
Notes on Models of Computation
Chapter 3

H. Conrad Cunningham

06 April 2022

Contents
3 Regular Languages and Regular Grammars 2

3.1 Regular Expressions . 2
3.1.1 Syntax . 2
3.1.2 Languages Associated with Regular Expressions 3
3.1.3 Linz Example 3.2 . 3
3.1.4 Examples of Languages for Regular Expressions 4
3.1.5 Linz Example 3.4 . 4
3.1.6 Linz Example 3.5 . 4
3.1.7 Examples of Regular Expressions for Languages 4

3.2 Connection Between Regular Expressions and Regular Languages 5
3.2.1 Regular Expressions Denote Regular Languages 5
3.2.2 Linz Example 3.7 . 6
3.2.3 Converting Regular Expressions to Finite Automata . . . 7
3.2.4 Example Conversion of Regular Expression to NFA 9
3.2.5 Converting Finite Automata to Regular Expressions . . . 10
3.2.6 Example Conversion of Finite Automata to Regular Ex-

pressions . 11
3.2.7 Another Example Conversion of Finite Automa to Regular

Expressions . 12
3.2.8 Regular Expressions for Describing Simple Patterns . . . 13

3.3 Regular Grammars . 14
3.3.1 Linz Example 3.13 . 14
3.3.2 Linz Example 3.14 . 14
3.3.3 Right-Linear Grammars Generate Regular Languages . . 15
3.3.4 Example: Converting Regular Grammar to NFA 15
3.3.5 Linz Example 3.5 . 18
3.3.6 Right-Linear Grammars for Regular Languages 18
3.3.7 Example: Converting NFA to Regular Grammar 19
3.3.8 Equivalence Between Regular Languages and Regular

Grammars . 20

1

3.4 References . 20

Copyright (C) 2015, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

Note: These notes were written primarily to accompany my use of Chapter 1 of
the Linz textbook An Introduction to Formal Languages and Automata [[1].

2

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

3 Regular Languages and Regular Grammars
Regular languages

• are accepted by dfas and nfas
• but dfas and nfas are not concise descriptions

Thus we will examine other notations for representing regular languages.

3.1 Regular Expressions
3.1.1 Syntax

We define the syntax (or structure) of regular expressions with an inductive
definition.

Linz Definition 3.1 (Regular Expression): Let Σ be a given alphabet.
Then:

1. ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive
regular expressions.

2. If r1 and r2 are regular expressions, then r1 + r2, r1 · r2, r∗
1 , and (r1) are

also regular expressions.

3. A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a finite number of applications of the rules
in (2).

We use the the regular expression operators as follows:

• r + s represents the union of two regular expressions.

• r · s is the concatenation of two regular expressions.

• r∗ is the star closure of a regular expression.

• (r) is the same as regular expression r. It is parenthesized to express the
order of operations explicitly.

For example, consider regular expression (a + (b · c))∗ over the alphabet {a, b, c}.
Note the use of parentheses.

• a, b, and c are primitive regular expressions.

• (b · c) is a concatenation of regular expressions a and b.

• (a + (b · c)) is union of regular expressions a and (b · c).

• (a + (b · c))∗ is the star-closure of regular expression (a + (b · c)).

As with arithmetic expressions, precedence rules and conventions can be used to
relax the need for parentheses.

3

• Star-closure (∗) has a higher precedence (i.e., priority or binding power)
than concatenation (·). That is, r · s∗ is equal to r · (s∗), not (r · s)∗.

• Concatenation (·) higher precedence than union (+). That is, r · s + t is
equal to (r · s) + t, not r · (s + t). And, transitively, star-closure has a
higher precedence than concatenation.

• Concatenation operator (·) can usually be omitted. That is, rs means r · s.

A string (a + b+) is not a regular expression. It cannot be generated using the
above definition (as augmented by the precedence rules and convention).

3.1.2 Languages Associated with Regular Expressions

But what do we “mean” by a regular expression? That is, what is its semantics.

