
Notes on Models of Computation
Chapter 4

H. Conrad Cunningham

06 April 2022

Contents
4 Properties of Regular Languages 2

4.1 Closure Properties of Regular Languages 2
4.1.1 Mathematical Interlude: Operations and Closure 2
4.1.2 Closure under Simple Set Operations 3
4.1.3 Closure under Difference (Linz Example 4.1) 5
4.1.4 Closure under Reversal 5
4.1.5 Homomorphism Definition 6
4.1.6 Linz Example 4.2 . 6
4.1.7 Linz Example 4.3 . 6
4.1.8 Closure under Homomorphism Theorem 7
4.1.9 Right Quotient Definition 7
4.1.10 Linz Example 4.4 . 7
4.1.11 Closure under Right Quotient 8
4.1.12 Linz Example 4.5 . 10

4.2 Elementary Questions about Regular Languages 11
4.2.1 Membership? . 11
4.2.2 Finite or Infinite? . 12
4.2.3 Equality? . 12

4.3 Identifying Nonregular Languages 13
4.3.1 Using the Pigeonhole Principle 13
4.3.2 Linz Example 4.6 . 13
4.3.3 Pumping Lemma for Regular Languages 14
4.3.4 Linz Example 4.7 . 16
4.3.5 Using the Pumping Lemma (Viewed as a Game) 16
4.3.6 Linz Example 4.8 . 17
4.3.7 Linz Example 4.9 . 18
4.3.8 Linz Example 4.10 . 18
4.3.9 Linz Example (Factorial Length Strings) 19
4.3.10 Linz Example 4.12 . 20
4.3.11 Linz Example 4.13 . 20

1

4.3.12 Pitfalls in Using the Pumping Lemma 22
4.4 References . 22

Copyright (C) 2015, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

Note: These notes were written primarily to accompany my use of Chapter 1 of
the Linz textbook An Introduction to Formal Languages and Automata [[1].

2

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

4 Properties of Regular Languages
The questions answered in this chapter include:

• What can regular languages do?
• What can regular languages not do?

The concepts introduced in this chapter are:

• Closure of operations on regular languages
• Membership, finiteness, and equality of regular languages
• Identification of nonregular languages

4.1 Closure Properties of Regular Languages
4.1.1 Mathematical Interlude: Operations and Closure

Definition (Operation): An operation is a function p : V → Y where V ∈
X1 ×X2 ×· · ·×Xk for some sets Xi with 0 ≤ i ≤ k. k is the number of operands
(or arguments) of the operation.

• If k = 0, then p is a nullary operation.
• If k = 1, then p is a unary operation.
• If k = 2, then p is a binary operation.
• etc.

We often use special notation and conventions for unary and binary operations.
For example:

• a binary operation may be written in an infix style as in x + y and x · y

• a unary operation may be written in a prefix style as in −x, suffix style
such as x∗, or special style such as

√
3 or S̄

• a binary operation may be implied by the juxtaposition such as 3x for
multiplication or (in a different context) xy for string concatenation or
implied by superscripting such as x2 for exponentiation

Often we consider an operations on a set, where all the operands and the result
are drawn from the same set.

Definition (Closure): A set S is closed under a unary operation p if, for all
x ∈ S, p(x) ∈ S. Similarly, a set S is closed under a binary operation ⊙ if, for
all x ∈ S and y ∈ S, x ⊙ y ∈ S.

Examples arithmetic on the set of natural numbers (N = {0, 1, ...})

• Binary operations addition (+) and multiplication (∗ in programming
languages) are closed on N

– ∀x, y ∈ N, x + y ∈ N
– ∀x, y ∈ N, x ∗ y ∈ N

3

• Binary operations subtraction (−) and division (/) are not closed on N

– ∃x, y ∈ N, x − y /∈ N
For example, 1 − 2 is not a natural number.

– ∃x, y ∈ N, x/y /∈ N
For example, 3/2 is not a natural number.

• Unary operation negation (operator − written in prefix form) is not closed
on N.

However, the set of integers is closed under subtraction and negation. But it is
not closed under division or square root (as we normally define the operations).

Now, let’s consider closure of the set of regular languages with respect to the
simple set operations.

4.1.2 Closure under Simple Set Operations

Linz Theorem 4.1 (Closure under Simple Set Operations): If L1 and L2
are regular languages, then so are L1 ∪ L2, L1 ∩ L2, L1L2, L̄1, and L∗

1.

