
Notes on Models of Computation
Chapter 1

H. Conrad Cunningham

06 April 2022

Contents
1 Introduction to the Theory of Computation 2

1.1 Mathematical Preliminaries and Notation 2
1.1.1 Sets . 2
1.1.2 Functions . 3
1.1.3 Relations . 3
1.1.4 Graphs . 3
1.1.5 Trees . 5
1.1.6 Proof Techniques . 5

1.2 Three Basic Concepts . 6
1.2.1 Languages . 6

1.2.1.1 Language Concepts 6
1.2.1.2 Formal Interlude: Inductive Definitions and In-

duction . 7
1.2.1.3 More Language Concepts 8
1.2.1.4 Linz Example 1.9: Example Languages 9
1.2.1.5 Operations on Languages 9
1.2.1.6 Language Operation Examples 9

1.2.2 Grammars . 10
1.2.2.1 Grammar Concepts 10
1.2.2.2 Linz Example 1.11 (Grammar) 11
1.2.2.3 Linz Example 1.12: Finding a Grammar for a

Language . 11
1.2.2.4 More Grammar Concepts 12
1.2.2.5 Linz Example 1.13 12

1.2.3 Automata . 13
1.3 Applications . 14

1.3.1 Linz Example 1.15: C Identifiers 14
1.3.2 Linz Example 1.17: Binary Adder 15

1.4 References . 15

1

Copyright (C) 2015, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

Note: These notes were written primarily to accompany my use of Chapter 1 of
the Linz textbook An Introduction to Formal Languages and Automata [[1].

2

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

1 Introduction to the Theory of Computation
Why study theory?

1. To understand the concepts and principles underlying the fundamental
nature of computing

• by constructing abstract models of computers and computation
2. To learn to apply the theory to practical areas of computing

• in programming languages, compilers, operating systems, networks,
etc.

3. To have fun!
• from tackling challenging “puzzles” and problems

In this course, we study the following models:

1. automaton (automata)
• an abstraction of the computing mechanism
• takes input, uses temporary storage, makes decisions, and produces

output
2. formal language

• an abstraction of a programming language
• syntax = symbols + grammar rules

3. algorithm
• an abstraction of a mechanical computation
• what are the limits of what we can and cannot compute?

1.1 Mathematical Preliminaries and Notation
The mathematical concepts used in the Linz textbook include:

• sets
• functions
• relations
• graphs
• trees
• proof techniques

1.1.1 Sets

Students in this course should be familiar with the following set concepts from
previous study in mathematics:

• literal set notation such as {a, b, c}, {2, 4, 6, · · · }, and {i : i > 10, i < 100}
• element (member) e ∈ S
• not an element e /∈ S
• union S ∪ T (in one or both)
• intersection S ∩ T (in both)
• difference S − T (in S but not T)
• universal set U (all possible elements)

3

• complementation S̄ (in U but not S)
• empty set ∅ (no elements)
• subset S ⊆ T (all from S in T)
• proper subset S ⊂ T (subset but not equal)
• disjoint sets S ∩ T = ∅ (no common elements)
• finite and infinite sets
• cardinality |S| (number elements of finite set)
• powerset 2S (set of all subsets of a set)
• Cartesian product S × T (set of all ordered pairs)
• partition of a set (breaking a set into mutually disjoint, nonempty subsets

whose intersection is the entire set)

Laws for operations on the empty set:

• S ∪ ∅ = S (identity element for union)
• S ∩ ∅ = ∅ (zero element for intersection)
• ∅̄ = U
• ¯̄S = S (complementation is inverse for itself)

DeMorgan’s Laws:

• ¯S1 ∪ S2 = S̄1 ∩ S̄2
• ¯S1 ∩ S2 = S̄1 ∪ S̄2

1.1.2 Functions

Function f : D → R means that

• f ⊆ D ×R, where
– domain ⊆ D
– range ⊆ R
– f maps an element of its domain to a unique element of its range

Function f is a

• total function if domain = D
• partial function otherwise

1.1.3 Relations

A relation on X and Y is any subset of X × Y .

An equivalence relation ≡ is a generalization of equality. It is:

1. reflexive: x ≡ x∀x
2. symmetric: if x ≡ y then y ≡ x
3. transitive: if x ≡ y and y ≡ z then x ≡ z

1.1.4 Graphs

A graph ⟨V, E⟩ is a mathematical entity where

4

• V = {v1, v2, . . . , vn} is a finite set of vertices (or nodes)

• E = {e1, e2, . . . , em} is a finite set of edges (or arcs)

• each edge ei = (vj , vk) is a pair of vertices

A directed graph (or digraph) is a graph in which each edge ei = (vj , vk) has a
direction from vertex vj to vertex vk.

