
Notes on Models of Computation

H. Conrad Cunningham

014April 2022

Contents
0 Introduction to the Theory of Computation 2

0.1 Mathematical Preliminaries and Notation 2
0.1.1 Sets . 2
0.1.2 Functions . 3
0.1.3 Relations . 3
0.1.4 Graphs . 3
0.1.5 Trees . 5
0.1.6 Proof Techniques . 5

0.2 Three Basic Concepts . 6
0.2.1 Languages . 6

0.2.1.1 Language Concepts 6
0.2.1.2 Formal Interlude: Inductive Definitions and In-

duction . 7
0.2.1.3 More Language Concepts 8
0.2.1.4 Linz Example 1.9: Example Languages 9
0.2.1.5 Operations on Languages 9
0.2.1.6 Language Operation Examples 9

0.2.2 Grammars . 10
0.2.2.1 Grammar Concepts 10
0.2.2.2 Linz Example 1.11 (Grammar) 11
0.2.2.3 Linz Example 1.12: Finding a Grammar for a

Language . 11
0.2.2.4 More Grammar Concepts 12
0.2.2.5 Linz Example 1.13 12

0.2.3 Automata . 13
0.3 Applications . 14

0.3.1 Linz Example 1.15: C Identifiers 14
0.3.2 Linz Example 1.17: Binary Adder 15

1 Finite Automata 17
1.1 Deterministic Finite Accepters 17

1.1.1 Accepters . 17

1

1.1.2 Transition Graphs . 17
1.1.3 Linz Example 2.1 . 17
1.1.4 Extended Transition Function for a DFA 18
1.1.5 Language Accepted by a DFA 18
1.1.6 Linz Example 2.2 . 18
1.1.7 Linz Example 2.3 . 19
1.1.8 Linz Example 2.4 . 19
1.1.9 Regular Languages . 20
1.1.10 Linz Example 2.5 . 21
1.1.11 Linz Example 2.6 . 21

1.2 Nondeterministic Finite Accepters 22
1.2.1 Nondeterministic Accepters 22
1.2.2 Linz Example 2.7 . 23
1.2.3 Linz Example 2.8 . 23
1.2.4 Extended Transition Function for an NFA 24
1.2.5 Language Accepted by an NFA 24
1.2.6 Linz Example 2.10 (Example 2.8 Revisited) 24
1.2.7 Why Nondeterminism . 25

1.3 Equivalence of DFAs and NFAs 25
1.3.1 Meaning of Equivalence 25
1.3.2 Linz Example 2.11 . 25
1.3.3 Power of NFA versus DFA 26
1.3.4 Linz Example 2.12 . 28
1.3.5 Linz Example 2.13 . 28

1.4 Reduction in the Number of States in Finite Automata 32

2 Regular Languages and Regular Grammars 33
2.1 Regular Expressions . 33

2.1.1 Syntax . 33
2.1.2 Languages Associated with Regular Expressions 34
2.1.3 Linz Example 3.2 . 34
2.1.4 Examples of Languages for Regular Expressions 35
2.1.5 Linz Example 3.4 . 35
2.1.6 Linz Example 3.5 . 35
2.1.7 Examples of Regular Expressions for Languages 35

2.2 Connection Between Regular Expressions and Regular Languages 36
2.2.1 Regular Expressions Denote Regular Languages 36
2.2.2 Linz Example 3.7 . 37
2.2.3 Converting Regular Expressions to Finite Automata . . . 38
2.2.4 Example Conversion of Regular Expression to NFA 40
2.2.5 Converting Finite Automata to Regular Expressions . . . 41
2.2.6 Example Conversion of Finite Automata to Regular Ex-

pressions . 42
2.2.7 Another Example Conversion of Finite Automa to Regular

Expressions . 43
2.2.8 Regular Expressions for Describing Simple Patterns . . . 44

2

2.3 Regular Grammars . 45
2.3.1 Linz Example 3.13 . 45
2.3.2 Linz Example 3.14 . 45
2.3.3 Right-Linear Grammars Generate Regular Languages . . 46
2.3.4 Example: Converting Regular Grammar to NFA 46
2.3.5 Linz Example 3.5 . 49
2.3.6 Right-Linear Grammars for Regular Languages 49
2.3.7 Example: Converting NFA to Regular Grammar 50
2.3.8 Equivalence Between Regular Languages and Regular

Grammars . 51

3 Properties of Regular Languages 52
3.1 Closure Properties of Regular Languages 52

3.1.1 Mathematical Interlude: Operations and Closure 52
3.1.2 Closure under Simple Set Operations 53
3.1.3 Closure under Difference (Linz Example 4.1) 55
3.1.4 Closure under Reversal 55
3.1.5 Homomorphism Definition 56
3.1.6 Linz Example 4.2 . 56
3.1.7 Linz Example 4.3 . 56
3.1.8 Closure under Homomorphism Theorem 57
3.1.9 Right Quotient Definition 57
3.1.10 Linz Example 4.4 . 57
3.1.11 Closure under Right Quotient 58
3.1.12 Linz Example 4.5 . 60

3.2 Elementary Questions about Regular Languages 61
3.2.1 Membership? . 61
3.2.2 Finite or Infinite? . 62
3.2.3 Equality? . 62

3.3 Identifying Nonregular Languages 63
3.3.1 Using the Pigeonhole Principle 63
3.3.2 Linz Example 4.6 . 63
3.3.3 Pumping Lemma for Regular Languages 64
3.3.4 Linz Example 4.7 . 66
3.3.5 Using the Pumping Lemma (Viewed as a Game) 66
3.3.6 Linz Example 4.8 . 67
3.3.7 Linz Example 4.9 . 68
3.3.8 Linz Example 4.10 . 68
3.3.9 Linz Example (Factorial Length Strings) 69
3.3.10 Linz Example 4.12 . 70
3.3.11 Linz Example 4.13 . 70
3.3.12 Pitfalls in Using the Pumping Lemma 72

4 Context-Free Languages 73
4.1 Context-Free Grammars . 73

4.1.1 Definition of Context-Free Grammars 73

3

4.1.2 Linz Example 5.1 . 74
4.1.3 Linz Example 5.2 . 74
4.1.4 Linz Example 5.3 . 74
4.1.5 Linz Example 5.4 . 75
4.1.6 Leftmost and Rightmost Derivations 76
4.1.7 Linz Example 5.5 . 76
4.1.8 Derivation Trees . 76
4.1.9 Linz Example 5.6 . 77
4.1.10 Relation Between Sentential Forms and Derivation Trees . 78

4.2 Parsing and Ambiguity . 79
4.2.1 Generation versus Parsing 79
4.2.2 Exhaustive Search Parsing 79
4.2.3 Linz Example 5.7 . 80
4.2.4 Flaws in Exhaustive Search Parsing 81
4.2.5 Linz Example 5.8 . 81
4.2.6 Toward Better Parsing Algorithms 81
4.2.7 Simple Grammar Definition 82
4.2.8 Linz Example 5.9 . 82
4.2.9 Parsing Simple Grammars 83
4.2.10 Ambiguity in Grammars and Languages 83
4.2.11 Linz Example 5.10 . 83
4.2.12 Linz Example 5.11 . 83
4.2.13 Linz Example 5.12 . 85
4.2.14 Inherently Ambiguous . 85
4.2.15 Linz Example 5.13 . 85

4.3 Context-Free Grammars and Programming Languages 87

5 OMIT Chapter 6 87

6 Pushdown Automata 88
6.1 Nondeterministic Pushdown Automata 88

6.1.1 Schematic Drawing . 88
6.1.2 Definition of a Pushdown Automaton 88
6.1.3 Linz Example 7.1 . 89
6.1.4 Linz Example 7.2 . 90
6.1.5 Instantaneous Descriptions of Pushdown Automata 92
6.1.6 Language Accepted by an NPDA 93
6.1.7 Linz Example 7.4 . 93
6.1.8 Linz Example 7.5 . 94

6.2 Pushdown Automata and Context-Free Languages 96
6.2.1 Pushdown Automata for CFGs 96
6.2.2 Linz Example 7.6 . 96
6.2.3 Constructing an NPDA for a CFG 97
6.2.4 Linz Example 7.7 . 98
6.2.5 Constructing a CFG for an NPDA 99