In particular, what languages do regular expressions describe?

Consider the regular expression (a+(b ·c))∗ from above. As implied by the names
for the operators, we intend this regular expression to represent the language
({a} ∪ {bc})∗ which is {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, bcaa, . . .}.

We again give an inductive definition for the language described by a regular
expression. It must consider all the cases given in the definition of regular
expression itself.

Linz Definition 3.2: The language L(r) denoted by any regular expression r is
defined (inductively) by the following rules.

Base cases:

1. ∅ is a regular expression denoting the empty set.
2. λ is a regular expression denoting {λ}.
3. For every a ∈ Σ, a is a regular expression denoting {a}.

Inductive cases: If r1 and r2 are regular expressions, then

4. L(r1 + r2) = L(r1) ∪ L(r2)
5. L(r1 · r2) = L(r1)L(r2)
6. L((r1)) = L(r1)
7. L(r∗

1) = (L(r1))∗

3.1.3 Linz Example 3.2

Show the language L(a∗ · (a + b)) in set notation.

L(a∗ · (a + b))
= { Rule 5 }

L(a∗)L(a + b)
= { Rule 7 }

(L(a))∗L(a + b)

4

= { Rule 4 }
(L(a))∗(L(a) ∪ L(b))

= { definition of star-closure of languages }
{λ, a, aa, aaa, . . .}{a, b}

= { definition of concatenation of languages }
{a, aa, aaa, ..., b, ab, aab, aaab, . . .}

3.1.4 Examples of Languages for Regular Expressions

Consider the languages for the following regular expressions.

L(a∗ · b · a∗ · b · (a + b)∗) = {a}∗{b}{a}∗{b}{a, b}∗

= {w : w ∈ {a, b}∗, nb(w) ≥ 2}
L((a + b)∗ · b · a∗ · b · a∗) = {a, b}∗{b}{a}∗{b}{a}∗

= same as above
L((a + b)∗ · b · (a + b)∗ · b · (a + b)∗) = {a, b}∗{b}{a, b}∗{b}{a, b}∗

= same as above

3.1.5 Linz Example 3.4

Consider the regular expression r = (aa)∗(bb)∗b.

• This expression denotes the set of all strings with an even number of a’s
followed by an odd number of b’s.

• In set notation, L(r) = {a2nb2m+1 : n ≥ 0, m ≥ 0}.

3.1.6 Linz Example 3.5

For Σ = {0, 1}, give a regular expression r such that L(r) = {w ∈ Σ∗ :
w has at least one pair of consecutive zeros }.

• 00 must appear somewhere in any string.
• Before and after 00 there is an arbitrary string (0 + 1)∗.
• r = (0 + 1)∗00(0 + 1)∗

3.1.7 Examples of Regular Expressions for Languages

Show regular expressions on the alphabet {a, b} for the following languages.

• exactly one “a” b∗ab∗

• at least one “a” b∗a(a + b)∗ – featuring first a
(a + b)∗a(a + b)∗ – featuring middle a
(a + b)∗ab∗ – featuring last a

• at most one “a” b∗ab∗ + b∗

b∗(a + λ)b∗

5

• all a’s immediately followed by a b (b∗abb∗)∗ + b∗

3.2 Connection Between Regular Expressions and Regular
Languages

3.2.1 Regular Expressions Denote Regular Languages

Regular expressions provide a convenient and concise notation for describing
regular languages.

Linz Theorem 3.1 (NFAs for Regular Expressions): Let r be a regular
expression. Then there exists some nondeterministic finite accepter (nfa) that
accepts L(r). Consequently, L(r) is a regular language.

Proof Sketch: Show that any regular expression generated from the inductive
definition corresponds to an nfa. Here we proceed informally.

Linz Figure 3.1 diagrammatically demonstrates that there are nfas that corre-
spond to the primitive regular expressions.