Edge ei = (vj , vk) on a digraph is an outgoing edge from vertex vj and an
incoming edge to vertex vk.

If there are no directions associated with the edges, then the graph is undirected.

Graphs may be labeled by assigning names or other information to vertices or
edges.

We can visualize a graph with a diagram in which the vertices are shown as
circles and edges as lines connecting a pair of vertices. For directed graphs, the
direction of an edge is shown by an arrow.

Linz Figure 1.1 shows a digraph ⟨V, E⟩ where V = {v1, v2, v3} and edges E =
{(v1v3), (v3, v1), (v3, v2), (v3, v3)}.

Figure 1: Linz Fig. 1.1: Diagram of a Digraph

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is a walk from vj to vn. The
length of the walk is the total number of edges traversed.

A path is a walk with no edge repeated. A path is simple if no vertex is repeated.

A walk from some vertex vi to itself is a cycle with base vi. If no vertex other
than the base is repeated, then the cycle is simple.

In Linz Figure 1.1:

• (v1, v3), (v3, v2) is a simple path from v1 to v2
• (v1, v3), (v3, v3), (v3, v1) is a cycle but not simple

If the edges of a graph are labelled, then the label of a walk (or path) is the
sequence of edges encountered on a traversal.

5

1.1.5 Trees

A tree is a directed graph with no cycles and a distinct root vertex such that
there is exactly one path from the root to every other vertex.

The root of a tree has no incoming edges.

A vertex of a tree without any outgoing edges is a leaf of the tree.

If there is an edge from vi to vj in a tree, then:

• vi is the parent of vj

• vj is a child of vi

The level associated with each vertex is the number of edges in the path from
the root to the vertex.

The height of a tree is the largest level number of any vertex.

If we associated an ordering with the vertices at each level, then the tree is an
ordered tree.

The above terminology is illustrated in Linz Figure 1.2.

Figure 2: Linz Fig. 1.2: A Tree

1.1.6 Proof Techniques

Students in this course should be familiar with the following proof techniques
from previous study in mathematics:

6

• Deduction
– Prove P from axioms and previously proved theorems by a sequence

of steps guaranteed by the rules of logic.
• Contradiction

– Assume P is false, prove a sequence of deductive steps that this leads
to something we know is false. Hence, this is a contradiction. Thus
P must be true.

• Induction
– Basis step: Prove P0 (i.e, for all primitive cases)
– Inductive step: Assume Pn, n ≥ 0, prove Pn+1.

We will see an example of an inductive proof in the next section.

1.2 Three Basic Concepts
Three fundamental ideas are the major themes of this course:

1. languages
2. grammars
3. automata

1.2.1 Languages

Our concept of language is an abstraction of the concept of a natural language.

1.2.1.1 Language Concepts Linz Definition (Alphabet): An alphabet,
denoted by Σ, is a finite, nonempty set of symbols.

By convention, we use lowercase letters near the beginning of the English alphabet
a, b, c, · · · to represent elements of Σ.

For example, if Σ = {a, b}, then the alphabet has two unique symbols denoted
by a and b.

Linz Definition (String): A string is a finite sequence of symbols from the
alphabet.

By convention, we use lowercase letters near the end of the English alphabet
· · · u, v, w, x, y, z to represent strings. We write strings left to right. That is,
symbols appearing to the left are before those appearing to the right.

For example, w = baabaa is a string from the above alphabet. The string begins
with a b and ends with an a.

Linz Definition (Concatenation): The concatenation of strings u and v
means appending the symbols of v to the right end (i.e., after) the symbols of u,
denoted by uv.

If u = a1a2a3 and v = b1b2b3, then uv = a1a2a3b1b2b3.

7

Definition (Associativity): Operation ⊕ is associative on set S if, for all x, y,
and z in S, (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z). We often write associative expressions
without explicit parentheses, e.g., x⊕ y ⊕ z.

String concatenation is associative, that is, (uv)w = u(vw).

Thus we normally just write uvw without parentheses.

Definition (Commutativity): Operation ⊕ is commutative on set S if, for all
x and y in S, x⊕ y = y ⊕ x.

String concatenation is not commutative. That is, uv ̸= vu.

Linz Definition (Reverse): The reverse of a string w, denoted by wR, is the
string with same symbols, but with the order reversed.

If w = a1a2a3, then wR = a3a2a1.

Linz Definition (Length): The length of a string w, denoted by |w|, is the
number of symbols in string w.