4

6.3 Deterministic Pushdown Automata and Deterministic Context-
Free Languages . 99
6.3.1 Deterministic Pushdown Automata 99
6.3.2 Linz Example 7.10 . 100
6.3.3 Linz Example 7.5 Revisited 100

6.4 Grammars for Deterministic Context-Free Grammars 101

7 Properties of Context-Free Languages 102
7.1 Two Pumping Lemmas . 102

7.1.1 Context-Free Languages 102
7.1.2 Linear Languages . 102

7.2 Closure Properties and Decision Algorithms for Context-Free
Languages . 103
7.2.1 Closure under Union, Concatenation, and Star-Closure . . 103
7.2.2 Non-Closure under Intersection and Complementation . . 104
7.2.3 Closure under Regular Intersection 106
7.2.4 Linz Example 8.7 . 107
7.2.5 Linz Example 8.8 . 107
7.2.6 Some Decidable Properties of Context Free Languages . . 107

8 Turing Machines 109
8.1 The Standard Turing Machine . 110

8.1.1 What is a Turing Machine? 110
8.1.1.1 Schematic Drawing of Turing Machine 110
8.1.1.2 Definition of Turing Machine 110
8.1.1.3 Linz Example 9.1 111
8.1.1.4 A Simple Computer 111
8.1.1.5 Linz Example 9.2 112
8.1.1.6 Transition Graph for Turing Machine 112
8.1.1.7 Linz Example 9.3 (Infinite Loop) 113
8.1.1.8 Standard Turing Machine 113
8.1.1.9 Instantaneous Description of Turing Machine . . 114
8.1.1.10 Computation of Turing Machine 115

8.1.2 Turing Machines as Language Acceptors 115
8.1.2.1 Linz Example 9.6 116
8.1.2.2 Linz Example 9.7 116

8.1.3 Turing Machines as Transducers 119
8.1.3.1 Linz Example 9.9 119
8.1.3.2 Linz Example 9.10 120
8.1.3.3 Linz Example 9.11 121

8.2 Combining Turing Machines for Complicated Tasks 123
8.2.1 Introduction . 123
8.2.2 Using Block Diagrams . 123

8.2.2.1 Linz Example 9.12 123
8.2.3 Using Pseudocode . 124

8.2.3.1 Macroinstructions 124

5

8.2.3.2 Linz Example 9.13 124
8.2.3.3 Subprograms . 125
8.2.3.4 Linz Example 9.14 126

8.3 Turing’s Thesis . 126

9 OMIT Chapter 10 127

10 A Hierarchy of Formal Languages and Automata 128
10.1 Recursive and Recursively Enumerable Languages 128

10.1.1 Aside: Countability . 128
10.1.2 Definition of Recursively Enumerable Language 128
10.1.3 Definition of Recursive Language 129
10.1.4 Enumeration Procedure for Recursive Languages 129
10.1.5 Enumeration Procedure for Recursively Enumerable Lan-

guages . 129
10.1.6 Languages That are Not Recursively Enumerable 129
10.1.7 A Language That is Not Recursively Enumerable 131
10.1.8 A Language That is Recursively Enumerable but Not

Recursive . 132
10.2 Unrestricted Grammars . 132
10.3 Context-Sensitive Grammars and Languages 133

10.3.1 Linz Example 11.2 . 133
10.3.2 Linear Bounded Automata (lba) 134
10.3.3 Relation Between Recursive and Context-Sensitive Lan-

guages . 134
10.4 The Chomsky Hierarchy . 134

11 Limits of Algorithmic Computation 136
11.1 Some Problems That Cannot Be Solved with Turing Machines . 136

11.1.1 Computability . 136
11.1.2 Decidability . 137
11.1.3 The Turing Machine Halting Problem 137
11.1.4 Reducing One Undecidable Problem to Another 139

11.2 Undecidable Problems for Recursively Enumerable Languages . . 140
11.3 The Post Correspondence Problem 140
11.4 Undecidable Problems for Context-Free Languages 140
11.5 A Question of Efficiency . 141
11.6 References . 142

Copyright (C) 2015, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

6

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

7

0 Introduction to the Theory of Computation
Why study theory?

1. To understand the concepts and principles underlying the fundamental
nature of computing

• by constructing abstract models of computers and computation
2. To learn to apply the theory to practical areas of computing

• in programming languages, compilers, operating systems, networks,
etc.

3. To have fun!
• from tackling challenging “puzzles” and problems

In this course, we study the following models:

1. automaton (automata)
• an abstraction of the computing mechanism
• takes input, uses temporary storage, makes decisions, and produces

output
2. formal language

• an abstraction of a programming language
• syntax = symbols + grammar rules

3. algorithm
• an abstraction of a mechanical computation
• what are the limits of what we can and cannot compute?

0.1 Mathematical Preliminaries and Notation
The mathematical concepts used in the Linz textbook include:

• sets
• functions
• relations
• graphs
• trees
• proof techniques

0.1.1 Sets

Students in this course should be familiar with the following set concepts from
previous study in mathematics:

• literal set notation such as {a, b, c}, {2, 4, 6, · · · }, and {i : i > 10, i < 100}
• element (member) e ∈ S
• not an element e /∈ S
• union S ∪ T (in one or both)
• intersection S ∩ T (in both)
• difference S − T (in S but not T)
• universal set U (all possible elements)

8

• complementation S̄ (in U but not S)
• empty set ∅ (no elements)
• subset S ⊆ T (all from S in T)
• proper subset S ⊂ T (subset but not equal)
• disjoint sets S ∩ T = ∅ (no common elements)
• finite and infinite sets
• cardinality |S| (number elements of finite set)
• powerset 2S (set of all subsets of a set)
• Cartesian product S × T (set of all ordered pairs)
• partition of a set (breaking a set into mutually disjoint, nonempty subsets

whose intersection is the entire set)

Laws for operations on the empty set:

• S ∪ ∅ = S (identity element for union)
• S ∩ ∅ = ∅ (zero element for intersection)
• ∅̄ = U
• ¯̄S = S (complementation is inverse for itself)

DeMorgan’s Laws:

• ¯S1 ∪ S2 = S̄1 ∩ S̄2
• ¯S1 ∩ S2 = S̄1 ∪ S̄2

0.1.2 Functions

Function f : D → R means that

• f ⊆ D ×R, where
– domain ⊆ D
– range ⊆ R
– f maps an element of its domain to a unique element of its range

Function f is a

• total function if domain = D
• partial function otherwise

0.1.3 Relations

A relation on X and Y is any subset of X × Y .

An equivalence relation ≡ is a generalization of equality. It is:

1. reflexive: x ≡ x∀x
2. symmetric: if x ≡ y then y ≡ x
3. transitive: if x ≡ y and y ≡ z then x ≡ z

0.1.4 Graphs

A graph ⟨V, E⟩ is a mathematical entity where

9

• V = {v1, v2, . . . , vn} is a finite set of vertices (or nodes)

• E = {e1, e2, . . . , em} is a finite set of edges (or arcs)

• each edge ei = (vj , vk) is a pair of vertices

A directed graph (or digraph) is a graph in which each edge ei = (vj , vk) has a
direction from vertex vj to vertex vk.

Edge ei = (vj , vk) on a digraph is an outgoing edge from vertex vj and an
incoming edge to vertex vk.

If there are no directions associated with the edges, then the graph is undirected.

Graphs may be labeled by assigning names or other information to vertices or
edges.

We can visualize a graph with a diagram in which the vertices are shown as
circles and edges as lines connecting a pair of vertices. For directed graphs, the
direction of an edge is shown by an arrow.

Linz Figure 1.1 shows a digraph ⟨V, E⟩ where V = {v1, v2, v3} and edges E =
{(v1v3), (v3, v1), (v3, v2), (v3, v3)}.

Figure 1: Linz Fig. 1.1: Diagram of a Digraph

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is a walk from vj to vn. The
length of the walk is the total number of edges traversed.

A path is a walk with no edge repeated. A path is simple if no vertex is repeated.

A walk from some vertex vi to itself is a cycle with base vi. If no vertex other
than the base is repeated, then the cycle is simple.

In Linz Figure 1.1:

• (v1, v3), (v3, v2) is a simple path from v1 to v2
• (v1, v3), (v3, v3), (v3, v1) is a cycle but not simple

If the edges of a graph are labelled, then the label of a walk (or path) is the
sequence of edges encountered on a traversal.

10

0.1.5 Trees

A tree is a directed graph with no cycles and a distinct root vertex such that
there is exactly one path from the root to every other vertex.

