
Notes on Models of Computation
Chapter 11

H. Conrad Cunningham

06 April 2022

Contents
11 A Hierarchy of Formal Languages and Automata 2

11.1 Recursive and Recursively Enumerable Languages 2
11.1.1 Aside: Countability . 2
11.1.2 Definition of Recursively Enumerable Language 2
11.1.3 Definition of Recursive Language 3
11.1.4 Enumeration Procedure for Recursive Languages 3
11.1.5 Enumeration Procedure for Recursively Enumerable Lan-

guages . 3
11.1.6 Languages That are Not Recursively Enumerable 3
11.1.7 A Language That is Not Recursively Enumerable 5
11.1.8 A Language That is Recursively Enumerable but Not

Recursive . 6
11.2 Unrestricted Grammars . 6
11.3 Context-Sensitive Grammars and Languages 7

11.3.1 Linz Example 11.2 . 7
11.3.2 Linear Bounded Automata (lba) 8
11.3.3 Relation Between Recursive and Context-Sensitive Lan-

guages . 8
11.4 The Chomsky Hierarchy . 8
11.5 References . 9

Copyright (C) 2015, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

version of Firefox from Mozilla.

Note: These notes were written primarily to accompany my use of Chapter 1 of
the Linz textbook An Introduction to Formal Languages and Automata [[1].

2

11 A Hierarchy of Formal Languages and Au-
tomata

The kinds of questions addressed in this chapter:

• What is the family of languages accepted by Turing machines?

• Are there any languages that are not accepted by any Turing machine?

• What is the relationship between Turing machines and various kinds of
grammars?

• How can we classify the various families of languages and their relationships
to one another?

Note: We assume the languages in this chapter are λ-free unless otherwise stated.

11.1 Recursive and Recursively Enumerable Languages
Here we make a distinction between languages accepted by Turing machines and
languages for which there is a membership algorithm.

11.1.1 Aside: Countability

Definition (Countable and Countably Infinite): A set is countable if it
has the same cardinality as a subset of the natural numbers. A set is countably
infinite if it can be placed into one-to-one correspondence with the set of all
natural numbers.

Thus there is some ordering on any countable set.

Also note that, for any finite set of symbols Σ, then Σ∗ and any its subsets are
countable. Similarly for Σ+.

From Linz Section 10.4 (not covered in this course), we also have the following
theorem about the set of Turing machines.

Linz Theorem 10.3 (Turing Machines are Countable): The set of all
Turing machines is countably infinite.

11.1.2 Definition of Recursively Enumerable Language

Linz Definition 11.1 (Recursively Enumerable Language): A language L
is recursively enumerable if there exists a Turing machine that accepts it.

This definition implies there is a Turing machine M such that for every w ∈ L

q0w ⊢∗
M x1qf x2

with the initial state q0 and a final state qf .

But what if w /∈ L?

3

• M might halt in a nonfinal state.
• M might go into an infinite loop.

11.1.3 Definition of Recursive Language

Linz Definition 11.2 (Recursive Language): A language L on Σ is recursive
if there exists a Turing machine M that accepts L and that halts on every w in
Σ∗.

That is, a language is recursive if and only if there exists a membership algorithm
for it.

11.1.4 Enumeration Procedure for Recursive Languages

If a language is recursive, then there exists an enumeration procedure, that is, a
method for counting and ordering the strings in the language.

• Let M be a Turing machine that determines membership in a recursive
language L on an alphabet Σ.

• Let M ′ be M modified to write the accepted strings to its tape.

• Σ+ is countable, so there is some ordering of w ∈ Σ+. Construct Turing
machine M̂ that generates all w ∈ Σ+ in order, say w1, w2, · · ·.

Thus M̂ generates the candidate strings wi in order. M ′ writes the the accepted
strings to its tape in order.

11.1.5 Enumeration Procedure for Recursively Enumerable Lan-
guages

Problem: A Turing machine M might not halt on some strings.

Solution: Construct M̂ to advance “all” strings simultaneously, one move at a
time. The order of string generation and moves is illustrated in Linz Figure 11.1.

Now machine M̂ advances each candidate string wi (columns of Linz Figure
11.1) one M -move at a time.

Because each string is generated by M̂ and accepted by M in a finite number of
steps, every string in L is eventually produced by M . The machine does not go
into an infinite loop for a wi that is not accepted.

Note: Turing machine M̂ does not terminate and strings for which M does not
halt will never complete processing, but any string that can be accepted by M
will be accepted within a finite number of steps.

11.1.6 Languages That are Not Recursively Enumerable

Linz Theorem 11.1 (Powerset of Countable Set not Countable) Let S
be an countably infinite set. Then its powerset 2S is not countable.