Linz Definition (Empty String): The empty string, denoted by λ, is the
string with no symbols, that is, |λ| = 0.

Definition (Identity Element): An operation ⊕ has an identity element e on
set S if, for all x ∈ S, x⊕ e = x = e⊕ x.

The empty string λ is the identity element for concatenation. That is, λw =
wλ = w.

1.2.1.2 Formal Interlude: Inductive Definitions and Induction We
can define the length of a string with the following inductive definition:

1. |λ| = 0 (base case)
2. |wa| = |w|+ 1 (inductive case)

Note: This inductive defintion and proof differs from the textbook. Here we
begin with the empty string.

Using the fact that λ is the identity element and the above definition, we see
that

|a| = |λa| = |λ|+ 1 = 0 + 1 = 1.

Prove |uv| = |u|+ |v|.

Noting the definition of length above, we choose to do an induction over string v
(or, if you prefer, over the length of v, basing induction at 0).

Base case v = λ (that is, length is 0)

|uλ|
= { identity for concatenation } ←− justification for step in braces
|u|

8

= { identity for + }
|u|+ 0

= { definition of length }
|u|+ |λ|

Inductive case v = wa (that is, length is greater than 0)
Induction hypothesis: |uw| = |u|+ |w|

|u(wa)|
= { associativity of concatenation }
|(uw)a|

= { definition of length }
|uw|+ 1

= { induction hypothesis }
(|u|+ |w|) + 1

= { associativity of + }
|u|+ (|w|+ 1)

= { definition of length (right to left) }
|u|+ (|wa|)

Thus we have proved |uv| = |u|+ |v|. QED.

1.2.1.3 More Language Concepts Linz Definition (Substring): A
substring of a string w is any string of consecutive symbols in w.

If w = a1a2a3, then the substrings are λ, a1, a1a2, a1a2a3, a2, a2a3, a3.

Linz Definition (Prefix, Suffix): If w = vu, then v is a prefix of w and u is a
suffix.

If w = a1a2a3, the prefixes are λ, a1, a1a2, a1a2a3.

Linz Definition (wn): wn, for any string w and n ≥ 0 denotes n repetitions of
string (or symbol) w. We further define w0 = λ.

Linz Definition (Star-Closure): Σ∗, for alphabet Σ, is the set of all strings
obtained by concatenating zero or more symbols from the alphabet.

Note: An alphabet must be a finite set.

Linz Definition (Positive Closure): Σ+ = Σ∗ − λ

Although Σ is finite, Σ∗ and Σ+ are infinite.

For a string w, we also write w∗ and w+ to denote zero or more repetitions of
the string and one or more repetitions of the string, respectively.

9

Linz Definition (Language): A language, for some alphabet Σ, is a subset of
Σ∗.

Linz Definition (Sentence): A sentence of some language L is any string
from L (i.e., from Σ∗).

1.2.1.4 Linz Example 1.9: Example Languages Let Σ = {a, b}.

• Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, · · · }.

• {a, aa, aab} is a language on Σ.

Since the language has a finite number of sentences, it is a finite language.

• L = {anbn : n ≥ 0} is also a language on Σ.

Sentences aabb and aaaabbbb are in L, but aaabb is not.

As with most interesting languages, L is an infinite language.

1.2.1.5 Operations on Languages Languages are represented as sets.
Operations on languages can be defined in terms of set operations.

Linz Definition (Union, Intersection, and Difference): Language union,
intersection, and difference are defined directly as the corresponding operations
on sets.

Linz Definition (Concatenation): Language complementation with respect
to Σ∗ is defined such that L̄ = Σ∗ − L.

Linz Definition (Reverse): Language reverse is defined such that LR = {wR :
w ∈ L}. (That is, reverse all strings.)

Linz Definition (Concatenation): Language concatenation is defined such
that L1L2 = {xy : x ∈ L1, y ∈ L2}.

Linz Definition (Ln): Ln means L concatenated with itself n times.

L0 = {λ} and Ln+1 = LnL

Definition (Star-Closure): Star-closure (Kleene star) is defined such that
L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·.

Definition (Positive Closure): Positive closure is defined such that L+ =
L1 ∪ L2 ∪ · · ·.

1.2.1.6 Language Operation Examples Let L = {anbn : n ≥ 0}.

• L2 = {anbnambm : n ≥ 0, m ≥ 0} (where n and m are unrelated).

• abaaabbb ∈ L2.

• LR = {bnan : n ≥ 0}

10

How would we express in L̄ and L∗?