The root of a tree has no incoming edges.

A vertex of a tree without any outgoing edges is a leaf of the tree.

If there is an edge from vi to vj in a tree, then:

• vi is the parent of vj

• vj is a child of vi

The level associated with each vertex is the number of edges in the path from
the root to the vertex.

The height of a tree is the largest level number of any vertex.

If we associated an ordering with the vertices at each level, then the tree is an
ordered tree.

The above terminology is illustrated in Linz Figure 1.2.

Figure 2: Linz Fig. 1.2: A Tree

0.1.6 Proof Techniques

Students in this course should be familiar with the following proof techniques
from previous study in mathematics:

11

• Deduction
– Prove P from axioms and previously proved theorems by a sequence

of steps guaranteed by the rules of logic.
• Contradiction

– Assume P is false, prove a sequence of deductive steps that this leads
to something we know is false. Hence, this is a contradiction. Thus
P must be true.

• Induction
– Basis step: Prove P0 (i.e, for all primitive cases)
– Inductive step: Assume Pn, n ≥ 0, prove Pn+1.

We will see an example of an inductive proof in the next section.

0.2 Three Basic Concepts
Three fundamental ideas are the major themes of this course:

1. languages
2. grammars
3. automata

0.2.1 Languages

Our concept of language is an abstraction of the concept of a natural language.

0.2.1.1 Language Concepts Linz Definition (Alphabet): An alphabet,
denoted by Σ, is a finite, nonempty set of symbols.

By convention, we use lowercase letters near the beginning of the English alphabet
a, b, c, · · · to represent elements of Σ.

For example, if Σ = {a, b}, then the alphabet has two unique symbols denoted
by a and b.

Linz Definition (String): A string is a finite sequence of symbols from the
alphabet.

By convention, we use lowercase letters near the end of the English alphabet
· · · u, v, w, x, y, z to represent strings. We write strings left to right. That is,
symbols appearing to the left are before those appearing to the right.

For example, w = baabaa is a string from the above alphabet. The string begins
with a b and ends with an a.

Linz Definition (Concatenation): The concatenation of strings u and v
means appending the symbols of v to the right end (i.e., after) the symbols of u,
denoted by uv.

If u = a1a2a3 and v = b1b2b3, then uv = a1a2a3b1b2b3.

12

Definition (Associativity): Operation ⊕ is associative on set S if, for all x, y,
and z in S, (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z). We often write associative expressions
without explicit parentheses, e.g., x⊕ y ⊕ z.

String concatenation is associative, that is, (uv)w = u(vw).

Thus we normally just write uvw without parentheses.

Definition (Commutativity): Operation ⊕ is commutative on set S if, for all
x and y in S, x⊕ y = y ⊕ x.

String concatenation is not commutative. That is, uv ̸= vu.

Linz Definition (Reverse): The reverse of a string w, denoted by wR, is the
string with same symbols, but with the order reversed.

If w = a1a2a3, then wR = a3a2a1.

Linz Definition (Length): The length of a string w, denoted by |w|, is the
number of symbols in string w.

Linz Definition (Empty String): The empty string, denoted by λ, is the
string with no symbols, that is, |λ| = 0.

Definition (Identity Element): An operation ⊕ has an identity element e on
set S if, for all x ∈ S, x⊕ e = x = e⊕ x.

The empty string λ is the identity element for concatenation. That is, λw =
wλ = w.

0.2.1.2 Formal Interlude: Inductive Definitions and Induction We
can define the length of a string with the following inductive definition:

1. |λ| = 0 (base case)
2. |wa| = |w|+ 1 (inductive case)

Note: This inductive defintion and proof differs from the textbook. Here we
begin with the empty string.

Using the fact that λ is the identity element and the above definition, we see
that

|a| = |λa| = |λ|+ 1 = 0 + 1 = 1.

Prove |uv| = |u|+ |v|.

Noting the definition of length above, we choose to do an induction over string v
(or, if you prefer, over the length of v, basing induction at 0).

Base case v = λ (that is, length is 0)

|uλ|
= { identity for concatenation } ←− justification for step in braces
|u|

13

= { identity for + }
|u|+ 0

= { definition of length }
|u|+ |λ|

Inductive case v = wa (that is, length is greater than 0)
Induction hypothesis: |uw| = |u|+ |w|

|u(wa)|
= { associativity of concatenation }
|(uw)a|

= { definition of length }
|uw|+ 1

= { induction hypothesis }
(|u|+ |w|) + 1

= { associativity of + }
|u|+ (|w|+ 1)

= { definition of length (right to left) }
|u|+ (|wa|)

Thus we have proved |uv| = |u|+ |v|. QED.

0.2.1.3 More Language Concepts Linz Definition (Substring): A
substring of a string w is any string of consecutive symbols in w.

If w = a1a2a3, then the substrings are λ, a1, a1a2, a1a2a3, a2, a2a3, a3.

Linz Definition (Prefix, Suffix): If w = vu, then v is a prefix of w and u is a
suffix.

If w = a1a2a3, the prefixes are λ, a1, a1a2, a1a2a3.

Linz Definition (wn): wn, for any string w and n ≥ 0 denotes n repetitions of
string (or symbol) w. We further define w0 = λ.

Linz Definition (Star-Closure): Σ∗, for alphabet Σ, is the set of all strings
obtained by concatenating zero or more symbols from the alphabet.

Note: An alphabet must be a finite set.

Linz Definition (Positive Closure): Σ+ = Σ∗ − λ

Although Σ is finite, Σ∗ and Σ+ are infinite.

For a string w, we also write w∗ and w+ to denote zero or more repetitions of
the string and one or more repetitions of the string, respectively.

14

Linz Definition (Language): A language, for some alphabet Σ, is a subset of
Σ∗.

Linz Definition (Sentence): A sentence of some language L is any string
from L (i.e., from Σ∗).

0.2.1.4 Linz Example 1.9: Example Languages Let Σ = {a, b}.

• Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, · · · }.

• {a, aa, aab} is a language on Σ.

Since the language has a finite number of sentences, it is a finite language.

• L = {anbn : n ≥ 0} is also a language on Σ.

Sentences aabb and aaaabbbb are in L, but aaabb is not.

As with most interesting languages, L is an infinite language.

0.2.1.5 Operations on Languages Languages are represented as sets.
Operations on languages can be defined in terms of set operations.

Linz Definition (Union, Intersection, and Difference): Language union,
intersection, and difference are defined directly as the corresponding operations
on sets.

Linz Definition (Concatenation): Language complementation with respect
to Σ∗ is defined such that L̄ = Σ∗ − L.

Linz Definition (Reverse): Language reverse is defined such that LR = {wR :
w ∈ L}. (That is, reverse all strings.)

Linz Definition (Concatenation): Language concatenation is defined such
that L1L2 = {xy : x ∈ L1, y ∈ L2}.

Linz Definition (Ln): Ln means L concatenated with itself n times.

L0 = {λ} and Ln+1 = LnL

Definition (Star-Closure): Star-closure (Kleene star) is defined such that
L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·.

Definition (Positive Closure): Positive closure is defined such that L+ =
L1 ∪ L2 ∪ · · ·.

0.2.1.6 Language Operation Examples Let L = {anbn : n ≥ 0}.

• L2 = {anbnambm : n ≥ 0, m ≥ 0} (where n and m are unrelated).

• abaaabbb ∈ L2.

• LR = {bnan : n ≥ 0}

15

How would we express in L̄ and L∗?

Although set notation is useful, it is not a convenient notation for expressing
complicated languages.

0.2.2 Grammars

0.2.2.1 Grammar Concepts Linz Definition 1.1 (Grammar): A gram-
mar G is a quadruple G = (V, T, S, P) where

V is a finite set of objects called variables.
T is a finite set of objects called terminal symbols.
S ∈ V is a special symbol called the start symbol.
P is a finite set of productions.
V and T are nonempty and disjoint.

Linz Definition (Productions): Productions have form x→ y where:

x ∈ (V ∪T)+, i.e., x is some non-null string of terminals and variables
y ∈ (V ∪ T)∗, i.e., y is some, possibly null, string of terminals and
variables

Consider application of productions, given w = uxv:

• x→ y is applicable to string w.

• To use the production, substitute y for x.

Thus the new string is z = uyv.

We say w derives z, written w ⇒ z.

