
Notes on Models of Computation
Chapter 9

H. Conrad Cunningham

06 April 2022

Contents
10 Turing Machines 2

10.1 The Standard Turing Machine . 3
10.1.1 What is a Turing Machine? 3

10.1.1.1 Schematic Drawing of Turing Machine 3
10.1.1.2 Definition of Turing Machine 3
10.1.1.3 Linz Example 9.1 4
10.1.1.4 A Simple Computer 4
10.1.1.5 Linz Example 9.2 5
10.1.1.6 Transition Graph for Turing Machine 5
10.1.1.7 Linz Example 9.3 (Infinite Loop) 6
10.1.1.8 Standard Turing Machine 6
10.1.1.9 Instantaneous Description of Turing Machine . . 7
10.1.1.10 Computation of Turing Machine 8

10.1.2 Turing Machines as Language Acceptors 8
10.1.2.1 Linz Example 9.6 9
10.1.2.2 Linz Example 9.7 9

10.1.3 Turing Machines as Transducers 12
10.1.3.1 Linz Example 9.9 12
10.1.3.2 Linz Example 9.10 13
10.1.3.3 Linz Example 9.11 14

10.2 Combining Turing Machines for Complicated Tasks 16
10.2.1 Introduction . 16
10.2.2 Using Block Diagrams . 16

10.2.2.1 Linz Example 9.12 16
10.2.3 Using Pseudocode . 17

10.2.3.1 Macroinstructions 17
10.2.3.2 Linz Example 9.13 17
10.2.3.3 Subprograms . 18
10.2.3.4 Linz Example 9.14 19

10.3 Turing’s Thesis . 19

1

10.4 References . 20

Copyright (C) 2015, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

Note: These notes were written primarily to accompany my use of Chapter 1 of
the Linz textbook An Introduction to Formal Languages and Automata [[1].

2

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

10 Turing Machines
A finite accepter (nfa, dfa)

• has no local storage
• accepts a regular language

A pushdown accepter (npda, dpda)

• has a stack for local storage

• accepts a language from a larger family

– an npda accepts a context-free language
– a dpda accepts a deterministic context-free language

The family of regular languages is a subset of the deterministic context-free
languages, which is a subset of the context-free languages.

But, as we saw in Chapter 8, not all languages of interest are context-free. To
accept languages like {anbncn : n ≥ 0} and {ww : w ∈ {a, b}∗}, we need an
automaton with a more flexible internal storage mechanism.

What kind of internal storage is needed to allow the machine to accept languages
such as these? multiple stacks? a queue? some other mechanism?

More ambitiously, what is the most powerful automaton we can define? What
are the limits of mechanical computation?

This chapter introduces the Turing machine to explore these theoretical ques-
tions. The Turing machine is a fundamental concept in the theoretical study of
computation.

The Turing machine

• has a tape, a one-dimensional array of readable and writable cells that is
unbounded in both directions

• accepts a language from the family of recursively enumerable languages, a
larger family of languages than context-free

Although Turing machines are simple mechanisms, the Turing thesis (also known
as the Church-Turing thesis) maintains that any computation that can be carried
out on present-day computers an be done on a Turing machine.

Note: Much of the work on computability was published in the 1930’s, before
the advent of electronic computers a decade later. It included work by Austrian
(and later American) logician Kurt Goedel on primitive recursive function theory,
American mathematician Alonso Church on lambda calculus (a foundation of
functional programming), British mathematician Alan Turing (also later a PhD
student of Church’s) on Turing machines, and American mathematician Emil
Post on Post machines.

3

10.1 The Standard Turing Machine
10.1.1 What is a Turing Machine?

10.1.1.1 Schematic Drawing of Turing Machine Linz Figure 9.1 shows
a schematic drawing of a standard Turing machine.

This deviates from the general scheme given in Chapter 1 in that the input
file, internal storage, and output mechanism are all represented by a single
mechanism, the tape. The input is on the tape at initiation and the output is
on that tape at termination.

On each move, the tape’s read-write head reads a symbol from the current tape
cell, writes a symbol back to that cell, and moves one cell to the left or right.

Figure 1: Linz Fig. 9.1: Standard Turing Machine

10.1.1.2 Definition of Turing Machine Turing machines were first defined
by British mathematician Alan Turing in 1937, while he was a graduate student
at Cambridge University.