That is, we say that the family of regular languages is closed under union,
intersection, concatenation, complementation, and star-closure.

Proof of L1 ∪ L2

Let L1 and L2 be regular languages.

L1 ∪ L2
= { Th. 3.2: there exist regular expressions r1, r2 }

L(r1) ∪ L(r2)
= { Def. 3.2, rule 4 }

L(r1 + r2)

Thus, by Theorem 3.1 (regular expressions describe regular languages), the union
is a regular language.

Thus L1 ∪ L2 is a regular language. QED.

Proofs of L1L2 and L∗
1

Similar to the proof of L1 ∪ L2.

Proof of L̄1

Strategy: Given a dfa M for the regular language, construct a new dfa M̂ that
accepts everything rejected and rejects everything accepted by the given dfa.

L1 is a regular language on Σ.
≡ { Def. 2.3 }

4

∃ dfa M = (Q, Σ, δ, q0, F) such that L(M) = L1.

Thus

ω ∈ Σ∗

⇒ { by the properties of dfas and sets }
Either δ∗(q0, ω) ∈ F or δ∗(q0, ω) ∈ Q − F

⇒ { Def. 2.2: language accepted by dfa }
Either ω ∈ L(M) or ω ∈ L(M̂) for some dfa M̂

Let’s construct dfa M̂ = (Q, Σ, δ, q0, Q − F).

Clearly, L(M̂) = L̄1. Thus L̄1 is a regular language. QED.

Proof of L1 ∩ L2

Strategy: Given two dfas for the two regular languages, construct a new dfa that
accepts a string if and only if both original dfas accept the string.

Let L1 = L(M1) and L2 = L(M2) for dfas:

M1 = (Q, Σ, δ1, q0, F1)

M2 = (P, Σ, δ2, p0, F2)

Construct M̂ = (Q̂, Σ, δ̂, (q0, p0), F̂), where

Q̂ = Q × P

δ̂((qi, pj), a) = (qk, pl) when δ1(qi, a) = qk

δ2(pj , a) = pl

F̂ = {(q, p) : q ∈ F1, p ∈ F2}

Clearly, ω ∈ L1 ∩ L2 if and only if ω accepted by M̂ .

Thus, L1 ∩ L2 is regular. QED.

The previous proof is constructive.

• It establishes desired result.

• It provides an algorithm for building an item of interest (e.g., dfa to accept
L1 ∩ L2).

Sometimes nonconstructive proofs are shorter and easier to understand. But
they provide no algorithm.

Alternate (nonconstructive) proof for L1 ∩ L2

5

L1 and L2 are regular.
≡ { previously proved part of Theorem 4.1 }

L̄1 and L̄2 are regular.
⇒ { previously proved part of Theorem 4.1 }

L̄1 ∪ L̄ is regular
⇒ { previously proved part of Theorem 4.1 }

L̄1 ∪ L̄2 is regular
≡ { deMorgan’s Law for sets }

L1 ∩ L2 is regular

QED.

4.1.3 Closure under Difference (Linz Example 4.1)

Consider the difference between two regular languages L1 and L2, written
L1 − L2.

But this is just set difference, which is defined L1 − L2 = L1 ∩ L̄2.

From Theorem 4.1 above, we know that regular languages are closed under both
complementation and intersection. Thus, regular languages are closed under
difference as well.

4.1.4 Closure under Reversal

Linz Theorem 4.2 (Closure under Reversal): The family of regular lan-
guages is closed under reversal.

Proof (constructive)

Strategy: Construct an nfa for the regular language and then reverse all the
edges and exchange roles of the initial and final states.

Let L1 be a regular language. Construct an nfa M such that L1 = L(M) and
M has a single final state. (We can add λ transitions from the previous final
states to create a single new final state.)

Now construct a new nfa M̂ as follows.

• Make the initial state of M the final state of M̂ .
• Make the final state of M the initial state of M̂ .
• Reverse the direction of all edges of M keeping the same labels and add

the edges to M̂ .

Thus nfa M̂ accepts ωR ∈ Σ∗ if and only if the original nfa accepts ω ∈ Σ∗.
QED.

6

4.1.5 Homomorphism Definition

In mathematics, a homomorphism is a mapping between two mathematical
structures that preserves the essential structure.