(a) nfa accepts ∅
(b) nfa accepts {λ}
(c) nfa accepts {a}

Figure 1: Linz Fig. 3.1: Primitive Regular Expressions as NFA

Linz Figure 3.2 shows a general scheme for a nondeterministic finite accepter
(nfa) that accepts L(r), with an initial state and one final state.

Figure 2: Linz Fig. 3.2: Scheme for NFA Accepting L(r)

Linz Figure 3.3 gives an nfa for L(r1 + r2). Note the use of λ-transitions to
connect the two machines to the new initial and final states.

Linz Figure 3.4 shows an nfa for L(r1r2). Again note the use of λ-transitions to
connect the two machines to the new initial and final states.

6

Figure 3: Linz Fig. 3.3: NFA for Union

Figure 4: Linz Fig. 3.4: NFA for Concatenation

Linz Figure 3.5 shows an nfa for L(r∗
1). Note the use of λ-transitions to represent

zero-or-more repetitions of the machine and to connect it to the new initial and
final states.

Figure 5: Linz Fig. 3.5: NFA for Star-Closure

Thus, Linz Figures 3.3 to 3.5 illustrate composing nfas for any regular expression
from the nfas for its subexpressions. Of course, the initial and final states of
components are replaced by the initial and final states of the composite nfa.

3.2.2 Linz Example 3.7

Show an nfa that accepts r = (a + bb)∗(ba∗ + λ).

Linz Figure 3.6, part (a), shows M1 that accepts L(a + bb). Part (b) shows M2
that accepts L(ba∗ + λ).

Linz Figure 3.7 shows an nfa that accepts L((a + bb)∗(ba∗ + λ).

7

Figure 6: Linz Fig. 3.6: Toward a Solution to Ex. 3.6

Figure 7: Linz Fig. 3.7: Solution for Ex. 3.6

3.2.3 Converting Regular Expressions to Finite Automata

The construction in the proof sketch and example above suggest an algorithm
for converting regular expressions to nfas.

This algorithm is adapted from pages 273-4 of the book: James L. Hein, Theory
of Computation: An Introduction, Jones and Bartlett, 1996.

The diagrams in this section are from the Hein book, which uses a slightly
different notation than the Linz book. In particular, these diagrams use capital
letters for the expressions.

Algorithm to convert a regular expression to an nfa

• Start with a “machine” with a single start state, a single final state, and a
connecting edge labeled with the regular expression.

• While there are edges labeled with regular expressions other than elements
of the alphabet or λ apply any of the following rules that are applicable:

1. If an edge is labeled with ∅, then remove the edge.

2. If an edge is labeled with r + s, then replace the edge with two edges
labeled with r and s connecting the same source and destination

8

states.

3. If an edge is labeled with r ·s, the replace the edge with an edge labeled
r connecting the source to a new intermediate state, followed by an
edge labeled s connecting the intermediate state to the destination.

4. If an edge is labeled with r∗, then replace the edge with a new
intermediate state with a self-loop labeled r with edges labeled λ
connecting the source to the intermediate state and the intermediate
state to the destination.

End of Algorithm

Rule 2 in the above algorithm can result in an unbounded number of edges
originating at the same state. This makes the algorithm difficult to implement.
To remedy this situation, replace Rule 2 as follows.

2. If an edge is labeled with r + s, then replace the edge with subgraphs
for each of r and s. The subgraph for r consists of with a new source
state connected to a new destination state with an edge labeled r. Add

9

edges labeled λ to connect the original source state to the new source state
and the original destination state to the new destination state. Proceed
similarly for s.

3.2.4 Example Conversion of Regular Expression to NFA

This example is from page 275 of the Hein textbook cited above.

Construct an nfa for a∗ + a · b.

Start with a the two-state initial diagram.

Next, apply Rule 2 to a∗ + a · b.

Next, apply Rule 4 to a∗.

Finally, apply Rule 3 to a · b.