Linz Definition 9.1 (Turing Machine): A Turing machine M is defined by

M = (Q, Σ, Γ, δ, q0,□, F)

where

1. Q is the set of internal states
2. Σ is the input alphabet
3. Γ is a finite set of symbols called the tape alphabet
4. δ is the transition function
5. □ ∈ Γ is a special symbol called the blank
6. q0 ∈ Q is the initial state
7. F ⊆ Q is the set of final states

We also require

8. Σ ⊆ Γ − {□}

and define

9. δ : Q × Γ → Q × Γ × {L, R}.

4

Requirement 8 means that the blank symbol □ cannot be either an input or an
output of a Turing machine. It is the default content for any cell that has no
meaningful content.

From requirement 9, we see that the arguments of the transition function δ are:

• the current state of the control unit
• the current tape symbol

The result of the transition function δ gives:

• the new state of the control unit
• the symbol that replaces the current symbol on the tape
• a move symbol L or R, denoting a move of the read-write head to the left

or the right on the tape

In general, δ is a partial function. That is, not all configurations have a next
move defined.

10.1.1.3 Linz Example 9.1 Consider a Turing machine with a move defined
as follows:

δ(q0, a) = (q1, d, R)

Linz Figure 9.2 shows the situation (a) before the move and (b) after the move.

Figure 2: Linz Fig. 9.2: One Move of a Turing Machine

10.1.1.4 A Simple Computer A Turing machine is a simple computer. It
has

• a processing unit that has a finite memory
• a tape that provides unlimited secondary storage capacity
• a limited set of instructions

The Turing machine can

• sense the symbol under the tape’s read-write head
• use the result to decide what to do next
• write a symbol back to the tape
• change the state of the control
• move the read-write head one position to the left or right on the tape

The transition function δ determines the behavior of the machine, i.e., it is the
machine’s program.

5

The Turing macine starts in initial state q0 and then goes through a sequence of
moves defined by δ. A cell on the tape may be read and written many times.

Eventually the Turing machine may enter a configuration for which δ is undefined.
When it enters such a state, the machine halts. Hence, this state is called a halt
state.

Typically, no transitions are defined on any final state.

10.1.1.5 Linz Example 9.2 Consider the Turing machine defined by

Q = {q0, q1},
Σ = {a, b},
Γ = {a, b,□},
F = {q1}

where δ is defined as follows:

1. δ(q0, a) = (q0, b, R),

2. δ(q0, b) = (q0, b, R),

3. δ(q0,□) = (q1,□, L).

Linz Figure 9 .3 shows a sequence of moves for this Turing machine:

• It begins in state q0 with the input positioned over an a.
• When an a is read, transition rule 1 fires, replaces a by b on the tape,

moves right, and stays in state q0.
• When a b is read, transition rule 2 fires, leaves b on the tape, moves right,

and stays in state q0.
• It continues moving right, replacing each a by a b and leaving each b

unchanged.
• When a blank (□) is read, transition rule 3 fires, leaves the blank on the

tape, moves left, and enters final state q1.

Figure 3: Linz Fig. 9.3: A Sequence of Moves of a Turing Machine

10.1.1.6 Transition Graph for Turing Machine As with finite and
pushdown automata, we can use transition graphs to represent Turing machines.
We label the edges of the graph with a triple giving (1) the current tape symbol,
(2) the symbol that replaces it, and (3) the direction in which the read-write
head moves.

6

Linz Figure 9.4 shows a transition graph for the Turing machine given in Linz
Example 9.2.

Figure 4: Linz Fig. 9.4: Transition Graph for Example 9.2

10.1.1.7 Linz Example 9.3 (Infinite Loop) Consider the Turing machine
defined in Linz Figure 9.5.

Figure 5: Linz Fig. 9.5: Infinite Loop

Suppose the tape initially contains ab . . . with the read-write head positioned
over the a and in state q0. Then the Turing machine executes the following
sequence of moves:

1. The machine reads symbol a, leaves it unchanged, moves right (now over
symbol b), and enters state q1.

2. The machine reads b, leaves it unchanged, moves back left (now over a
again), and enters state q0 again.

3. The machine then repeats steps 1-3.

Clearly, regardless of the tape configuration, this machine does not halt. It goes
into an infinite loop.