Linz Definition 4.1 (Homomorphism): Suppose Σ and Γ are alphabets. A
function

h : Σ → Γ∗

is called a homomorphism.

In words, a homomorphism is a substitution in which a single letter is replaced
with a string.

We can extend the domain of a function h to strings in an obvious fashion. If

w = a1a2 · · · an for n ≥ 0

then

h(w) = h(a1)h(a2) · · · h(an).

If L is a language on Σ, then we define its homomorphic image as

h(L) = {h(w) : w ∈ L}.

Note: The homomorphism function h preserves the essential structure of the
language. In particular, it preserves operation concatenation on strings, i.e.,
h(λ) = λ and h(uv) = h(u)h(v).

4.1.6 Linz Example 4.2

Let Σ = {a, b} and Γ = {a, b, c}.

Define h as follows:

h(a) = ab,

h(b) = bbc

Then h(aba) = abbbcab.

The homomorphic image of L = {aa, aba} is the language h(L) = {abab, abbbcab}.

If we have a regular expression r for a language L, then a regular expression for
h(L) can be obtained by simply applying the homomorphism to each Σ symbol
of r. We show this in the next example.

4.1.7 Linz Example 4.3

For Σ = {a, b} and Γ = {b, c, d}, define h:

h(a) = dbcc

h(b) = bdc

7

If L is a regular language denoted by the regular expression

r = (a + b∗)(aa)∗

then

r1 = (dbcc + (bdc)∗)(dbccdbcc)∗

denotes the regular language h(L).

The general result on the closure of regular languages under any homomorphism
follows from this example in an obvious manner.

4.1.8 Closure under Homomorphism Theorem

Linz Theorem 4.3 (Closure under Homomorphism): Let h be a homo-
morphism. If L is a regular language, then its homomorphic image h(L) is also
regular.

Proof: Similar to the argument in Example 4.3. See Linz textbook for full proof.

The family of regular languages is therefore closed under arbitrary homomor-
phisms.

4.1.9 Right Quotient Definition

Linz Definition 4.2 (Right Quotient): Let L1 and L2 be languages on the
same alphabet. Then the right quotient of L1 with L2 is defined as

L1/L2 = {x : xy ∈ L1 for some y ∈ L2}

4.1.10 Linz Example 4.4

Given languages L1 and L2 such that

L1 = {anbm : n ≥ 1, m ≥ 0} ∪ {ba}

L2 = {bm : m ≥ 1}

Then

L1/L2 = {anbm : n ≥ 1, m ≥ 0}.

The strings in L2 consist of one or more b’s. Therefore, we arrive at the answer
by removing one or more b’s from those strings in L1 that terminate with at
least one b as a suffix.

Note that in this example L1, L2, and L1/L2 are regular.

Can we construct a dfa for L1/L2 from dfas for L1 and L2?

Linz Figure 4.1 shows a dfa M1 that accepts L1.

An automaton for L1/L2 must accept any x such that xy ∈ L1 and y ∈ L2.

8

Figure 1: Linz Fig. 4.1: DFA for Example 4.4 L1

For all states q ∈ M1, if there exists a walk labeled v from q to a final state qf

such that v ∈ L2, then make q a final state of the automaton for L1/L2.

In this example, we check states to see if there is bb∗ walk to any of the final
states q1, q2, or q4.

• q1 and q2 have such walks.

• q0, q3, and q4 do not.

The resulting automaton is shown in Linz Figure 4.2.

The next theorem generalizes this construction.

4.1.11 Closure under Right Quotient

Linz Theorem 4.4 (Closure under Right Quotient): If L1 and L2 are
regular languages, then L1/L2 is also regular. We say that the family of regular
languages is closed under right quotient with a regular language.

Proof

Let dfa M = (Q, Σ, δ, q0, F) such that L(M) = L1.

Construct dfa M̂ = (Q, Σ, δ, q0, F̂) for L1/L2 as follows.

9

Figure 2: Linz Fig. 4.2: DFA for Example 4.4 L1/L2 EXCEPT q4 NOT
FINAL

For all qi ∈ Q, let dfa Mi = (Q, Σ, δ, qi, F). That is, dfa Mi is the
same as M except that it starts at qi.

• From Theorem 4.1, we know L(Mi) ∩ L2 is regular. Thus we
can construct the intersection machine as show in the proof of
Theorem 4.1.

• If there is any path in the intersection machine from its initial
state to a final state, then L(Mi) ∩ L2 ̸= ∅. Thus qi ∈ F̂ in
machine M̂ .