• Continue by applying any applicable productions in arbitrary order.

w1 ⇒ w2 ⇒ w3 ⇒ · · · ⇒ wn.

Linz Definition (Derives): w1
∗⇒ wn means that w1 derives wn in zero or

more production steps.

Linz Definition (Language Generated): Let G = (V, T, S, P) be a grammar.
Then L(G) = {w ∈ T ∗ : S

∗⇒ w} is the language generated by G.

That is, L(G) is the set of all strings that can be generated from the start symbol
S using the productions P .

Linz Definition (Derivation): A derivation of some sentence w ∈ L(G) is a
sequence S ⇒ w1 ⇒ w2 ⇒ w3 ⇒ · · · ⇒ wn ⇒ w.

The strings S, w1, · · · , wn above are sentential forms of the derivation of sentence
w.

16

0.2.2.2 Linz Example 1.11 (Grammar) Consider G = ({S}, {a, b}, S, P)
where P is the set of productions

• S → aSb
• S → λ

Consider S ⇒ aSb⇒ aaSbb⇒ aabb. Hence, S
∗⇒ aabb.

aabb is a sentence of the language; the other strings in the derivation are sentential
forms.

Conjecture: The language formed by this grammar, L(G), is {anbn : n ≥ 0}.

Usually, however, it is difficult to construct an explicit set definition for a
language generated by a grammar.

Now prove the conjecture.

First, prove that all sentential forms of the language have the structure wi = aiSbi

for i ≥ 0 by induction on i.

Basis step: Clearly, w0 = S is a sentential form, the start symbol.

Inductive step: Assume wm = amSbm is a sentential form, show that wm+1 =
am+1Sbm+1.

Case 1: If we begin with the assumption and apply production S → aSb,
we get sentential form wm+1 = am+1Sbm+1.

Case 2: If we begin with the assumption and apply production S → λ, we
get the sentence ambm rather than a sentential form.

Hence, all sentential forms have the form aiSbi.

Given that S → λ is the only production with terminals on the right side, we
must apply it to derive any sentence. As we noted in case 2 above, application of
the production to any sentential form gives a sentence of the form ambm. QED.

0.2.2.3 Linz Example 1.12: Finding a Grammar for a Language
Given L = {anbn+1 : n ≥ 0}.

• Recursive production S → aSb would generate sentential forms anSbn.

• Need production(s) to add the extra b to the final sentence.

• Suggest S → b.

A slightly different grammar might introduce nonterminal A as follows:

• S → Ab
• A→ aAb
• A→ λ

17

0.2.2.4 More Grammar Concepts To show that a language L is generated
by a grammar G, we must prove:

1. For every w ∈ L, there is a derivation using G.

2. Every string derived from G is in L.

Linz Definition (Equivalence): Two grammars are equivalent if they generate
the same language.

For example, the two grammars given above for the language L = {anbn+1 : n ≥
0} are equivalent.

0.2.2.5 Linz Example 1.13 Let Σ = {a, b} and let na(w) and nb(w) denote
the number of a’s and b’s in the string w.

Let grammar G have productions

S → SS
S → λ
S → aSb
S → bSa

Let L = {w : na(w) = nb(w)}.

Prove L(G) = L.

Informal argument follows. Actual proof would be an induction over length of w.

Consider cases for w.

1. Case w ∈ L(G). Show w ∈ L.

Any production adding an a also adds a b. Thus there is the same number
of a’s and b’s.

2. Case w ∈ L. Show w ∈ L(G).

• Consider w = aw1b or w = bw1a for some w1 ∈ L.

String w was generated by either S → aSb or S → bSa in the first
step.

Thus w ∈ L.

• Consider w = aua (or w = bub) for some u ∈ L.

Examine the symbols of w from the left – add 1 for each a, subtract 1
for each b.

Since sum must be 0 at right, there must be a point where the sum
crosses 0.

Break at that point into form w = w1w2 where w1, w2 ∈ L.

First production is S → SS.

18

Thus w ∈ L(G).

0.2.3 Automata

An automaton is an abstract model of a compute

Figure 3: Linz Fig. 1.4: Schematic Representation of a General Au-
tomaton

As shown in Linz Figure 1.4, a computer:

1. reads input from an input file – one symbol from each cell – left to right

2. produces output

3. may use storage – unlimited number of cells (may be different alphabet)

4. has a control unit

• finite number of states
• state changes in defined manner
• “next-state” or transition function – specifies state changes

A configuration is a state of the control unit, input, and storage.

A move is a transition from one state configuration to another.

Automata can be categorized based on control:

• A deterministic automaton has a unique next state from the current
configuration.

• A nondeterministic automaton has several possible next states.

19

Automata can also be categorized based on output:

• An accepter has only yes/no output.

• A transducer has strings or symbols for output,

Various models differ in

• how the output is produced

• the nature of temporary storage

0.3 Applications
0.3.1 Linz Example 1.15: C Identifiers

The syntax rules for identifiers in the language C are as follows:

• An identifier is a sequence of letters, digits, and underscores.

• An identifier must start with a letter or underscore.

• Identifiers allow both uppercase and lowercase letters.

Formally, we can describe these rules with the grammar:

<id> -> <letter><rest> | <underscr><rest>
<rest> -> <letter><rest> | <digit><rest> |

<underscr><rest> | <lambda>
<letter> -> a|b|c|...|z|A|B|C|...|Z
<digit> -> 0|1|2|...|9
<underscr> -> _

Above <lambda> represents the symbol λ,-> is the → for productions, and |
denotes alternative right-hand-sides of the productions.

The variables are <id>, <letter>, <digit>, <underscr>, and <rest>. The
other alphanumeric symbols are literals.

Linz Figure 1.6 shows a drawing of an automaton that accepts all legal C
identifiers as defined above.

We can interpret the automaton in Linz Figure 1.6 as follows:

• The machine starts in state 1.
• It reads the string left to right, one character at a time.
• If the first character is a <digit> then the machine moves to state 3. The

machine stops reading with answer No (non-accepting).
• If first character is a <letter> or <underscr> then it moves to state 2.

The machine continues.
• As long as the next character is a <letter>, <underscr>, or <digit>,

then the machine reads the input and remains in state 2.
• The machine stops in state 2 when either there is no more input or

unacceptable input.

20

Figure 4: Linz Fig. 1.7: Automaton to Accept C Identifiers

• If no more input and in state 2, then machine stops with answer Yes
(accepting). Otherwise, it stops with the answer No (non-accepting).

0.3.2 Linz Example 1.17: Binary Adder

Let x = a0a1a0 · · · an where ai are bits.

Then value(x) =
∑n

i=0 ai2i.

This is the usual binary representation in reverse.

A serial adder process two such numbers x and y, bit by bit, starting at the left
end. Each bit addition creates a digit for the sum and a carry bit as shown in
Linz Figure 1.7.

A block diagram for the machine is shown in Linz Figure 1.8.

A transducer automaton to carry out the addition of two numbers is shown in
Linz Figure 1.9.

The pair on the edges represents the two inputs. The value following the slash is
the output.

21

Figure 5: Linz Fig. 1.7: Binary Addition Table

Figure 6: Linz Fig. 1.8: Binary Adder Block Diagram

Figure 7: Linz Fig. 1.9: Binary Adder Transducer Automaton

22

1 Finite Automata
In chapter 2, we approach automata and languages more precisely and formally
than in chapter 1.

A finite automaton is an automaton that has no temporary storage (and, like
all automata we consider in this course, a finite number of states and input
alphabet).

1.1 Deterministic Finite Accepters
1.1.1 Accepters

Linz Definition (DFA): A deterministic finite accepter, or dfa, is defined by
the tuple M = (Q, Σ, δ, q0, F) where

• Q is a finite set of internal states

• Σ is a finite set of symbols called the input alphabet

• δ : Q× Σ→ Q is a total function called the transition function

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of final states.

A dfa operates as described in the following pseudocode: currentState
:= q0

position input at left end of string

while more input exists currentInput := next_input_symbol
advance input to right
currentState := δ(currentState,currentInput)

if currentState ∈ F then ACCEPT else REJECT

1.1.2 Transition Graphs

To visualize a dfa, we use a transition graph constructed as follows:

• Vertices represent states
– labels are state names
– exactly one vertex for every qi ∈ Q

• Directed edges represent transitions
– label on edge is current input symbol
– directed edge (q, r) with label a if and only if δ(q, a) = r

1.1.3 Linz Example 2.1

The graph pictured in Linz Figure 2.1 represents the dfa M = ({q0, q1, q2}, {0, 1}, δ, q0, {q1}),
where δ is represented by

23

δ(q0, 0) = q0, δ(q0, 1) = q1
δ(q1, 0) = q0, δ(q1, 1) = q2
δ(q2, 0) = q2, δ(q2, 1) = q1

Note that q0 is the initial state and q1 is the only final state in this dfa.