Although set notation is useful, it is not a convenient notation for expressing
complicated languages.

1.2.2 Grammars

1.2.2.1 Grammar Concepts Linz Definition 1.1 (Grammar): A gram-
mar G is a quadruple G = (V, T, S, P) where

V is a finite set of objects called variables.
T is a finite set of objects called terminal symbols.
S ∈ V is a special symbol called the start symbol.
P is a finite set of productions.
V and T are nonempty and disjoint.

Linz Definition (Productions): Productions have form x→ y where:

x ∈ (V ∪T)+, i.e., x is some non-null string of terminals and variables
y ∈ (V ∪ T)∗, i.e., y is some, possibly null, string of terminals and
variables

Consider application of productions, given w = uxv:

• x→ y is applicable to string w.

• To use the production, substitute y for x.

Thus the new string is z = uyv.

We say w derives z, written w ⇒ z.

• Continue by applying any applicable productions in arbitrary order.

w1 ⇒ w2 ⇒ w3 ⇒ · · · ⇒ wn.

Linz Definition (Derives): w1
∗⇒ wn means that w1 derives wn in zero or

more production steps.

Linz Definition (Language Generated): Let G = (V, T, S, P) be a grammar.
Then L(G) = {w ∈ T ∗ : S

∗⇒ w} is the language generated by G.

That is, L(G) is the set of all strings that can be generated from the start symbol
S using the productions P .

Linz Definition (Derivation): A derivation of some sentence w ∈ L(G) is a
sequence S ⇒ w1 ⇒ w2 ⇒ w3 ⇒ · · · ⇒ wn ⇒ w.

The strings S, w1, · · · , wn above are sentential forms of the derivation of sentence
w.

11

1.2.2.2 Linz Example 1.11 (Grammar) Consider G = ({S}, {a, b}, S, P)
where P is the set of productions

• S → aSb
• S → λ

Consider S ⇒ aSb⇒ aaSbb⇒ aabb. Hence, S
∗⇒ aabb.

aabb is a sentence of the language; the other strings in the derivation are sentential
forms.

Conjecture: The language formed by this grammar, L(G), is {anbn : n ≥ 0}.

Usually, however, it is difficult to construct an explicit set definition for a
language generated by a grammar.

Now prove the conjecture.

First, prove that all sentential forms of the language have the structure wi = aiSbi

for i ≥ 0 by induction on i.

Basis step: Clearly, w0 = S is a sentential form, the start symbol.

Inductive step: Assume wm = amSbm is a sentential form, show that wm+1 =
am+1Sbm+1.

Case 1: If we begin with the assumption and apply production S → aSb,
we get sentential form wm+1 = am+1Sbm+1.

Case 2: If we begin with the assumption and apply production S → λ, we
get the sentence ambm rather than a sentential form.

Hence, all sentential forms have the form aiSbi.

Given that S → λ is the only production with terminals on the right side, we
must apply it to derive any sentence. As we noted in case 2 above, application of
the production to any sentential form gives a sentence of the form ambm. QED.

1.2.2.3 Linz Example 1.12: Finding a Grammar for a Language
Given L = {anbn+1 : n ≥ 0}.

• Recursive production S → aSb would generate sentential forms anSbn.

• Need production(s) to add the extra b to the final sentence.

• Suggest S → b.

A slightly different grammar might introduce nonterminal A as follows:

• S → Ab
• A→ aAb
• A→ λ

12

1.2.2.4 More Grammar Concepts To show that a language L is generated
by a grammar G, we must prove:

1. For every w ∈ L, there is a derivation using G.

2. Every string derived from G is in L.

Linz Definition (Equivalence): Two grammars are equivalent if they generate
the same language.

For example, the two grammars given above for the language L = {anbn+1 : n ≥
0} are equivalent.

1.2.2.5 Linz Example 1.13 Let Σ = {a, b} and let na(w) and nb(w) denote
the number of a’s and b’s in the string w.

Let grammar G have productions

S → SS
S → λ
S → aSb
S → bSa

Let L = {w : na(w) = nb(w)}.

Prove L(G) = L.

Informal argument follows. Actual proof would be an induction over length of w.

Consider cases for w.

1. Case w ∈ L(G). Show w ∈ L.

Any production adding an a also adds a b. Thus there is the same number
of a’s and b’s.

2. Case w ∈ L. Show w ∈ L(G).

• Consider w = aw1b or w = bw1a for some w1 ∈ L.

String w was generated by either S → aSb or S → bSa in the first
step.

Thus w ∈ L.

• Consider w = aua (or w = bub) for some u ∈ L.