Does L(M̂) = L1/L2?

First, let x ∈ L1/L2.

• By definition, there must be y ∈ L2 such that xy ∈ L1.

• Thus δ∗(q0, xy) ∈ F .

• There must be some q such that δ∗(q0, x) = q and δ∗(q, y) ∈ F .

• Thus, by construction, q ∈ F̂ . Hence, M̂ accepts x.

Now, let x be accepted by M̂ .

• δ∗(q0, x) = q ∈ F̂ .

10

• Thus, by construction, we know there is a y ∈ L2 such that δ∗(q, y) ∈ F .

Thus L(M̂) = L1/L2, which means L1/L2 is regular.

4.1.12 Linz Example 4.5

Find L1/L2 for

L1 = L(a∗baa∗)

L2 = L(ab∗)

We apply the construction (algorithm) used in the proof of Theorem 4.4.

Linz Figure 4.3 shows a dfa for L1.

Figure 3: Linz Fig. 4.3: DFA for Example 4.5 L1

Let M = (Q, Σ, δ, q0, F).

Thus if we construct the sequence of machines Mi

L(M0) ∩ L2 = ∅

L(M1) ∩ L2 = {a} ≠ ∅

L(M2) ∩ L2 = {a} ≠ ∅

L(M3) ∩ L2 = ∅

11

Figure 4: Linz Fig. 4.4: DFA for Example 4.5 L1/L2

then the resulting dfa for L1/L2 is shown in Linz Figure 4.4.

The automaton shown in Figure 4.4 accepts the language denoted by the regular
expression

a∗b + a∗baa∗

which can be simplified to

a∗ba∗

4.2 Elementary Questions about Regular Languages
4.2.1 Membership?

Fundamental question: Is w ∈ L?

It is difficult to find a membership algorithm for languages in general. But it is
relatively easy to do for regular languages.

A regular language is given in a standard representation if and only if described
with one of:

• a dfa or nfa
• a regular expression
• a regular grammar

12

Linz Theorem 4.5 (Membership): Given a standard representation of
any regular language L on Σ and any w ∈ Σ∗, there exists an algorithm for
determining whether or not w is in L.

Proof

We represent the language by some dfa, then test w to see if it is accepted by
this automaton. QED.

4.2.2 Finite or Infinite?

Linz Theorem 4.6 (Finiteness): There exists an algorithm for determining
whether a regular language, given in standard representation, is empty, finite, or
infinite.

Proof

Represent L as a transition graph of a dfa.

• If simple path exists from the initial state to any final state, then it is not
empty. Otherwise, it is empty.

• If any vertex on a cycle is in a path from the initial state to any final state,
then the language is infinite. Otherwise, it is finite.

QED.

4.2.3 Equality?

Consider the question L1 = L2?

This is practically important. But it is a difficult issue because there are many
ways to represent L1 and L2.

Linz Theorem 4.7 (Equality): Given a standard representation of two regular
languages L1 and L2, there exists an algorithm to determine whether or whether
not L1 = L2.

Proof

13

Let L3 = (L1 ∩ L̄2) ∪ (L̄1 ∩ L2).

By closure, L3 is regular. Hence, there is a dfa M that accepts L3.

Because of Theorem 4.6, we can determine whether L3 is empty or not.

But from Excerise 8, Section 1.1, we see that L3 = ∅ if and only if L1 = L2.
QED.

4.3 Identifying Nonregular Languages
A regular languages may be infinite

• but it is accepted by an automaton with finite “memory”
• which imposes restrictions on the language.

In processing a string, the amount of information that the automaton must
“remember” is strictly limited (finite and bounded).

4.3.1 Using the Pigeonhole Principle

In mathematics, the pigeonhole principle refers to the following simple observa-
tion:

If we put n objects into m boxes (pigeonholes), and, if n > m, at
least one box must hold more than one item.

This is obvious, but it has deep implications.

4.3.2 Linz Example 4.6

Is the language L = {anbn : n ≥ 0} regular?

The answer is no, as we show below.

Proof that L is not regular

14

Strategy: Use proof by contradiction. Assume that what we want to prove is
false. Show that this introduces a contradiction. Hence, the original assumption
must be true.

Assume L is regular.

Thus there exists a dfa M = (Q, {a, b}, δ, q0, F) such that L(M) = L.