4

Figure 1: Linz Fig. 11.1: Enumeration Procedure for Recursively
Enumerable Languages

Proof: Let S = { s1, s2, s3, · · · } be an countably infinite set.

Let t ∈ 2S . Then t can represented by a bit vector b1b2 · · · such that bi = 1 if
and only if si ∈ t.

Assume 2S is countable. Thus 2S can be written in order t1, t2, · · · and put into
a table as shown in Linz Figure 11.2.

Figure 2: Linz Fig. 11.2: Cantor’s Diagonalization

Consider the main diagonal of the table (circled in Linz Figure 11.2). Complement
the bits along this diagonal and let td be a set represented by this bit vector.

Clearly td ∈ 2S . But td ̸= ti for any i, because they differ at least at si. This is
a contradicts the assumption that 2S is countable.

So the assumption is false. Therefore, 2S is not countable. QED.

This is Cantor’s diagonalization argument.

5

Linz Theorem 11.2 (Existence of Languages Not Recursively Enu-
merable): For any nonempty Σ, there exist languages that are not recursively
enumerable.

Proof: Any L ⊆ Σ∗ is a language on Σ. Thus 2Σ∗ is the set of all languages on
Σ.

Because Σ∗ is infinite and countable, Linz Theorem 11.1 implies that the set
of all languages on Σ is not countable. From Linz Theorem 10.3 (see above),
we know the set of Turing machines can be enumerated. Hence, the recursively
enumerable languages are countable.

Therefore, some languages on Σ are not recursively enumerable. QED.

11.1.7 A Language That is Not Recursively Enumerable

Linz Theorem 11.3: There exists a recursively enumerable language whose
complement is not recursively enumerable.

Proof: Let Σ = {a}.

Consider the set of all Turing machines with input alphabet Σ, i.e.,
{M1, M2, M3, · · · }.

By Linz Theorem 10.3 (see above), we know that this set of is countable. So it
has some order.

For each Mi there exists a recursively enumerable language L(Mi).

Also, for each recursively enumerable languages on Σ, there is some Turing
machine that accepts it.

Let L = {ai : ai ∈ L(Mi)}.

L is recursively enumerable because here is a Turing machine that accepts it.
E.g., the Turing machine works as follows:

• Count a’s in the input w to get i.
• Use Turing machine Mi to accept w.
• The combined Turing machine thus accepts L.

Now consider L̄ = {ai : ai /∈ L(Mi)}.

Assume L̄ is recursively enumerable.

There must be some Turing machine Mk, for some k, that accepts L̄. Hence,
L̄ = L(Mk).

Consider ak. Is it in L? Or in L̄?

Consider the case ak ∈ L̄. Thus ak ∈ L(Mk). Hence, ak ∈ L by the definition of
L. This is a contradiction.

6

Consider the case ak ∈ L, i.e., ak /∈ L̄. Thus ak /∈ L(Mk) by definition of L̄. But
from the defintion of L, ak ∈ L̄. This is also be a contradiction.

In all cases, we have a contradiction, so the assumption is false. Therefore, L̄ is
not recursively enumerable. QED.

11.1.8 A Language That is Recursively Enumerable but Not Recur-
sive

Linz Theorem 11.4: If a language L and its complement L̄ are both recursively
enumerable, then both languages are recursive. If L is recursive, then L̄ is also
recursive, and consequently both are recursively enumerable.

Proof: See Linz Section 11.2 for the details.

Linz Theorem 11.5: There exists a recursively enumerable language that is
not recursive; that is, the family of recursive languages is a proper subset of the
family of recursively enumerable languages.

Proof: Consider the language L of Linz Theorem 11.3.

This language is recursively enumerable, but its complement is not. Therefore,
by Linz Theorem 11.4, it is not recursive, giving us the required example. QED.

There are well-defined languages that have no membership algorithms.

11.2 Unrestricted Grammars
Linz Definition 11.3 (Unrestricted Grammar): A grammar G = (V, T, S, P)
is an unrestricted gramar if all the productions are of the form

u → v,

where u is in (V ∪ T)+ and v is in (V ∪ T)∗.

Note: There is no λ on left, but otherwise the use of symbols is unrestricted.

Linz Theorem 11.6 (Recursively Enumerable Language for Unre-
stricted Grammar): Any language generated by an unrestricted grammar is
recursively enumerable.

Proof: See Linz Section 11.2 for the details.

The grammar defines an enumeration procedure for all strings.

Linz Theorem 11.7 (Unrestricted Grammars for Recursively Enumer-
able Language): For every recursively enumerable language L, there exists an
unrestricted grammar G, such that L = L(G).