Examine the symbols of w from the left – add 1 for each a, subtract 1
for each b.

Since sum must be 0 at right, there must be a point where the sum
crosses 0.

Break at that point into form w = w1w2 where w1, w2 ∈ L.

First production is S → SS.

13

Thus w ∈ L(G).

1.2.3 Automata

An automaton is an abstract model of a compute

Figure 3: Linz Fig. 1.4: Schematic Representation of a General Au-
tomaton

As shown in Linz Figure 1.4, a computer:

1. reads input from an input file – one symbol from each cell – left to right

2. produces output

3. may use storage – unlimited number of cells (may be different alphabet)

4. has a control unit

• finite number of states
• state changes in defined manner
• “next-state” or transition function – specifies state changes

A configuration is a state of the control unit, input, and storage.

A move is a transition from one state configuration to another.

Automata can be categorized based on control:

• A deterministic automaton has a unique next state from the current
configuration.

• A nondeterministic automaton has several possible next states.

14

Automata can also be categorized based on output:

• An accepter has only yes/no output.

• A transducer has strings or symbols for output,

Various models differ in

• how the output is produced

• the nature of temporary storage

1.3 Applications
1.3.1 Linz Example 1.15: C Identifiers

The syntax rules for identifiers in the language C are as follows:

• An identifier is a sequence of letters, digits, and underscores.

• An identifier must start with a letter or underscore.

• Identifiers allow both uppercase and lowercase letters.

Formally, we can describe these rules with the grammar:

<id> -> <letter><rest> | <underscr><rest>
<rest> -> <letter><rest> | <digit><rest> |

<underscr><rest> | <lambda>
<letter> -> a|b|c|...|z|A|B|C|...|Z
<digit> -> 0|1|2|...|9
<underscr> -> _

Above <lambda> represents the symbol λ,-> is the → for productions, and |
denotes alternative right-hand-sides of the productions.

The variables are <id>, <letter>, <digit>, <underscr>, and <rest>. The
other alphanumeric symbols are literals.

Linz Figure 1.6 shows a drawing of an automaton that accepts all legal C
identifiers as defined above.

We can interpret the automaton in Linz Figure 1.6 as follows:

• The machine starts in state 1.
• It reads the string left to right, one character at a time.
• If the first character is a <digit> then the machine moves to state 3. The

machine stops reading with answer No (non-accepting).
• If first character is a <letter> or <underscr> then it moves to state 2.

The machine continues.
• As long as the next character is a <letter>, <underscr>, or <digit>,

then the machine reads the input and remains in state 2.
• The machine stops in state 2 when either there is no more input or

unacceptable input.

15

Figure 4: Linz Fig. 1.7: Automaton to Accept C Identifiers

• If no more input and in state 2, then machine stops with answer Yes
(accepting). Otherwise, it stops with the answer No (non-accepting).

1.3.2 Linz Example 1.17: Binary Adder

Let x = a0a1a0 · · · an where ai are bits.

Then value(x) =
∑n

i=0 ai2i.

This is the usual binary representation in reverse.

A serial adder process two such numbers x and y, bit by bit, starting at the left
end. Each bit addition creates a digit for the sum and a carry bit as shown in
Linz Figure 1.7.

A block diagram for the machine is shown in Linz Figure 1.8.

A transducer automaton to carry out the addition of two numbers is shown in
Linz Figure 1.9.

The pair on the edges represents the two inputs. The value following the slash is
the output.

1.4 References
[1] Peter Linz. 2011. Formal languages and automata (Fifth ed.). Jones &

Bartlett, Burlington, Massachusetts, USA.

16

Figure 5: Linz Fig. 1.7: Binary Addition Table

Figure 6: Linz Fig. 1.8: Binary Adder Block Diagram

Figure 7: Linz Fig. 1.9: Binary Adder Transducer Automaton

17

	Introduction to the Theory of Computation
	Mathematical Preliminaries and Notation
	Sets
	Functions
	Relations
	Graphs
	Trees
	Proof Techniques

	Three Basic Concepts
	Languages
	Language Concepts
	Formal Interlude: Inductive Definitions and Induction
	More Language Concepts
	Linz Example 1.9: Example Languages
	Operations on Languages
	Language Operation Examples

	Grammars
	Grammar Concepts
	Linz Example 1.11 (Grammar)
	Linz Example 1.12: Finding a Grammar for a Language
	More Grammar Concepts
	Linz Example 1.13

	Automata

	Applications
	Linz Example 1.15: C Identifiers
	Linz Example 1.17: Binary Adder

	References