10

3.2.5 Converting Finite Automata to Regular Expressions

The construction in the proof sketch and example above suggest an algorithm
for converting finita automata to regular expressions.

This algorithm is adapted from page 276 of the book: James L. Hein, Theory of
Computation: An Introduction, Jones and Bartlett, 1996.

Algorithm to convert a finite automaton to a regular expression

Begin with a dfba or an nfa.

1. Create a new start state s and connect this to the original start state with
an edge labeled λ.

2. Create a new final state f and connect the original final states to this state
by edges labeled λ.

3. For each pair of states i and j that has more than one edge connecting
them, replace all the edges with the regular expression formed using union
(+) to combine the labels on the previous edges.

4. Construct a sequence of new machines by eliminating one state at a time
until the only states remaining are s and f . To eliminate some state k,
construct a new machine as follows.

• Let old(i, j) represent the label on the edge (i, j) on the current (i.e.,
old) machine.

• If there is no edge (i, j), then set old(i, j) = ∅.

• For every pair of edges (i, k) and (k, j), where i ≠ k and j ≠ k,
calculate a new edge label new(i, j) as follows:

new(i, j) = old(i, j) + old(i, k) old(k, k)∗ old(k, j)

• For all other edges (i, j), where i ̸= k and j ̸= k, set:

new(i, j) = old(i, j).

• The states of the new machine are the states of the old machine with
state k eliminated. The edges of the new machine are the (i, j) where
the new(i, j) has been calculated.

11

After eliminating all states except s and f , the regular expression is the label on
the one edge remaining.

End of Algorithm

3.2.6 Example Conversion of Finite Automata to Regular Expressions

This example is from pages 277-8 of the Hein textbook cited above.

Consider the following dfa.

After applying Rule 1 (new start state), Rule 2 (new final state), and Rule 3
(create union), we get the following machine.

We can eliminate state 2 readily because it is trap state. That is, there is no
path through 2 between edges adjacent to 2, so new(i, j) = old(i, j) for any
states i ̸= 2 and j ̸= 2. The resulting machine is as follows.

To eliminate state 0, we construct a new edge that is labeled as follows:

• new(s, 1) = old(s, 1) + old(s, 0) old(0, 0)∗ old(0, 1)
= ∅ + λ∅∗a
= a

Thus, we can eliminate state 0 and its edges and add a new edge (s, 1) labeled a.

12

We can eliminate state 1 by adding a new edge (s, f) labeled as follows

• new(s, f) = old(s, f) + old(s, 1) old(1, 1)∗ old(1, f)
= ∅ + a(a + b)∗λ
= a(a + b)∗

Thus the regular expression is a(a + b)∗.

3.2.7 Another Example Conversion of Finite Automa to Regular
Expressions

This example is from pages 277-8 of the Hein textbook cited above.

Consider the following dfa. Verify that it corresponds to the regular expression
(a + b)∗abb.

Applying Rules 1 and 2 (adding new start and final states), we get the following
machine.

To eliminate state 0, we add the following new edges.

• new(s, 1) = ∅ + λb∗a = b∗a

• new(3, 1) = a + bb∗a = (λ + bb∗)a = b∗a

We can eliminate either state 2 or state 3 next. Let’s choose 3. Thus we create
the following new edges.

• new(2, f) = ∅ + b∅∗λ = b

• new(2, 1) = a + b∅∗b∗a = a + bb∗a = (λ + bb∗)a = b∗a

13

Now we eliminate state 2 and thus create the new edges.

• new(1, f) = ∅ + b∅∗b = bb

• new(1, 1) = a + b∅∗b∗a = (λ + bb∗)a = b∗a

Finally, we remove state 1 by creating a new edge.