Figure 8: Linz Fig. 2.1: DFA Transition Graph

The dfa in Linz Figure 2.1:

• Accepts 01, 101
• Rejects 00, 100

What about 0111? 1100?

1.1.4 Extended Transition Function for a DFA

Linz Definition: The extended transition function δ∗ : Q× Σ∗ → Q is defined
recursively:

δ∗(q, λ) = q
δ∗(q, wa) = δ(δ∗(q, w), a)

The extended transition function gives the state of the automaton after reading
a string.

1.1.5 Language Accepted by a DFA

Linz Definition 2.2 (Language Accepted by DFA): The language accepted
by a dfa M = (Q, Σ, δ, q0, F) is L(M) = {w ∈ Σ∗ : δ∗(q0, w) ∈ F}.

That is, L(M) is the set of all strings on the input alphabet accepted by
automaton M.

Note that above δ and δ∗ are total functions (i.e., defined for all strings).

1.1.6 Linz Example 2.2

The automaton in Linz Figure 2.2 accepts all strings consisting of arbitrary
numbers of a’s followed by a single b.

In set notation, the language accepted by the automaton is L = {anb : n ≥ 0}.

24

Note that q2 has two self-loop edges, each with a different label. We write this
compactly with multiple labels.

Figure 9: Linz Fig. 2.2: DFA Transition Graph with Trap State

A trap state is a state from which the automaton can never “escape”.

Note that q2 is a trap state in the dfa transition graph shown in Linz Figure 2.2.

Transition graphs are quite convenient for understanding finite automata.

For other purposes–such as representing finite automata in programs–a tabular
representation of transition function δ may also be convenient (as shown in Linz
Fig. 2.3).

Figure 10: Linz Fig. 2.3: DFA Transition Table

1.1.7 Linz Example 2.3

Find a deterministic finite accepter that recognizes the set of all string on
Σ = {a, b} starting with the prefix ab.

Linz Figure 2.4 shows a transition graph for a dfa for this example.

The dfa must accept ab and then continue until the string ends.

This dfa has a final trap state q2 (accepts) and a non-final trap state q3 (rejects).

1.1.8 Linz Example 2.4

Find a dfa that accepts all strings on {0, 1}, except those containing the substring
001.

25

Figure 11: Linz Fig. 2.4

• need to “remember” whether last two inputs were 00

• use state changes for “memory”

Linz Figure 2.5 shows a dfa for this example.

Figure 12: Linz Fig. 2.5

Accepts: λ, 0, 00, 01, 010000

Rejects: 001, 000001, 0010101010101

1.1.9 Regular Languages

Linz Definition 2.3 (Regular Language): A language L is called regular if
and only if there exists a dfa M such that L = L(M).

Thus dfas define the family of languages called regular.

26

1.1.10 Linz Example 2.5

Show that the language L = {awa : w ∈ {a, b}∗} is regular.

• Construct a dfa.

• Check whether begin/end with “a”.

• Am in final state when second a input.

Linz Figure 2.6 shows a dfa for this example.

Figure 13: Linz Fig. 2.6

Question: How would we prove that a languages is not regular?

We will come back to this question in chapter 4.

1.1.11 Linz Example 2.6

Let L be the language in the previous example (Linz Example 2.5).

Show that L2 is regular.

L2 = {aw1aaw2a : w1, w2 ∈ {a, b}∗}.

• Construct a dfa.

• Use Example 2.5 dfa as starting point.

• Accept two consecutive strings of form awa.

• Note that any two consecutive a’s could start a second string.

27

Linz Figure 2.7 shows a dfa for this example.

Figure 14: Linz Fig. 2.7

The last example suggests the conjecture that if a language L then so is L2, L3,
etc.

We will come back to this issue in chapter 4.

1.2 Nondeterministic Finite Accepters
1.2.1 Nondeterministic Accepters

Linz Definition 2.4 (NFA): A nondeterministic finite accepter or nfa is
defined by the tuple M = (Q, Σ, δ, q0, F) where Q, Σ, q0, and F are defined as
for deterministic finite accepters, but

δ : Q× (Σ ∪ {λ})→ 2Q.

Remember for dfas:

• Q is a finite set of internal states.

• Σ is a finite set of symbols called the input alphabet.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of final states.

The key differences between dfas and nfas are

1. dfa: δ yields a single state
nfa: δ yields a set of states

2. dfa: consumes input on each move
nfa: can move without input (λ)

28

3. dfa: moves for all inputs in all states
nfa: some situations have no defined moves

An nfa accepts a string if some possible sequence of moves ends in a final state.

An nfa rejects a string if no possible sequence of moves ends in a final state.

1.2.2 Linz Example 2.7

Consider the transition graph shown in Linz Figure 2.8.

Figure 15: Linz Fig. 2.8

Note the nondeterminism in state q0 with two possible transitions for input a.

Also state q3 has no transition for any input.

1.2.3 Linz Example 2.8

Consider the transition graph for an nfa shown in Linz Figure 2.9.

Figure 16: Linz Fig. 2.9

Note the nondeterminism and the λ-transition.

29

Note: Here λ means the move takes place without consuming any input symbol.
This is different from accepting an empty string.

Transitions:

• for (q0, 0)?

• for (q1, 0)?

• for (q2, 0)?

• for (q2, 1)?

Accepts: λ, 10, 1010, 101010

Rejects: 0, 11

1.2.4 Extended Transition Function for an NFA

As with dfas, the transition function can be extended so its second argument is
a string.

Requirement: δ∗(qi, w) = Qj where Qj is the set of all possible states the
automaton may be in, having started in state qi and read string w.

Linz Definition (Extended Transition Function): For an nfa, the extended
transition function is defined so that δ∗(qi, w) contains qj if there is a walk in
the transition graph from qi to qj labelled w.

1.2.5 Language Accepted by an NFA

Linz Definition 2.6 (Language Accepted by NFA): The language L
accepted by the nfa M = (Q, Σ, δ, q0, F) is defined

L(M) = {w ∈ Σ∗ : δ∗(q0, w) ∈ F ̸= ∅}.

That is, L(M) is the set of all strings w for which there is a walk labeled w from
the initial vertex of the transition graph to some final vertex.

1.2.6 Linz Example 2.10 (Example 2.8 Revisited)

Let’s again examine the automaton given in Linz Figure 2.9 (Example 2.8).

This nfa, call it M :

• must end in q0

• L(M) = {(10)n : n ≥ 0}

Note that q2 is a dead configuration because δ∗(q0, 110) = ∅.

30

Figure 17: Linz Fig. 2.9 (Repeated)

1.2.7 Why Nondeterminism

When computers are deterministic?

• an nfa can model a search or backtracking algorithm

• nfa solutions may be simpler than dfa solutions (can convert from nfa to
dfa)

• nondeterminism may model externally influenced interactions (or abstract
more detailed computations)

1.3 Equivalence of DFAs and NFAs
1.3.1 Meaning of Equivalence

When are two mechanisms (e.g., programs) equivalent?

• When they have exactly the same descriptions?

• When they always go through the exact same sequence of steps?

• When the same input generates the same output for both?

The last seems to be the best approach.

Linz Definition 2.7 (DFA-NFA Equivalence): Two finite accepters M1 and
M2 are said to be equivalent if L(M1) = L(M2). That is, if they both accept
the same language.

Here “same language” refers to the input and “both accept” refers to the output.

Often there are many accepters for a language.

Thus there are many equivalent dfa and nfas.

1.3.2 Linz Example 2.11

Again consider the nfa represented by the graph in Linz Fig. 2.9. Call this M1.

As we saw, L(M1) = {(10)n : n ≥ 0}.

31

Figure 18: Linz Fig. 2.9 (Repeated): An NFA

Now consider the dfa represented by the graph in Linz Figure 2.11. Call this
M2.

Figure 19: Linz Fig. 2.11: DFA Equivalent to Fig. 9 NFA

L(M2) = {(10)n : n ≥ 0}.

Thus, M1 is equivalent to M2.

