
Natural Number Arithmetic
Examples Using

Peano-Inspired Structures

H. Conrad Cunningham

11 April 2022

Contents
Natural Number Arithmetic Examples 1

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Elixir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Lua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Ruby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Copyright (C) 2004, 2006, 2008, 2010, 2012, 2013, 2014, 2015, 2016, 2019, 2022,
H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu


Natural Number Arithmetic Examples
Background
In this set of examples, we develop representations for the natural numbers
and their key operations using type and data structures inspired by Peano’s
Postulates [3,4], a well-know axiomization of the natural numbers. None of the
representations can use any builtin integer type.

Mathematically, we can define the set Nat (of natural numbers) inductively as
follows:

x in Nat if and only if
(1) x = 0 -- zero

or (2) (Exists y : y in Nat :: x = Succ(y)) -- successor

Note: We consider 0 as being a natural number as is customary for many
computer scientists.

The Nat values use a unary representation for the natural numbers; there is one
successor object in a linear structure for each natural number value greater
than 0.

I have developed these examples in various ways for various languages, but in
all cases we seek to use functional techniques in the following ways:

• Natural number instances can be created and examined but not modified;
the storage for instances no longer accessible can be reclaimed (i.e., garbage
collected).

• The operations are pure functions; they can return new natural number
instances or other values, but they have have no side effects on their
operands or other aspects of the program state.

In the examples, I tend to use one of the following program organizations:

• modules of pure functions that operate on algebraic data types or data
structures that operate similarly

• traditional object-oriented class hierarchies structured according to the
Composite, Singleton, and Null Object software design patterns [1,2,5].

Haskell
This problem is used in exercises in Chapters 21 (Algebraic Data Types) and 25
(Haskell Laws) of the book Exploring Languages with Interpreters and Functional
Programming. I first devised this exercise in the early/mid 1990s to ask students
to implement simple algebraic data types in my Functional Programming course.

2

../ELIFP/ELIFP_index.html
../ELIFP/ELIFP_index.html


Scala
This set includes three Scala 2 implementations of the Natural Numbers with
the following characteristics:

• Functional object-oriented with ordinary classes — Scala source

This 2008+ Scala version defines a traditional object-oriented class hier-
archy organized according to the Composite, Singleton, and Null Object
software design patterns. Once created, the Nat objects are immutable.
The operations do not modify the state of an object; they create new
objects with the modified state. The program carries out computations
by “passing messages” among the objects, taking advantage of subtype
polymorphism (dynamic binding) to associate method calls with the correct
implementation. This version also encapsulates the state within the objects
in the hierarchy.

• Functional module with case classes – Scala source

This 2012+ Scala version uses an algebraic data type (defined using a
Scala sealed trait implemented by a group of case classes/objects) with a
set of pure functions defined in the companion object for the trait. This
version uses structural pattern matching to identify the correct operation
functionality. By using cases classes/objects, this version exposes the state
outside the hierarchy.

Note: The Nat algebraic data type is organized similarly to the List
algebraic data type in Chapter 3 (Functional Data Structures) of the Notes
on Functional Programming in Scala.

• Functional object-oriented with case classes — Scala source

This 2012+ Scala version is in between the implementations above. Like
the first, it uses a traditional object-oriented structure but, like the second,
it uses case classes/objects instead of ordinary classes/objects to take
advantage of some of the features of case classes/objects. It uses subtype
polymorphism for the left argument and uses pattern matching for the
right argument to select the correct operation functionality. By using cases
classes/objects, this version exposes the state outside the hierarchy.

TODO: Update the old Scala 2 programs to be compatible with Scala 3.

Elixir
This set includes one Elixir implementation from 2015. It structures the program
as a module of pure functions. It represents the natural numbers as Elixir tuples
with constants (i.e., Elixir atoms) in the first component and uses structural
pattern matching to deconstruct the tuples based on the constant values. (This
simulates an algebraic data type mechanism.)

3

Scala/TestNats.scala
Scala/TestCaseExtNats.scala
../ScalaFP/FPS03/FunctionalDS.html
../ScalaFP/FPS_index.html
../ScalaFP/FPS_index.html
Scala/TestCaseObjNats.scala


The implementation also seeks to facilitate the possible use of different data
representations by separating the module into primitive (private) aspects that
can manipulate the data representation directly and nonprimitive (public) that
carry out the arithmetic operations using the primitive aspects. These layers
should be broken into two separate modules.

• Nat module

test module

test script

TODO: Update the 2015 Elixir code to be compatible with the current release
of Elixir.

Lua
The set includes one Lua implementation from 2013/14. It structures the program
as a module of pure functions. It represents the natural numbers as Lua tables
with constants in the first component and uses structural pattern matching to
deconstruct them. It thus simulates an algebraic data type as Lua tables with
tags in the first position. It implements the operations in a functional style. I
also stresses modularity, with primitive and nonprimitive layers as discussed
above.

• source nats2.lua

TODO: Update the Lua 5.1 program from 2014 to be compatible with the current
Lua 5.4 release.

Ruby
The set includes one Ruby implementation from 2006. It defines a traditional
object-oriented class hierarchy organized according to the Composite, Singleton,
and Null Object software design pattern. The hierarchy has a base class Nat
and subclasses Zero, Succ, and Err.

• source Nat.rb

TODO: Update this old 2006 code for the current version of Ruby.

Java
The set includes one Java version, whose code was originally written in 2004
using a release of Java with no generics. It uses a traditional object-oriented
structure as described above.

• abstract base class Nat

• subclass Zero

4

Elixir/Nat.ex
Elixir/Nat_Test.ex
Elixir/Nat.exs
Lua/nats2.lua
Ruby/Nat.rb
Java/Nat.java
Java/Zero.java


• subclass Succ

• subclass Err

• main program TestNat

Acknowledgements
I often use this problem when I am learning and/or teaching programming
language. I have done that with (at least) Haskell, Java, Ruby, Scala, Lua, and
Elixir since sometime in the 1990s. This chapter collects the source code for
most of these efforts.‘

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on possible textbooks based on the course
materials I had developed during my three decades as a faculty member. In
January 2022, I began refining the existing content, integrating separately
developed materials together, reformatting the documents, constructing a unified
bibliography (e.g., using citeproc), and improving my build workflow and use of
Pandoc. I adapted this index page from a portion of my Spring 2019 CSci 555
course notes.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

References
[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.

Design patterns: Elements of reusable object-oriented software. Addison-
Wesley, Boston, Massachusetts, USA.

[2] Source Making. 2022. Design patterns. Retrieved from https://sourcema
king.com/design_patterns

[3] Wikpedia: The Free Encyclopedia. 2022. Peano axioms. Retrieved from
https://en.wikipedia.org/wiki/Peano_axioms

[4] Wolfram Research, Inc. 2022. Peano’s axioms. Retrieved from https:
//mathworld.wolfram.com/PeanosAxioms.html

[5] Bobby Woolf. 1997. Null object. In Pattern languages of program design
3, Robert Martin, Dirk Riehle and Frank Buschmann (eds.). Addison-
Wesley, Boston, Massachusetts, USA, 5–18.

5

Java/Succ.java
Java/Err.java
Java/TestNat.java
https://sourcemaking.com/design_patterns
https://sourcemaking.com/design_patterns
https://en.wikipedia.org/wiki/Peano_axioms
https://mathworld.wolfram.com/PeanosAxioms.html
https://mathworld.wolfram.com/PeanosAxioms.html

	Natural Number Arithmetic Examples
	Background
	Haskell
	Scala
	Elixir
	Lua
	Ruby
	Java
	Acknowledgements
	References