10.1.1.8 Standard Turing Machine Because we can define a Turing
machine in several different ways, it is useful to summarize the main features of
our model.

A standard Turing machine:

7

1. has a tape that is unbounded in both directions, allowing any number of
left and right moves

2. is deterministic in that δ defines at most one move for each configuration

3. has no special input or output files. At the initial time, the tape has
some specified content, some of which is considered input. Whenever the
machine halts, some or all of the contents of the tape is considered output.

These definitions are chosen for convenience in this chapter. Chapter 10 (which
we do not cover in this course) examines alternative versions of the Turing
machine concept.

10.1.1.9 Instantaneous Description of Turing Machine As with push-
down automata, we use instantaneous descriptions to examine the configurations
in a sequence of moves. The notation (using strings)

x1qx2

or (using individual symbols)

a1a2 · · · ak−1qakak+1 · · · an

gives the instantaneous description of a Turing machine in state q with the tape
as shown in Linz Figure 9.5.

By convention, the read-write head is positioned over the symbol to the right of
the state (i.e., ak above).

Figure 6: Linz Fig. 9.6: Tape Configuration a1a2 · · · ak−1qakak+1 · · · an

A tape cell contains □ if not otherwise defined to have a value.

Example: The diagrams in Linz Figure 9.3 (above) show the instantaneous
descriptions q0aa, bq0a, bbq0□, and bq1b.

As with pushdown automata, we use ⊢ to denote a move.

Thus, for transition rule

δ(q1, c) = (q2, e, R)

we can have the move

abq1cd ⊢ abeq2d.

8

As usual we denote the transitive closure of move (i.e., arbitrary number of
moves) using:

⊢∗

We also use subscripts to distinguish among machines:

⊢M

10.1.1.10 Computation of Turing Machine Now let’s summarize the
above discussion with the following definitions.

Linz Definition 9.2 (Computation): Let M = (Q, Σ, Γ, δ, q0,□, F) be a
Turing machine. Then any string a1 · · · ak−1q1akak+1 · · · an with ai ∈ Γ and
q1 ∈ Q, is an instantaneous description of M .

A move

a1 · · · ak−1q1akak+1 · · · an ⊢ a1 · · · ak−1bq2ak+1 · · · an

is possible if and only if

δ(q1, ak) = (q2, b, R).

A move

a1 · · · ak−1q1akak+1 · · · an ⊢ a1 · · · q2ak−1bak+1 · · · an

is possible if and only if

δ(q1, ak) = (q2, b, L).

M halts starting from some initial configuration x1qix2 if

x1qix2 ⊢∗ y1qjay2

for any qj and a, for which δ(qj , a) is undefined.

The sequence of configurations leading to a halt state is a computation.

If a Turing machine does not halt, we use the following special notation to
describe its computation:

x1qx2 ⊢∗ ∞

10.1.2 Turing Machines as Language Acceptors

Can a Turing machine accept a string w?

Yes, using the following setup:

• Write w on the tape initially.
• Fill all the unused cells on the tape with blanks □.
• Start the Turing machine with read-write head over leftmost symbol of w.
• If the machine halts in a final state, then it accepts string w.

9

Linz Definition 9.3 (Language Accepted by Turing Machine): Let
M = (Q, Σ, Γ, δ, q0,□, F) be a Turing machine. Then the language accepted by
M is

L(M) = {w ∈ Σ+ : q0w ⊢∗ x1qf x2, qf ∈ F, x1, x2 ∈ Γ∗}.

Note: The finite string w must be written to the tape with blanks on both sides.
No blanks can are embedded within the input string w itself.

Question: What if w ̸∈ L(M)?

The Turing machine might:

1. halt in nonfinal state
2. never halt

Any string for which the machine does not halt is, by definition, not in L(M).

10.1.2.1 Linz Example 9.6 For Σ = {0, 1}, design a Turing machine that
accepts the language denoted by the regular expression 00∗.

We use two internal states Q = {q0, q1}, one final state F = {q1}, and transition
function:

δ(q0, 0) = (q0, 0, R),
δ(q0,□) = (q1,□, R)

The transition graph shown below implements this machine.