1.3.3 Power of NFA versus DFA

Which is more powerful, dfa or nfa?

Clearly, any dfa D can be made into a nfa N .

• Keep the same states.
• Define δN (q, a) = {δD(q, a)}.

Can any nfa N be made into a dfa D?

• Yes, but it is less obvious. (See theorem below.)

Thus, dfas and nfas are “equally powerful”.

32

Linz Theorem 2.2 (Existence of DFA Equivalent to NFA): Let L be the
language accepted by the nfa MN = (QN , Σ, δN , q0, FN). Then there exists a
dfa MD = (QD, Σ, δD, {q0}, FD) such that L = L(MD).

A pure mathematician would be content with an existence proof.

But, as computing scientists, we want an algorithm for construction of MD from
MN . The proof of the theorem follows from the correctness of the following
algorithm.

Key ideas:

• After reading w, MN will be in the some state from {qi, qj , . . . qk}. That
is, δ∗(q0, w) = {qi, qj , . . . qk}.

• Label the dfa state that has accepted w with the set of nfa states
{qi, qj , . . . qk}. This is an interesting “trick”!

Remember from the earlier definitions in these notes and from discrete mathe-
matics:

• Σ is finite (and the same for the nfa and dfa).

• QN is finite.

• δD is a total function. That is, every vertex of the dfa graph has |Σ|
outgoing edges.

• The maximum number of dfa states with the above labeling is |2QN | = 2|QN |.
Hence, finite.

• The maximum number of dfa edges is 2|QD||Σ|. Hence, finite.

Procedure nfa_to_dfa

Given a transition graph GN for nfa MN = (QN , Σ, δN , q0, FN), construct a
transition graph GD for a dfa MD = (QD, Σ, δD, q0, FD). Label each vertex in
GD with a subset of the vertices in GN .

1. Initialize graph GD to have an initial vertex {q0} where q0 is the initial
state of GN .

2. Repeat the following steps until no more edges are missing from GD:

a. Take any vertex from GD labeled {qi, qj , . . . qk} that has no outgoing
edge for some a ∈ Σ.

b. For this vertex and input, compute δ∗
N (qi, a), δ∗

N (qj , a), . . . δ∗
N (qk, a).

(Each of these is a set of states from QN .)

c. Let {ql, qm, . . . qn} be the union of all δ∗
N sets formed in the previous

step.

d. If vertex {ql, qm, . . . qn} constructed in the previous step (step 2c) is
not already in GD, then add it to GD.

33

e. Add an edge to GD from vertex {qi, qj , . . . qk} (vertex selected in
step 2b) to vertex {ql, qm, . . . qn} (vertex possibly created in step 2d)
and label the new edge with a (input selected in step 2b).

3. Make every vertex of GD whose label contains any vertex qf ∈ FN a final
vertex of GD.

4. If MN accepts λ, then vertex {q0} in GD is also a final vertex.

This, if the loop terminates, it constructs the dfa corresponding to the nfa.

Does the loop terminate?

• Each iteration of the loop adds one edge to GD.

• There are a finite number of edges possible in GD.

• Thus the loop must terminate.

What is the loop invariant? (This ia a property always that must hold at the
loop test.)

• If there is a walk ({q0}, . . . {. . . qi, . . .}) in GD labeled w, then there is a
walk (q0, . . . qi) in GN labeled w.

1.3.4 Linz Example 2.12

Convert the nfa in Linz Figure 2.12 to an equivalent dfa.

Intermediate steps are shown in Figures 2.12-1 and 2.12-2, with the final results
in Linz Figure 2.13.

Figure 20: Linz Fig. 2.12: An NFA

1.3.5 Linz Example 2.13

Convert the nfa shown in Linz Figure 2.14 into an equivalent dfa.

34

Figure 21: Intermediate Fig. 2.12-1

Figure 22: Intermediate Fig. 2.12-2

35

Figure 23: Linz Fig. 2.13: Corresponding DFA

36

Figure 24: Linz Fig. 2.14: An NFA

δD({q0}, 0) = δ∗
N (q0, 0) = {q0, q1}

δD({q0}, 1) = δ∗
N (q0, 1) = {q1}

δD({q0, q1}, 0) = δ∗
N (q0, 0) ∪ δ∗

N (q1, 0) = {q0, q1, q2}

δD({q0, q1, q2}, 1) = δ∗
N (q0, 1) ∪ δ∗

N (q1, 1) ∪ δ∗
N (q2, 1) = {q1, q2}

The above gives us the partially constructed dfa shown in Linz Figure 2.15.

Figure 25: Linz Fig. 2.15

δD({q1}, 0) = δ∗
N (q1, 0) = {q2}

δD({q1}, 1) = δ∗
N (q1, 1) = {q2}

δD({q2}, 0) = δ∗
N (q1, 0) = ∅

δD({q2}, 1) = δ∗
N (q2, 1) = {q2}

37

δD({q0, q1}, 1) = δ∗
N (q0, 1) ∪ δ∗

N (q1, 1) = {q1, q2}

δD({q0, q1, q2}, 0) = δ∗
N (q0, 0) ∪ δ∗

N (q1, 0) ∪ δ∗
N (q2, 0) = {q0, q1, q2}

δD({q1, q2}, 0) = δ∗
N (q1, 0) ∪ δ∗

N (q2, 0) = {q2}

δD({q1, q2}, 1) = δ∗
N (q1, 1) ∪ δ∗

N (q2, 1) = {q2}

Now, the above gives us the dfa shown in Linz Figure 2.16.

Figure 26: Linz Fig. 2.16: Corresponding DFA for NFA

1.4 Reduction in the Number of States in Finite Automata
This section is not covered in this course.

38

2 Regular Languages and Regular Grammars
Regular languages

• are accepted by dfas and nfas
• but dfas and nfas are not concise descriptions

Thus we will examine other notations for representing regular languages.

2.1 Regular Expressions
2.1.1 Syntax

We define the syntax (or structure) of regular expressions with an inductive
definition.

Linz Definition 3.1 (Regular Expression): Let Σ be a given alphabet.
Then:

1. ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive
regular expressions.

2. If r1 and r2 are regular expressions, then r1 + r2, r1 · r2, r∗
1 , and (r1) are

also regular expressions.

3. A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a finite number of applications of the rules
in (2).

We use the the regular expression operators as follows:

• r + s represents the union of two regular expressions.

• r · s is the concatenation of two regular expressions.

• r∗ is the star closure of a regular expression.

• (r) is the same as regular expression r. It is parenthesized to express the
order of operations explicitly.

For example, consider regular expression (a + (b · c))∗ over the alphabet {a, b, c}.
Note the use of parentheses.

• a, b, and c are primitive regular expressions.

• (b · c) is a concatenation of regular expressions a and b.

• (a + (b · c)) is union of regular expressions a and (b · c).

• (a + (b · c))∗ is the star-closure of regular expression (a + (b · c)).

As with arithmetic expressions, precedence rules and conventions can be used to
relax the need for parentheses.

39

• Star-closure (∗) has a higher precedence (i.e., priority or binding power)
than concatenation (·). That is, r · s∗ is equal to r · (s∗), not (r · s)∗.

• Concatenation (·) higher precedence than union (+). That is, r · s + t is
equal to (r · s) + t, not r · (s + t). And, transitively, star-closure has a
higher precedence than concatenation.

• Concatenation operator (·) can usually be omitted. That is, rs means r · s.

A string (a + b+) is not a regular expression. It cannot be generated using the
above definition (as augmented by the precedence rules and convention).

2.1.2 Languages Associated with Regular Expressions

But what do we “mean” by a regular expression? That is, what is its semantics.

In particular, what languages do regular expressions describe?

Consider the regular expression (a+(b ·c))∗ from above. As implied by the names
for the operators, we intend this regular expression to represent the language
({a} ∪ {bc})∗ which is {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, bcaa, . . .}.

We again give an inductive definition for the language described by a regular
expression. It must consider all the cases given in the definition of regular
expression itself.

Linz Definition 3.2: The language L(r) denoted by any regular expression r is
defined (inductively) by the following rules.

Base cases:

1. ∅ is a regular expression denoting the empty set.
2. λ is a regular expression denoting {λ}.
3. For every a ∈ Σ, a is a regular expression denoting {a}.