Machine M has a specific number of states. However, the number of a’s in a
string in L(M) is finite but unbounded (i.e., no maximum value for the length).
If n is larger than the number of states in M , then, according to the pigeonhole
principle, there must be some state q such that

δ∗(q0, an) = q

and

δ∗(q0, am) = q

with n ̸= m. But, because M accepts anbn,

δ∗(q, bn) = qf ∈ F

for some qf ∈ F .

From this we reason as follows:

δ∗(q0, ambn)
= δ∗(δ∗(q0, am), bn)
= δ∗(q, bn)
= qf

But this contradicts the assumption that M accepts ambn only if n = m.
Therefore, L cannot be regular. QED

We can use the pigeonhole principle to make “finite memory” precise.

4.3.3 Pumping Lemma for Regular Languages

Linz Theorem 4.8 (Pumping Lemma for Regular Languages): Let L be
an infinite regular language. There exists some m > 0 such that any w ∈ L with
|w| ≥ m can be decomposed as

w = xyz

with

|xy| ≤ m

and

|y| ≥ 1

such that

15

wi = xyiz

is also in L for all i ≥ 0.

That is, we can break every sufficiently long string from L into three parts in
such a way that an arbitrary number of repetitions of the middle part yields
another string in L.

We can “pump” the middle string, which gives us the name pumping lemma for
this theorem.

Proof

Let L be an infinite regular language. Thus there exists a dfa M that accepts L.
Let M have states q0, q1, q2, · · · qn.

Consider a string w ∈ L such that |w| ≥ m = n + 1. Such a string exists because
L is infinite.

Consider the set of states q0, qi, qj , · · · qf that M traverses as it processes w.

The size of this set is exactly |w|+1. Thus, according to the pigeonhole principle,
at least one state must be repeated, and such a repetition must start no later
than the nth move.

Thus the sequence is of the form

q0, qi, qj , · · · , qr, · · · , qr, · · · , qf .

Then there are substrings x, y, and z of w such that

δ∗(q0, x) = qr

δ∗(qr, y) = qr

δ∗(qr, z) = qf

with |xy| ≤ n + 1 = m and |y| ≥ 1. Thus, for any k ≥ 0,

δ∗(q0, xykz) = qf

16

QED.

We can use the pumping lemma to show that languages are not regular. Each of
these is a proof by contradiction.

4.3.4 Linz Example 4.7

Show that L = {anbn : n ≥ 0} is not regular.

Assume that L is regular, so that the Pumping Lemma must hold.

If, for some n ≥ 0 and i ≥ 0, xyz = anbn and xyiz are both in L, then y must
be all a’s or all b’s.

We do not know what m is, but, whatever m is, the Pumping Lemma enables
us to choose a string w = ambm. Thus y must consist entirely of a’s.

Suppose k > 0. We must decompose w = xyz as follows for some p + k ≤ m:

x = ap

y = ak

z = am−p−kbm

From the Pumping Lemma

w0 = am−kbm.

Clearly, this is not in L. But this contradicts the Pumping Lemma.

Hence, the assumption that L is regular is false. Thus {anbn : n ≥ 0} is not
regular.

4.3.5 Using the Pumping Lemma (Viewed as a Game)

The Pumping Lemma guarantees the existence of m and decomposition xyz for
any string in a regular language.

• But we do not know what m and xyz are.

• We do not have contradiction if the Pumping Lemma is violated for some
specific m or xyz.

The Pumping Lemma holds for all w ∈ L and for all i ≥ 0 (i.e., xyiz ∈ L for all
i).

• We do have a contradiction if the Pumping Lemma is violated for some w
or i.

We can thus conceptualize a proof as a game against an opponent.

• Our goal: Establish a contradiction of the Pumping Lemma.

• Opponent’s goal: Stop us.

17

• Moves:

1. The opponent picks m.

2. Given m, we pick a string w in L of length equal or greater than
m. We are free to choose any w, subject to requirement w ∈ L and
|w| ≥ m.

3. The opponent chooses the decomposition xyz, subject to |xy| ≤ m
and |y| ≥ 1. We have to assume that the opponent makes the choice
that will make it hardest for us to win the game.

4. We try to pick i in such a way that the pumped string wi, as defined
in wi = xyiz, is not in L. If we can do so, we win the game.

Strategy:

• Choose w in step 2 carefully. So that, regardless of the xyz choice, contra-
diction can be established.