• new(s, f) = ∅ + b∗a(b∗a)∗bb
= b∗(b∗a)∗abb
= (a + b)∗abb

3.2.8 Regular Expressions for Describing Simple Patterns

Pascal integer constants

Regular expression sdd∗ where

• s : sign from {+, −, λ}
• d : digit from {0, 1, ..., 9}

Pattern matching

• Unix ed /aba∗c/ (different syntax)
• Find pattern in text

Program for Pattern Matching

We can convert a regular expression to an equivalent nfa, the nfa to a dfa, and
the dfa to a transition table. We can use the transition table to drive a program
for pattern matching.

For a more effiicent program, we can apply the state reduction algorithm to the
dfa before converting to a transition table. Linz section 2.4, which we did not

14

cover this semester, discusses this algorithm.

3.3 Regular Grammars
We have studied two ways of describing regular languages–finite automata
(i.e. dfas, nfas) and regular expressions. Here we examine a third way–regular
grammars.

Linz Definition 3.3 (Right-Linear Grammar): A grammar G = (V, T, S, P)
is said to be right-linear if all productions are of one of the forms

A → xB
A → x

where A, B ∈ V and x ∈ T ∗.

Similarly, a grammar is said to be left-linear if all productions are of the form
A → Bx or A → x.

A regular grammar is one that is either right-linear or left-linear.

• one variable on right at most
• consistently rightmost (or leftmost)

3.3.1 Linz Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as

• S → abS | a

is right-linear.

The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

• S → S1ab
• S1 → S1ab | S2
• S2 → a

is left linear. Both G1 and G2 are regular grammars.

L(G1) = L((ab)∗a)

L(G2) = L(aab(ab)∗)

3.3.2 Linz Example 3.14

The grammar G = ({S, A, B}, {a, b}, S, P) with productions

• S → A
• A → aB | λ
• B → Ab

15

is not regular.

Although every production is either in right-linear or left-linear form, the gram-
mar itself is neither right-linear nor left-linear, and therefore is not regular. The
grammar is an example of a linear grammar.

Definition (Linear Grammar): A linear grammar is a grammar in which at
most one variable can appear on the right side of any production.

3.3.3 Right-Linear Grammars Generate Regular Languages

Linz Theorem 3.3 (Regular Languages for Right-Linear Grammars):
Let G = (V, T, S, P) be a right-linear grammar. Then L(G) is a regular language.

Strategy: Because a regular language is any language accepted by a dfa or nfa,
we seek to construct an nfa that simulates the derivations of the right-linear
grammar.

The algorithm below incorporates this idea. It is based on the algorithm given on
page 314 of the book: James L. Hein, Theory of Computation: An Introduction,
Jones and Bartlett, 1996.

Algorithm to convert a regular grammar to an nfa

Start with a right-linear grammar and construct an equivalent nfa. We label
the nfa’s states primarily with variables from the grammar and label edges with
terminals in the grammar or λ.

1. If necessary, transform the grammar so that all productions have the form
A → x or A → xB, where x is either a terminal in the grammar or λ.

2. Label the start state of the nfa with the start symbol of the grammar.

3. For each production I → aJ , add a state transition (edge) from a state I
to a state J with the edge labeled with the symbol a.

4. For each production I → J , add a state transition (edge) from a state I to
a state J with the edge labeled with λ.

5. If there exist productions of the form I → a, then add a single new state
symbol F . For each production of the form I → a, add a state transition
from I to F labeled with symbol a.

6. The final states of the nfa are F plus all I such there is a production of
the form I → λ.

End of algorithm

3.3.4 Example: Converting Regular Grammar to NFA

Construct an nfa for the following regular grammar G:

• S → aS | bI

16

• I → a | aI

The grammar is in the correct form, so step 1 of the grammar is not applicable.
The following sequence of diagrams shows the use of steps 2, 3 (three times), 5,
and 6 of the algorithm. Step 4 is not applicable to this grammar.

17

Note that L(G) = L(a∗ba∗a).

18

3.3.5 Linz Example 3.5

This is similar to the example in the Linz textbook, but we apply the algorithm
as stated above.