Inductive cases: If r1 and r2 are regular expressions, then

4. L(r1 + r2) = L(r1) ∪ L(r2)
5. L(r1 · r2) = L(r1)L(r2)
6. L((r1)) = L(r1)
7. L(r∗

1) = (L(r1))∗

2.1.3 Linz Example 3.2

Show the language L(a∗ · (a + b)) in set notation.

L(a∗ · (a + b))
= { Rule 5 }

L(a∗)L(a + b)
= { Rule 7 }

(L(a))∗L(a + b)

40

= { Rule 4 }
(L(a))∗(L(a) ∪ L(b))

= { definition of star-closure of languages }
{λ, a, aa, aaa, . . .}{a, b}

= { definition of concatenation of languages }
{a, aa, aaa, ..., b, ab, aab, aaab, . . .}

2.1.4 Examples of Languages for Regular Expressions

Consider the languages for the following regular expressions.

L(a∗ · b · a∗ · b · (a + b)∗) = {a}∗{b}{a}∗{b}{a, b}∗

= {w : w ∈ {a, b}∗, nb(w) ≥ 2}
L((a + b)∗ · b · a∗ · b · a∗) = {a, b}∗{b}{a}∗{b}{a}∗

= same as above
L((a + b)∗ · b · (a + b)∗ · b · (a + b)∗) = {a, b}∗{b}{a, b}∗{b}{a, b}∗

= same as above

2.1.5 Linz Example 3.4

Consider the regular expression r = (aa)∗(bb)∗b.

• This expression denotes the set of all strings with an even number of a’s
followed by an odd number of b’s.

• In set notation, L(r) = {a2nb2m+1 : n ≥ 0, m ≥ 0}.

2.1.6 Linz Example 3.5

For Σ = {0, 1}, give a regular expression r such that L(r) = {w ∈ Σ∗ :
w has at least one pair of consecutive zeros }.

• 00 must appear somewhere in any string.
• Before and after 00 there is an arbitrary string (0 + 1)∗.
• r = (0 + 1)∗00(0 + 1)∗

2.1.7 Examples of Regular Expressions for Languages

Show regular expressions on the alphabet {a, b} for the following languages.

• exactly one “a” b∗ab∗

• at least one “a” b∗a(a + b)∗ – featuring first a
(a + b)∗a(a + b)∗ – featuring middle a
(a + b)∗ab∗ – featuring last a

• at most one “a” b∗ab∗ + b∗

b∗(a + λ)b∗

41

• all a’s immediately followed by a b (b∗abb∗)∗ + b∗

2.2 Connection Between Regular Expressions and Regular
Languages

2.2.1 Regular Expressions Denote Regular Languages

Regular expressions provide a convenient and concise notation for describing
regular languages.

Linz Theorem 3.1 (NFAs for Regular Expressions): Let r be a regular
expression. Then there exists some nondeterministic finite accepter (nfa) that
accepts L(r). Consequently, L(r) is a regular language.

Proof Sketch: Show that any regular expression generated from the inductive
definition corresponds to an nfa. Here we proceed informally.

Linz Figure 3.1 diagrammatically demonstrates that there are nfas that corre-
spond to the primitive regular expressions.

(a) nfa accepts ∅
(b) nfa accepts {λ}
(c) nfa accepts {a}

Figure 27: Linz Fig. 3.1: Primitive Regular Expressions as NFA

Linz Figure 3.2 shows a general scheme for a nondeterministic finite accepter
(nfa) that accepts L(r), with an initial state and one final state.

Figure 28: Linz Fig. 3.2: Scheme for NFA Accepting L(r)

Linz Figure 3.3 gives an nfa for L(r1 + r2). Note the use of λ-transitions to
connect the two machines to the new initial and final states.

Linz Figure 3.4 shows an nfa for L(r1r2). Again note the use of λ-transitions to
connect the two machines to the new initial and final states.

42

Figure 29: Linz Fig. 3.3: NFA for Union

Figure 30: Linz Fig. 3.4: NFA for Concatenation

Linz Figure 3.5 shows an nfa for L(r∗
1). Note the use of λ-transitions to represent

zero-or-more repetitions of the machine and to connect it to the new initial and
final states.

Figure 31: Linz Fig. 3.5: NFA for Star-Closure

Thus, Linz Figures 3.3 to 3.5 illustrate composing nfas for any regular expression
from the nfas for its subexpressions. Of course, the initial and final states of
components are replaced by the initial and final states of the composite nfa.

2.2.2 Linz Example 3.7

Show an nfa that accepts r = (a + bb)∗(ba∗ + λ).

Linz Figure 3.6, part (a), shows M1 that accepts L(a + bb). Part (b) shows M2
that accepts L(ba∗ + λ).

Linz Figure 3.7 shows an nfa that accepts L((a + bb)∗(ba∗ + λ).

43

Figure 32: Linz Fig. 3.6: Toward a Solution to Ex. 3.6

Figure 33: Linz Fig. 3.7: Solution for Ex. 3.6

2.2.3 Converting Regular Expressions to Finite Automata

The construction in the proof sketch and example above suggest an algorithm
for converting regular expressions to nfas.

This algorithm is adapted from pages 273-4 of the book: James L. Hein, Theory
of Computation: An Introduction, Jones and Bartlett, 1996.

The diagrams in this section are from the Hein book, which uses a slightly
different notation than the Linz book. In particular, these diagrams use capital
letters for the expressions.

Algorithm to convert a regular expression to an nfa

• Start with a “machine” with a single start state, a single final state, and a
connecting edge labeled with the regular expression.

• While there are edges labeled with regular expressions other than elements
of the alphabet or λ apply any of the following rules that are applicable:

1. If an edge is labeled with ∅, then remove the edge.

2. If an edge is labeled with r + s, then replace the edge with two edges
labeled with r and s connecting the same source and destination

44

states.

3. If an edge is labeled with r ·s, the replace the edge with an edge labeled
r connecting the source to a new intermediate state, followed by an
edge labeled s connecting the intermediate state to the destination.

4. If an edge is labeled with r∗, then replace the edge with a new
intermediate state with a self-loop labeled r with edges labeled λ
connecting the source to the intermediate state and the intermediate
state to the destination.

End of Algorithm

Rule 2 in the above algorithm can result in an unbounded number of edges
originating at the same state. This makes the algorithm difficult to implement.
To remedy this situation, replace Rule 2 as follows.

2. If an edge is labeled with r + s, then replace the edge with subgraphs
for each of r and s. The subgraph for r consists of with a new source
state connected to a new destination state with an edge labeled r. Add

45

edges labeled λ to connect the original source state to the new source state
and the original destination state to the new destination state. Proceed
similarly for s.

2.2.4 Example Conversion of Regular Expression to NFA

This example is from page 275 of the Hein textbook cited above.

Construct an nfa for a∗ + a · b.

Start with a the two-state initial diagram.

Next, apply Rule 2 to a∗ + a · b.

Next, apply Rule 4 to a∗.

Finally, apply Rule 3 to a · b.

46

2.2.5 Converting Finite Automata to Regular Expressions

The construction in the proof sketch and example above suggest an algorithm
for converting finita automata to regular expressions.

This algorithm is adapted from page 276 of the book: James L. Hein, Theory of
Computation: An Introduction, Jones and Bartlett, 1996.

Algorithm to convert a finite automaton to a regular expression

Begin with a dfba or an nfa.

1. Create a new start state s and connect this to the original start state with
an edge labeled λ.

2. Create a new final state f and connect the original final states to this state
by edges labeled λ.

3. For each pair of states i and j that has more than one edge connecting
them, replace all the edges with the regular expression formed using union
(+) to combine the labels on the previous edges.

4. Construct a sequence of new machines by eliminating one state at a time
until the only states remaining are s and f . To eliminate some state k,
construct a new machine as follows.

• Let old(i, j) represent the label on the edge (i, j) on the current (i.e.,
old) machine.

• If there is no edge (i, j), then set old(i, j) = ∅.

• For every pair of edges (i, k) and (k, j), where i ≠ k and j ≠ k,
calculate a new edge label new(i, j) as follows:

new(i, j) = old(i, j) + old(i, k) old(k, k)∗ old(k, j)

• For all other edges (i, j), where i ̸= k and j ̸= k, set:

new(i, j) = old(i, j).

• The states of the new machine are the states of the old machine with
state k eliminated. The edges of the new machine are the (i, j) where
the new(i, j) has been calculated.

47

After eliminating all states except s and f , the regular expression is the label on
the one edge remaining.