4.3.6 Linz Example 4.8

Let Σ = {a, b}. Show that

L = {wwR : w ∈ Σ∗}

is not regular.

We use the Pumping Lemma and assume L is regular.

Whatever m the opponent picks in step 1 (of the “game”), we can choose a w as
shown below in step 2.

Figure 5: Linz Fig. 4.5

Because of this choice, and the requirement that |xy| ≤ m, in step 3 the opponent
must choose a y that consists entirely of a’s. Consider

wi = xyiz

that must hold because of the Pumping Lemma.

In step 4, we use i = 0 in wi = xyiz. This string has fewer a’s on the left than
on the right and so cannot be of the form wwR.

Therefore, the Pumping Lemma is violated. L is not regular.

18

Warning: Be careful! There are ways we can go wrong in applying the Pumping
Lemma.

• If we choose w too short in step 2 of this example (i.e., where the first m
symbols include two or more b’s), then the opponent can choose a y having
an even number of b’s. In that case, we could not have reached a violation
of the pumping lemma on the last stap.

• If we choose a string w consisting of all a’s, say

w = a2m

which is in L. To defeat us, the opponent need only pick

y = aa

Now wi is in L for all i, and we lose. ˆ

• We must assume the opponent does not make mistakes. If, in the case
where we pick w = a2m, the opponent picks

y = a

then w0 is a string of odd length and therefore not in L. But any argument
is incorrect if it assumes the opponent fails to make the best possible choice
(i.e., y = aa).

4.3.7 Linz Example 4.9

For Σ = {a, b}, show that the language

L = {w ∈ Σ∗ : na(w) < nb(w)}

is not regular.

We use the Pumping Lemma to show a contradiction. Assume L is
regular.

Suppose the opponent gives us m. Because we have complete freedom in choosing
w ∈ L, we pick w = ambm+1. Now, because |xy| cannot be greater than m, the
opponent cannot do anything but pick a y with all a’s, that is,

y = ak for 1 ≤ k ≤ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated. L is not regular.

4.3.8 Linz Example 4.10

Show that

L = {(ab)nak : n > k, k ≥ 0}

19

is not regular

We use the Pumping Lemma to show a contradiction. Assume L is
regular.

Given some m, we pick as our string

w = (ab)m+1am

which is in L.

The opponent must decompose w = xyz so that |xy| ≤ m and |y| ≥ 1. Thus
both x and y must be in the part of the string consisting of ab pairs. The choice
of x does not affect the argument, so we can focus on the y part.

If our opponent picks y = a, we can choose i = 0 and get a string not in
L((ab)∗a∗) and, hence, not in L. (There is a similar argument for y = b.)

If the opponent picks y = ab, we can choose i = 0 again. Now we get the string
(ab)mam, which is not in L. (There is a similar argument for y = ba.)

In a similar manner, we can counter any possible choice by the opponent. Thus,
because of the contradiction, L is not regular.

4.3.9 Linz Example (Factorial Length Strings)

Note: This example is adapted from an earlier edition of the Linz textbook.

Show that

L = {an! : n ≥ 0}

is not regular.

We use the Pumping Lemma to show a contradiction. Assume L is regular.

Given the opponent’s choice for m, we pick w to be the string am! (unless the
opponent picks m < 3, in which case we can use a3! as w).

The possible decompositions w = xyz (such that |xy| ≤ m) differ only in the
lengths of x and y. Suppose the opponent picks y such that

|y| = k ≤ m.

According to the Pumping Lemma, xz = am!−k ∈ L. But this string can only
be in L if there exists a j such that

m! − k = j!.

But this is impossible, because for m ≥ 3 and k ≤ m we know (see argument
below) that

m! − k > (m − 1)!.

20

Therefore, L is not regular.

Aside: To see that m! − k > (m − 1)! for m ≥ 3 and k ≤ m, note that

m! − k ≥ m! − m = m(m − 1)! − m = m((m − 1)! − 1) > (m − 1)!.

4.3.10 Linz Example 4.12

Show that the language

L = {anbkcn+k : n ≥ 0, k ≥ 0}

is not regular.

Strategy: Instead of using the Pumping Lemma directly, we show that L is
related to another language we already know is nonregular. This may be an
easier argument.

In this example, we use the closure property under homomorphism (Linz Theorem
4.3).

Let h be defined such that

h(a) = a, h(b) = a, h(c) = c.