• While a 0 appears under the read-write head, the head moves to the right.
• If a blank is read, the machine halts in final state q1.
• If a 1 is read, the machine halts in the nonfinal state q0 because δ(q0, 1) is

undefined.

The Turing machine also halts in a final state if started in state q0 on a blank.
We could interpret this as acceptance of λ, but for technical reasons the empty
string is not included in Linz Definition 9.3.

10.1.2.2 Linz Example 9.7 For Σ = {a, b}, design a Turing machine that
accepts

10

L = {anbn : n ≥ 1}.

We can design a machine that incorporates the following algorithm:

While both a’s and b’s remain
replace leftmost a by x
replace leftmost b by y

If no a’s or b’s remain
accept

else
reject

Filling in the details, we get the following Turing machine for which:

Q = {q0, q1, q2, q3, q4}
F = {q4}
Σ = {a, b}
Γ = {a, b, x, y,□}

The transitions can be broken into several sets.

The first set

1. δ(q0, a) = (q1, x, R)

2. δ(q1, a) = (q1, a, R)

3. δ(q1, y) = (q1, y, R)

4. δ(q1, b) = (q2, y, L)

replaces the leftmost a with an x, then causes the read-write head to travel
right to the first b, replacing it with a y. The machine then enters a state q2,
indicating that an a has been successfully paired with a b.

The second set

5. δ(q2, y) = (q2, y, L)

6. δ(q2, a) = (q2, a, L)

7. δ(q2, x) = (q0, x, R)

reverses the direction of movement until an x is encountered, repositions the
read-write head over the leftmost a, and returns control to the initial state.

The machine is now back in the initial state q0, ready to process the next a-b
pair.

After one pass through this part of the computation, the machine has executed
the partial computation:

q0aa · · · abb · · · b ⊢∗ xq0a · · · ayb · · · b

11

So, it has matched a single a with a single b.

The machine continues this process until no a is found on leftward movement.

If all a’s have been replaced, then state q0 detects a y instead of an a and changes
to state q3. This state must verify that all b’s have been processed as well.

8. δ(q0, y) = (q3, y, R)

9. δ(q3, y) = (q3, y, R)

10. δ(q3,□) = (q4,□, R)

The input aabb makes the moves shown below. (The bold number in parenthesis
gives the rule applied in that step.)

q0aabb – start at left end
(1) ⊢ xq1abb – process 1st a-b pair
(2) ⊢ xaq1bb – moving to right
(4) ⊢ xq1ayb
(6) ⊢ q2xayb – move back to left
(7) ⊢ xq0ayb
(1) ⊢ xxq1yb – process 2nd a-b pair
(3) ⊢ xxyq1b – moving to right
(4) ⊢ xxq2yy
(5) ⊢ xq2xyy – move back to left
(7) ⊢ xxq0yy
(8) ⊢ xxyq3y – no a’s
(9) ⊢ xxyyq3□ – check for extra b’s
(10) ⊢ xxyy□q4□ – done, move to final

The Turing machine halts in final state q4, thus accepting the string aabb.

If the input is not in the language, the Turing machine will halt in a nonfinal
state.

For example, consider:

• anbm for n > m?
– halts in nonfinal state q1 when □ found

• anbm for 0 < n < m?
– halts in nonfinal state q3 when b found

• aba?
– halts in nonfinal state q3 when a found

• b?
– halts in nonfinal state q0 when b found

12

10.1.3 Turing Machines as Transducers

Turing machines are more than just language accepters. They provide a simple
abstract model for computers in general. Computers transform data. Hence,
Turing machines are transducers (as we defined them in Chapter 1). For a
computation, the

• input consists of all the nonblank symbols on the tape initially

• output consists of is whatever is on the tape when the machine halts in a
final state

Thus, we can view a Turing machine transducer M as an implementation of a
function f defined by

ŵ = f(w)

provided that

q0w ⊢∗
M qf ŵ,

for some final state qf .

Linz Definition 9.4 (Turing Computable): A function f with domain D is
said to be Turing-computable, or just computable, if there exists some Turing
machine M = (Q, Σ, Γ, δ, q0,□, F) such that

q0w ⊢∗
M qf f(w), qf ∈ F ,

for all w ∈ D.