Proof: See Linz Section 11.2 for the details.

7

11.3 Context-Sensitive Grammars and Languages
Between the restricted context-free grammars and the unrestricted grammars,
there are a number of kinds of “somewhat restricted” families of grammars.

Linz Definition 11.4 (Context-Sensitive Grammar): A grammar G =
(V, T, S, P) is said to be context-sensitive if all productions are of the form

x → y,

where x, y ∈ (V ∪ T)+ and

|x| ≤ |y|.

This type of grammar is noncontracting in that the length of successive sentential
forms can never decrease.

All such grammars can be rewritten in a normal form in which all productions
are of the form

xAy → xvy.

This is equivalent to saying that the production

A → v

can only be applied in a context where A occurs with string x on the left and
string y on the right.

Linz Definition 11.5 (Context-Sensitive) : A language L is said to be
context-sensitive if there exists a context-sensitive grammar G, such that L =
L(G) or L = L(G) ∪ {λ}.

Note the special cases for λ. This enables us to say that the family of context-free
languages is a subset of the family of context-sensitive languages.

11.3.1 Linz Example 11.2

The language L = {anbncn : n ≥ 1} is a context-sensitive language. We show this
by defining a context-sensitive grammar for the language, such as the following:

S → abc | aAbc
Ab → bA
Ac → Bbcc
bB → Bb
aB → aa | aaA

Consider a derivation of a3b3c3:

S ⇒ aAbc ⇒ abAc ⇒ abBbcc
⇒ aBbbcc ⇒ aaAbbcc ⇒ aabAbcc
⇒ aabbAcc ⇒ aabbBbccc ⇒ aabBbbccc
⇒ aaabbbccc

8

The grammar uses the variables A and B as messengers.

• An A is created on the left, travels to the right to the first c, where it
creates another b and c.

• Messanger B is sent back to the left to create the corresponding a.

The process is similar to how a Turing machine would work to accept the language
L.

L is not context-free.

11.3.2 Linear Bounded Automata (lba)

In Linz Section 10.5 (not covered in this course), a linear-bounded automaton is
defined as a nondeterministic Turing machine that is restricted to the part of its
tape occupied by its input (bounded on the left by [and right by]).

[______].

Linz Theorem 11.8: For every context-sensitive language L not including λ,
there exists some linear bounded automaton M such that L = L(M):

Proof: See Linz Section 11.3 for the details.

Linz Theorem 11.9: If a language L is accepted by some linear bounded
automaton M , then there exists a context-sensitive grammar that generates L.

Proof: See Linz Section 11.3 for the details.

11.3.3 Relation Between Recursive and Context-Sensitive Languages

Linz Theorem 11.10: Every context-sensitive language L is recursive.

Linz Theorem 11.11: There exists a recursive language that is not context-
sensitive.

We have studied a number of automata in this course. Ordered by decreasing
power these include:

• Turing machine (accept recursively enumerable languages)
• linear-bounded automata (accept context-sensitive languages)

• npda (accept context-free languages)
• dpda (accept deterministic context-free languages)
• nfa, dfa (accept regular languages)

11.4 The Chomsky Hierarchy
We have studied a number of types of languages in this course, including

0. recursively enumerable languages LRE

1. context-sensitive languages LCS

9

2. context-free languages LREG

3. regular languages LREG

One way of showing the relationship among these families of languages is to use
the Chomsky hierarchy, where the types are numbered as above and as diagrams
in Linz Figures 11.3 and 11.4.

This classification was first described in 1956 by American linguist Noam Chom-
sky, a founder of formal language theory.

Figure 3: Linz Fig 11.3: Original Chomsky Hierarchy

11.5 References
[1] Peter Linz. 2011. Formal languages and automata (Fifth ed.). Jones &

Bartlett, Burlington, Massachusetts, USA.

10

Figure 4: Linz Fig 11.4: Extended Chomsky Hierarchy

11

	A Hierarchy of Formal Languages and Automata
	Recursive and Recursively Enumerable Languages
	Aside: Countability
	Definition of Recursively Enumerable Language
	Definition of Recursive Language
	Enumeration Procedure for Recursive Languages
	Enumeration Procedure for Recursively Enumerable Languages
	Languages That are Not Recursively Enumerable
	A Language That is Not Recursively Enumerable
	A Language That is Recursively Enumerable but Not Recursive

	Unrestricted Grammars
	Context-Sensitive Grammars and Languages
	Linz Example 11.2
	Linear Bounded Automata (lba)
	Relation Between Recursive and Context-Sensitive Languages

	The Chomsky Hierarchy
	References