Construct an nfa for the regular grammar G:

• V0 → aV1

• V1 → abV0 | b

First, let’s transform the grammar according to step 1 of the regular grammar
to nfa algorithm above.

• V0 → aV1
• V1 → aV2 | b
• V2 → bV0

Applying steps 2, 3 (three times), 5, and 6 of algorithm as show below, we
construct the following nfa. Step 4 was not applicable in this problem.

Note that L(G) = L((aab)∗ab).

3.3.6 Right-Linear Grammars for Regular Languages

Linz Theorem 3.4 (Right-Linear Grammars for Regular Languages):
If L is a regular language on the alphabet Σ, then there exists a right-linear
grammar G = (V, Σ, S, P) such that L = L(G).

Strategy: Reverse the construction of an nfa from a regular grammar given
above.

The algorithm below incorporates this idea. It is based on the algorithm given
on page 312 of the Hein textbook cited above.

19

Algorithm to convert an nfa to a regular grammar

Start with an nfa and construct a regular grammar.

1. Relabel the states of the nfa with capital letters.

2. Make the start state label the start symbol for the grammar.

3. For each transition (edge) from a state I to a state J labeled with an
alphabetic symbol a, add a production I → aJ to the grammar.

4. For each transition (edge) from a state I to a state J labeled with λ, add
a production I → J to the grammar.

5. For each final state labeled K, add a production K → λ to the grammar.

End of algorithm

3.3.7 Example: Converting NFA to Regular Grammar

Consider the following nfa (adapted from the Hein textbook page 313). (The
Hein book uses Λ instead of λ to label silent moves and empty strings.)

We apply the steps of the algorithm as follows.

1. The nfa states are already labeled as specified.

2. Choose S as start symbol for grammar.

3. Add the following productions:

• S → aI
• I → bK
• J → aJ
• J → aK

4. Add the following production:

• S → J

20

5. Add the following production:

• K → λ

So, combining the above productions, we get the final grammar:

• S → aI | J
• I → bK
• J → aJ | aK
• K → λ

3.3.8 Equivalence Between Regular Languages and Regular Gram-
mars

Linz Theorem 3.5 (Equivalence of Regular Languages and Left-Linear
Grammars): A language L is regular if and only if there exists a left-linear
grammar G such that L = L(G).

Linz Theorem 3.6(Equivalence of Regular Languages and Right-Linear
Grammars): A language L is regular if and only if there exists a regular
grammar G such that L = L(G).

The four theorems from this section enable us to convert back and forth among
finite automata and regular languages as shown in Linz Figure 3.19. Remember
that Linz Theorem 2.2 enabled us to translate from nfa to dfa.

Figure 8: Linz Fig. 3.19: Equivalence of Regular Languages and Regular
Grammars

3.4 References
[1] Peter Linz. 2011. Formal languages and automata (Fifth ed.). Jones &

Bartlett, Burlington, Massachusetts, USA.

21

	Regular Languages and Regular Grammars
	Regular Expressions
	Syntax
	Languages Associated with Regular Expressions
	Linz Example 3.2
	Examples of Languages for Regular Expressions
	Linz Example 3.4
	Linz Example 3.5
	Examples of Regular Expressions for Languages

	Connection Between Regular Expressions and Regular Languages
	Regular Expressions Denote Regular Languages
	Linz Example 3.7
	Converting Regular Expressions to Finite Automata
	Example Conversion of Regular Expression to NFA
	Converting Finite Automata to Regular Expressions
	Example Conversion of Finite Automata to Regular Expressions
	Another Example Conversion of Finite Automa to Regular Expressions
	Regular Expressions for Describing Simple Patterns

	Regular Grammars
	Linz Example 3.13
	Linz Example 3.14
	Right-Linear Grammars Generate Regular Languages
	Example: Converting Regular Grammar to NFA
	Linz Example 3.5
	Right-Linear Grammars for Regular Languages
	Example: Converting NFA to Regular Grammar
	Equivalence Between Regular Languages and Regular Grammars

	References