Note: A transducer Turing machine must start on the leftmost symbol of the
input and stop on the leftmost symbol of the output.

10.1.3.1 Linz Example 9.9 Compute x + y for positive integers x and y.

We use unary notation to represent the positive integers, i.e., a positive integer
is represented by a sequence of 1’s whose length is equal to the value of the
integer. For example:

1111 = 4

The computation is

q0w(x)0w(y) ⊢∗ qf w(x + y)0

where 0 separates the two numbers at initiation and after the result at termina-
tion.

Key idea: Move the separating 0 to the right end.

To achieve this, we construct M = (Q, Σ, Γ, δ, q0,□, F) with

Q = {q0, q1, q2, q3, q4}
F = {q4}

13

δ(q0, 1) = (q0, 1, R)
δ(q0, 0) = (q1, 1, R)
δ(q1, 1) = (q1, 1, R)
δ(q1,□) = (q2,□, L)
δ(q2, 1) = (q3, 0, L)
δ(q3, 1) = (q3, 1, L)
δ(q3,□) = (q4,□, R)

The sequence of instantaneous descriptions for adding 111 to 11 is shown below.

q0111011 ⊢ 1q011011 ⊢ 11q01011 ⊢ 111q0011
⊢ 1111q1111 ⊢ 11111q11 ⊢ 111111q1□
⊢ 11111q21 ⊢ 1111q310 ⊢ 111q3110
⊢ 11q31110 ⊢ 1q311110 ⊢ q3111110
⊢ q3□111110 ⊢ q4111110

10.1.3.2 Linz Example 9.10 Construct a Turing machine that copies
strings of 1’s. More precisely, find a machine that performs the computation

q0w ⊢∗ qf ww,

for any w ∈ {1}+.

To solve the problem, we implement the following procedure:

1. Replace every 1 by an x.
2. Find the rightmost x and replace it with 1.
3. Travel to the right end of the current nonblank region and create a 1 there.
4. Repeat steps 2 and 3 until there are no more x’s.

A Turing machine transition function for this procedure is as follows:

δ(q0, 1) = (q0, x, R)
δ(q0,□) = (q1□, L)
δ(q1, x) = (q2, 1, R)
δ(q2, 1) = (q2, 1, R
δ(q2,□) = (q1, 1, L)
δ(q1, 1) = (q1, 1, L)
δ(q1,□) = (q3,□, R)

where q3 is the only final state.

Linz Figure 9.7 shows a transition graph for this Turing machine.

This is not easy to follow, so let us trace the program with the string 11. The
computation performed is as shown below.

q011 ⊢ xq01 ⊢ xxq0□ ⊢ xq1x
⊢ x1q2□ ⊢ xq111 ⊢ q1x11

14

⊢ 1q211 ⊢ 11q21 ⊢ 111q2□
⊢ 11q111 ⊢ 1q1111
⊢ q11111 ⊢ q1□1111 ⊢ q31111

10.1.3.3 Linz Example 9.11 Suppose x and y are positive integers repre-
sented in unary notation.

Construct a Turing machine that halts in a final state qy if x ≥ y and in a
nonfinal state qn if x < y.

That is, the machine must perform the computation:

q0w(x)0w(y) ⊢∗ qyw(x)0w(y), if x ≥ y
q0w(x)0w(y) ⊢∗ qnw(x)0w(y), if x < y

We can adapt the approach from Linz Example 9.7. Instead of matching a’s and
b’s, we match each 1 on the left of the dividing 0 with the 1 on the right. At the
end of the matching, we will have on the tape either

xx · · · 110xx · · · x□

or

xx · · · xx0xx · · · x11□,

depending on whether x > y or y > x.

A transition graph for machine is shown below.

15

Figure 7: Linz Fig. 9.7: Transition Graph for Example 9.10

16

10.2 Combining Turing Machines for Complicated Tasks
10.2.1 Introduction

How can we compose simpler operations on Turing machines to form more
complex operations?