Then

h(L) = {an+kcn+k : n + k ≥ 0}
= {aici : i ≥ 0}

But we proved this language was not regular in Linz Example 4.6. Therefore,
because of closure under homomorphism, L cannot be regular either.

Alternative proof by contradiction

Assume L is regular.

Thus h(L) is regular by closure under homomorphism (Linz Theorem 4.3).

But we know h(L) is not regular, so there is a contradiction.

Thus, L is not regular.

4.3.11 Linz Example 4.13

Show that the language

L = {anbl : n ̸= l}

is not regular.

We use the Pumping Lemma, but this example requires more ingenuity to set
up than previous examples.

21

Assume L is regular.

Choosing a string w ∈ L with m = n = l + 1 or m = n = l + 2 will not lead to a
contradiction.

In these cases, the opponent can always choose a decomposition w = xyz (with
|xy| ≤ m and |y| ≥ 1) that will make it impossible to pump the string out of
the language (that is, pump it so that it has an equal number of a’s and b’s).
For w = al+1bl, the opponent can chose y to be an even number of a’s. For
w = al+2bl, the opponent can chose y to be an odd number of a’s greater than 1.

We must be more creative. Suppose we choose w ∈ L where n = m! and
l = (m + 1)!.

If the opponent decomposes w = xyz (with |xy| ≤ m and |y| = k ≥ 1), then y
must consist of all a’s.

If we pump i times, we generate string xyiz where the number of a’s is m!+(i−1)k

We can contradict the Pumping Lemma if we can pick i such that

m! + (i − 1)k = (m + 1)!.

But we can do this, because it is always possible to choose

i = 1 + mm!/k.

For 1 ≤ k ≤ m, the expression 1 + mm!/k is an integer.

Thus the generated string has m! + ((1 + mm!/k) − 1)k occurrences of a.

m! + ((1 + mm!/k) − 1)k
= m! + mm!
= m!(m + 1)
= (m + 1)!

This introduces a contradiction of the Pumping Lemma. Thus L is not regular.

Alternative argument (more elegant)

Suppose L = {anbl : n ̸= l} is regular.

Because of complementation closure, L̄ is regular.

Let L1 = L̄ ∩ L(a∗b∗).

But L(a∗b∗) is regular and thus, by intersection closure, L1 is also regular.

But L1 = {anbn : n ≥ 0}, which we have shown to be nonregular. Thus we have
a contradiction, so L is not regular.

22

4.3.12 Pitfalls in Using the Pumping Lemma

The Pumping Lemma is difficult to understand and, hence, difficult to apply.

Here are a few suggestions to avoid pitfalls in use of the Pumping Lemma.

• Do not attempt to use the Pumping Lemma to show a language is regular.
Only use it to show a language is not regular.

• Make sure you start with a string that is in the language.

• Avoid invalid assumptions about the decomposition of a string w into xyz.
Use only that |xy| ≤ m and |y| ≥ 1.

Like most interesting “games”, knowledge of the rules for use of the Pumping
Lemma is necessary, but it is not sufficient to become a master “player”. To
master the use of the Pumping Lemma, one must work problems of various
difficulties. Practice, practice, practice.

4.4 References
[1] Peter Linz. 2011. Formal languages and automata (Fifth ed.). Jones &

Bartlett, Burlington, Massachusetts, USA.

23

	Properties of Regular Languages
	Closure Properties of Regular Languages
	Mathematical Interlude: Operations and Closure
	Closure under Simple Set Operations
	Closure under Difference (Linz Example 4.1)
	Closure under Reversal
	Homomorphism Definition
	Linz Example 4.2
	Linz Example 4.3
	Closure under Homomorphism Theorem
	Right Quotient Definition
	Linz Example 4.4
	Closure under Right Quotient
	Linz Example 4.5

	Elementary Questions about Regular Languages
	Membership?
	Finite or Infinite?
	Equality?

	Identifying Nonregular Languages
	Using the Pigeonhole Principle
	Linz Example 4.6
	Pumping Lemma for Regular Languages
	Linz Example 4.7
	Using the Pumping Lemma (Viewed as a Game)
	Linz Example 4.8
	Linz Example 4.9
	Linz Example 4.10
	Linz Example (Factorial Length Strings)
	Linz Example 4.12
	Linz Example 4.13
	Pitfalls in Using the Pumping Lemma

	References

