi Tadepalli and MS students Mingxian Fu and “Melody” Hui Xiong.

In Spring 2017, I adapted the earlier notes to use Pandoc-flavored Markdown.
In Spring 2018 I revised the notes slightly to fit in with the other documents for
the CSci 658 course.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on possible textbooks based on the course
materials I had developed during my three decades as a faculty member. In
January 2022, I began refining the existing content, integrating separately
developed materials together, reformatting the documents, constructing a unified
bibliography (e.g., using citeproc), and improving my build workflow and use of
Pandoc.

In 2022, I also added the aside based on Wellhausen and Fiesser’s tutorial and
expanded the discussion of the example patterns.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed

1.7 Terms and Concepts
TODO: Update

Pattern (for software architecture), architectural pattern (or architectural style),
design pattern, idiom. Pattern Context, Problem, and Solution. Pattern Name,
Forces, and Consequences. Pipes and Filters, Layers, Blackboard, and Model-
View-Controller architectural patterns. Adapter, Iterator, and Strategy design
patterns. Counted Pointer (or Reference Counting, Handle-Body) idiom.

1.8 References
[1] Christopher Alexander. 1977. A pattern language: Towns, buildings,

construction. Oxford University Press, Oxford, UK.

9

[2] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. 1996. Pattern-oriented software architecture: A system
of patterns. Wiley, Hoboken, New Jersey, USA.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design patterns: Elements of reusable object-oriented software. Addison-
Wesley, Boston, Massachusetts, USA.

[4] Gerard Meszaros and Jim Doble. 1998. A pattern language for pattern
writing. In Pattern languages of program design 3, Addison-Wesley,
Boston, Massachusetts, USA, 529–574.

[5] Kai Qian, Xiang Fu, Lixin Tao, Chong-Wei Xu, and Jorge L. Diaz-Herrera.
2010. Software architecture and design illuminated. Jones & Bartlett
Learning, Burlington, Massachusetts, USA.

[6] Dennis M. Ritchie. 1984. The UNIX system: The evolution of the UNIX
time-sharing system. AT&T Bell Laboratories Technical Journal 63, 8
(1984), 1577–1593.

[7] Hans Albrecht Schmid. 1996. Creating applications from components: A
manufacturing framework design. IEEE Software 13, 6 (1996), 67–75.

[8] Mary Shaw. 1996. Some patterns for software architecture. In Pattern
languages of program design 2, John M. Vlissides, James O. Coplien and
Norman L. Kerth (eds.). Addison-Wesley, Boston, Massachusetts, USA,
255–270.

[9] Mary Shaw and David Garlan. 1996. Software architecture: Perspectives
on an emerging discipline. Prentice-Hall, Englewood Cliffs, New Jersey,
USA.

[10] Source Making. 2022. Adapter design pattern. Retrieved from https:
//sourcemaking.com/design_patterns/adapter

[11] Source Making. 2022. Iterator design pattern. Retrieved from https:
//sourcemaking.com/design_patterns/iterator

[12] Source Making. 2022. Strategy design pattern. Retrieved from https:
//sourcemaking.com/design_patterns/strategy

[13] Tim Wellhausen and Andreas Fiesser. 2011. How to write a pattern?
A rough guide for first-time pattern authors. In Proceedings of the 16th
Europe an conference on pattern languages of programs (EuroPLOP ’11),
Irsee, Germany, 1–9 (Article 5).

[14] Wikpedia: The Free Encyclopedia. 2022. Model-view-controller. Re-
trieved from https://en.wikipedia.org/wiki/Model-view-controller

[15] Wikpedia: The Free Encyclopedia. 2022. Pipeline (software). Retrieved
from https://en.wikipedia.org/wiki/Pipeline_(software)

[16] Wikpedia: The Free Encyclopedia. 2022. Blackboard (design pattern).
Retrieved from https://en.wikipedia.org/wiki/Blackboard_(design_pat
tern)

10

https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/iterator
https://sourcemaking.com/design_patterns/iterator
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Pipeline_(software)
https://en.wikipedia.org/wiki/Blackboard_(design_pattern)
https://en.wikipedia.org/wiki/Blackboard_(design_pattern)

[17] Wikpedia: The Free Encyclopedia. 2022. Adapter pattern. Retrieved
from https://en.wikipedia.org/wiki/Adapter_pattern

[18] Wikpedia: The Free Encyclopedia. 2022. Iterator pattern. Retrieved
from https://en.wikipedia.org/wiki/Iterator_pattern

[19] Wikpedia: The Free Encyclopedia. 2022. Strategy pattern. Retrieved
from https://en.wikipedia.org/wiki/Strategy_pattern

11

https://en.wikipedia.org/wiki/Adapter_pattern
https://en.wikipedia.org/wiki/Iterator_pattern
https://en.wikipedia.org/wiki/Strategy_pattern

	Introduction to Patterns
	Chapter Introduction
	What is a Pattern?
	Descriptions of Patterns
	Context
	Problem
	Solution
	Aside: Extending pattern elements

	Categories of Patterns
	Architectural patterns
	Design patterns
	Idioms

	What Next?
	Acknowledgements
	Terms and Concepts
	References