Techniques discussed in this section include use of:

• Top-down stepwise refinement, i.e., starting with a high-level description
and refining it incrementally until we obtain a description in the actual
language

• Block diagrams or pseudocode to state high-level descriptions

10.2.2 Using Block Diagrams

In the block diagram technique, we define high-level computations in boxes
without internal details on how computation is done. The details are filled in on
a subsequent refinement.

To explore the use of block diagrams in the design of complex computations,
consider Linz Example 9.12, which builds on Linz Examples 9.9 and 9.11 (above).

10.2.2.1 Linz Example 9.12 Design a Turing machine that computes the
following function:

f(x, y) = x + y, if x ≥ y,
f(x, y) = 0, if x < y.

For simplicity, we assume x and y are positive integers in unary representation
and the value zero is represented by 0, with the rest of the tape blank.

Linz Figure 9.8 shows a high-level block diagram of this computation. This
computation consists of a network of three simpler machines:

• a Comparer C to determine whether or not x ≥ y
• an Adder A that computes x + y
• an Eraser E that changes every 1 to a blank

Figure 8: Linz Fig. 9.8: Block Diagram

17

We use such high-level diagrams in subsequent discussions of large computations.
How can we justify that practice?

We can implement:

• the Comparer program C as suggested in Linz Example 9.11, using a
Turing machine having states indexed with C

• the Adder program A as suggested in Linz Example 9.9, with states indexed
with A

• the Eraser program E by constructing a Turing machine having states
indexed with E

Comparer C carries out the computations

qC,0w(x)0w(y) ⊢∗ qA,0w(x)0w(y), if x ≥ y,

and

qC,0w(x)0w(y) ⊢∗ qE,0w(x)0w(y), if x < y.

If qA,0 and qE,0 are the initial states of computations A and E, respectively,
then C starts either A or E.

Adder A carries out the computation

qA,0w(x)0w(y) ⊢∗ qA,f w(x + y)0.

And, Eraser E carries out the computation

qE,0w(x)0w(y) ⊢∗ qE,f 0.

The outer diagram in Linz Figure 9.8 thus represents a single Turing machine
that combines the actions of machines C, A, and E as shown.

10.2.3 Using Pseudocode

In the pseudocode technique, we outline a computation using high-level descriptive
phrases understandable to people. We refine and translate it to lower-level
implementations later.

10.2.3.1 Macroinstructions A simple kind of pseudocode is the macroin-
struction. A macroinstruction is a single statement shorthand for a sequence of
lower-level statements.

We first define the macroinstructions in terms of the lower-level language. Then
we compose macroinstructions into a larger program, assuming the relevant
substitutions will be done.

10.2.3.2 Linz Example 9.13 For this example, consider the macroinstruc-
tion

if a then qj else qk.

18

This means:

• If the Turing machine reads an a, then it, regardless of its current state,
transitions into state qj without changing the tape content or moving the
read-write head.

• If the symbol read is not an a, then it transitions into state qk without
changing anything.

We can implement this macroinstruction with several steps of a Turing machine:

δ(qi, a) = (qj0, a, R) for all qi ∈ Q
δ(qj0, c) = (qj , c, L) for all c ∈ Γ

δ(qi, b) = (qk0, b, R) for all qi ∈ Q and all b ∈ Γ − {a}
δ(qk0, c) = (qk, c, L) for all c ∈ Γ

States qj0 and qk0 just back up Turing machine tape position one place.

Macroinstructions are expanded at each occurrence.

10.2.3.3 Subprograms While each occurrence of a macroinstruction is
expanded into actual code, a subprogram is a single piece of code that is invoked
repeatedly.

As in higher-level language programs, we must be able to call a subprogram and
then, after execution, return to the calling point and resume execution without
any unwanted effects.

How can we do this with Turing machines?

We must be able to:

• preserve information about the calling program’s configuration (state, read-
write head position, tape contents), so that it can be restored on return
from the subprogram

• pass information from the calling program to the called subprogram and
vice versa

We can do this by partitioning the tape into several regions. Linz Figure 9.9
illustrates this technique for a program A (a Turing machine) that calls a
subprogram B (another Turing machine).

1. A executes in its own workspace.
2. Before transferring control to B, A writes information about its configura-

tion and inputs for B into some separate region T .
3. After transfer, B finds its input in T .
4. B executes in its own separate workspace.
5. When B completes, it writes relevant results into T .
6. B transfers control back to A, which resumes and gets the needed results

from T .

19

Figure 9: Linz Fig. 9.9: Tape Regions for Subprograms

Note: This is similar to what happens in an actual computer for a subprogram
(function, procedure) call. The region T is normally a segment pushed onto the
program’s runtime stack or dynamically allocated from the heap memory.

10.2.3.4 Linz Example 9.14 Design a Turing machine that multiplies x
and y, positive integers represented in unary notation.

Assume the initial and final tape configurations are as shown in Linz Figure 9.10.

We can multiply x by y by adding y to itself x times as described in the algorithm
below.

Repeat until x contains no more 1’s\
Find a 1 in x and replace it with another symbol a\
Replace the leftmost 0 by 0y\

Replace all a’s with 1’s

Figure 10: Linz Fig. 9.10: Multiplication

Although the above description of the pseudocode approach is imprecise, the
idea is sufficiently simple that it is clear we can implement it.

We have not proved that the block diagram, macroinstruction, or subprogram
approaches will work in all cases. But the discussion in this section shows that
it is plausible to use Turing machines to express complex computations.

10.3 Turing’s Thesis
The Turing thesis is an hypothesis that any computation that can be carried out
by mechanical means can be performed by some Turing machine.

This is a broad assertion. It is not something we can prove!

The Turing thesis is actually a definition of mechanical computation: a compu-
tation is mechanical if and only if it can be performed by some Turing machine.

20

Some arguments for accepting the Turing thesis as the definition of mechanical
computation include:

1. Anything that can be computed by any existing digital computer can also
be computed by a Turing machine.

2. There are no known problems that are solvable by what we intuitively
consider an algorithm for which a Turing machine program cannot be
written.

3. No alternative model for mechanical computation is more powerful than
the Turing machine model.

The Turing thesis is to computing science as, for example, classical Newtonian
mechanics is to physics. Newton’s “laws” of motion cannot be proved, but they
could possibly be invalidated by observation. The “laws” are plausible models
that have enabled humans to explain much of the physical world for several
centuries.

Similarly, we accept the Turing thesis as a basic “law” of computing science. The
conclusions we draw from it agree with what we know about real computers.

The Turing thesis enables us to formalize the concept of algorithm.

Linz Definition 9.5 (Algorithm): An algorithm for a function f : D → R is
a Turing machine M , which given as input any d ∈ D on its tape, eventually
halts with the correct answer f(d) ∈ R on its tape. Specifically, we can require
that

q0d ⊢∗
M qf f(d), qf ∈ F ,

for all d ∈ D.

To prove that “there exists an algorithm”, we can construct a Turing machine
that computes the result.

However, this is difficult in practice for such a low-level machine.

An alternative is, first, to appeal to the Turing thesis, arguing that anything that
we can compute with a digital computer we can compute with a Turing machine.
Thus a program in suitable high-level language or precise pseudocode can compute
the result. If unsure, then we can validate this by actually implementing the
computation on a computer.

Note: A higher-level language is Turing-complete if it can express any algorithm
that can be expressed with a Turing machine. If we can write a Turing machine
simulator in that language, we consider the language Turing complete.

10.4 References
[1] Peter Linz. 2011. Formal languages and automata (Fifth ed.). Jones &

Bartlett, Burlington, Massachusetts, USA.

21

	Turing Machines
	The Standard Turing Machine
	What is a Turing Machine?
	Schematic Drawing of Turing Machine
	Definition of Turing Machine
	Linz Example 9.1
	A Simple Computer
	Linz Example 9.2
	Transition Graph for Turing Machine
	Linz Example 9.3 (Infinite Loop)
	Standard Turing Machine
	Instantaneous Description of Turing Machine
	Computation of Turing Machine

	Turing Machines as Language Acceptors
	Linz Example 9.6
	Linz Example 9.7

	Turing Machines as Transducers
	Linz Example 9.9
	Linz Example 9.10
	Linz Example 9.11

	Combining Turing Machines for Complicated Tasks
	Introduction
	Using Block Diagrams
	Linz Example 9.12

	Using Pseudocode
	Macroinstructions
	Linz Example 9.13
	Subprograms
	Linz Example 9.14

	Turing's Thesis
	References