End of Algorithm

2.2.6 Example Conversion of Finite Automata to Regular Expressions

This example is from pages 277-8 of the Hein textbook cited above.

Consider the following dfa.

After applying Rule 1 (new start state), Rule 2 (new final state), and Rule 3
(create union), we get the following machine.

We can eliminate state 2 readily because it is trap state. That is, there is no
path through 2 between edges adjacent to 2, so new(i, j) = old(i, j) for any
states i ̸= 2 and j ̸= 2. The resulting machine is as follows.

To eliminate state 0, we construct a new edge that is labeled as follows:

• new(s, 1) = old(s, 1) + old(s, 0) old(0, 0)∗ old(0, 1)
= ∅+ λ∅∗a
= a

Thus, we can eliminate state 0 and its edges and add a new edge (s, 1) labeled a.

48

We can eliminate state 1 by adding a new edge (s, f) labeled as follows

• new(s, f) = old(s, f) + old(s, 1) old(1, 1)∗ old(1, f)
= ∅+ a(a + b)∗λ
= a(a + b)∗

Thus the regular expression is a(a + b)∗.

2.2.7 Another Example Conversion of Finite Automa to Regular
Expressions

This example is from pages 277-8 of the Hein textbook cited above.

Consider the following dfa. Verify that it corresponds to the regular expression
(a + b)∗abb.

Applying Rules 1 and 2 (adding new start and final states), we get the following
machine.

To eliminate state 0, we add the following new edges.

• new(s, 1) = ∅+ λb∗a = b∗a

• new(3, 1) = a + bb∗a = (λ + bb∗)a = b∗a

We can eliminate either state 2 or state 3 next. Let’s choose 3. Thus we create
the following new edges.

• new(2, f) = ∅+ b∅∗λ = b

• new(2, 1) = a + b∅∗b∗a = a + bb∗a = (λ + bb∗)a = b∗a

49

Now we eliminate state 2 and thus create the new edges.

• new(1, f) = ∅+ b∅∗b = bb

• new(1, 1) = a + b∅∗b∗a = (λ + bb∗)a = b∗a

Finally, we remove state 1 by creating a new edge.

• new(s, f) = ∅+ b∗a(b∗a)∗bb
= b∗(b∗a)∗abb
= (a + b)∗abb

2.2.8 Regular Expressions for Describing Simple Patterns

Pascal integer constants

Regular expression sdd∗ where

• s : sign from {+,−, λ}
• d : digit from {0, 1, ..., 9}

Pattern matching

• Unix ed /aba∗c/ (different syntax)
• Find pattern in text

Program for Pattern Matching

We can convert a regular expression to an equivalent nfa, the nfa to a dfa, and
the dfa to a transition table. We can use the transition table to drive a program
for pattern matching.

For a more effiicent program, we can apply the state reduction algorithm to the
dfa before converting to a transition table. Linz section 2.4, which we did not

50

cover this semester, discusses this algorithm.

2.3 Regular Grammars
We have studied two ways of describing regular languages–finite automata
(i.e. dfas, nfas) and regular expressions. Here we examine a third way–regular
grammars.

Linz Definition 3.3 (Right-Linear Grammar): A grammar G = (V, T, S, P)
is said to be right-linear if all productions are of one of the forms

A→ xB
A→ x

where A, B ∈ V and x ∈ T ∗.

Similarly, a grammar is said to be left-linear if all productions are of the form
A→ Bx or A→ x.

A regular grammar is one that is either right-linear or left-linear.

• one variable on right at most
• consistently rightmost (or leftmost)

2.3.1 Linz Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as

• S → abS | a

is right-linear.

The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

• S → S1ab
• S1 → S1ab | S2
• S2 → a

is left linear. Both G1 and G2 are regular grammars.

L(G1) = L((ab)∗a)

L(G2) = L(aab(ab)∗)

2.3.2 Linz Example 3.14

The grammar G = ({S, A, B}, {a, b}, S, P) with productions

• S → A
• A→ aB | λ
• B → Ab

51

is not regular.

Although every production is either in right-linear or left-linear form, the gram-
mar itself is neither right-linear nor left-linear, and therefore is not regular. The
grammar is an example of a linear grammar.

Definition (Linear Grammar): A linear grammar is a grammar in which at
most one variable can appear on the right side of any production.

2.3.3 Right-Linear Grammars Generate Regular Languages

Linz Theorem 3.3 (Regular Languages for Right-Linear Grammars):
Let G = (V, T, S, P) be a right-linear grammar. Then L(G) is a regular language.

Strategy: Because a regular language is any language accepted by a dfa or nfa,
we seek to construct an nfa that simulates the derivations of the right-linear
grammar.

The algorithm below incorporates this idea. It is based on the algorithm given on
page 314 of the book: James L. Hein, Theory of Computation: An Introduction,
Jones and Bartlett, 1996.

Algorithm to convert a regular grammar to an nfa

Start with a right-linear grammar and construct an equivalent nfa. We label
the nfa’s states primarily with variables from the grammar and label edges with
terminals in the grammar or λ.

1. If necessary, transform the grammar so that all productions have the form
A→ x or A→ xB, where x is either a terminal in the grammar or λ.

2. Label the start state of the nfa with the start symbol of the grammar.

3. For each production I → aJ , add a state transition (edge) from a state I
to a state J with the edge labeled with the symbol a.

4. For each production I → J , add a state transition (edge) from a state I to
a state J with the edge labeled with λ.

5. If there exist productions of the form I → a, then add a single new state
symbol F . For each production of the form I → a, add a state transition
from I to F labeled with symbol a.

6. The final states of the nfa are F plus all I such there is a production of
the form I → λ.

End of algorithm

2.3.4 Example: Converting Regular Grammar to NFA

Construct an nfa for the following regular grammar G:

• S → aS | bI

52

• I → a | aI

The grammar is in the correct form, so step 1 of the grammar is not applicable.
The following sequence of diagrams shows the use of steps 2, 3 (three times), 5,
and 6 of the algorithm. Step 4 is not applicable to this grammar.

53

Note that L(G) = L(a∗ba∗a).

54

2.3.5 Linz Example 3.5

This is similar to the example in the Linz textbook, but we apply the algorithm
as stated above.

Construct an nfa for the regular grammar G:

• V0 → aV1

• V1 → abV0 | b

First, let’s transform the grammar according to step 1 of the regular grammar
to nfa algorithm above.

• V0 → aV1
• V1 → aV2 | b
• V2 → bV0

Applying steps 2, 3 (three times), 5, and 6 of algorithm as show below, we
construct the following nfa. Step 4 was not applicable in this problem.

Note that L(G) = L((aab)∗ab).

2.3.6 Right-Linear Grammars for Regular Languages

Linz Theorem 3.4 (Right-Linear Grammars for Regular Languages):
If L is a regular language on the alphabet Σ, then there exists a right-linear
grammar G = (V, Σ, S, P) such that L = L(G).

Strategy: Reverse the construction of an nfa from a regular grammar given
above.

The algorithm below incorporates this idea. It is based on the algorithm given
on page 312 of the Hein textbook cited above.

55

Algorithm to convert an nfa to a regular grammar

Start with an nfa and construct a regular grammar.

1. Relabel the states of the nfa with capital letters.

2. Make the start state label the start symbol for the grammar.

3. For each transition (edge) from a state I to a state J labeled with an
alphabetic symbol a, add a production I → aJ to the grammar.

4. For each transition (edge) from a state I to a state J labeled with λ, add
a production I → J to the grammar.

5. For each final state labeled K, add a production K → λ to the grammar.

End of algorithm

2.3.7 Example: Converting NFA to Regular Grammar

Consider the following nfa (adapted from the Hein textbook page 313). (The
Hein book uses Λ instead of λ to label silent moves and empty strings.)

We apply the steps of the algorithm as follows.

1. The nfa states are already labeled as specified.

2. Choose S as start symbol for grammar.

3. Add the following productions:

• S → aI
• I → bK
• J → aJ
• J → aK

4. Add the following production:

• S → J

56

5. Add the following production:

• K → λ

So, combining the above productions, we get the final grammar:

• S → aI | J
• I → bK
• J → aJ | aK
• K → λ

2.3.8 Equivalence Between Regular Languages and Regular Gram-
mars

Linz Theorem 3.5 (Equivalence of Regular Languages and Left-Linear
Grammars): A language L is regular if and only if there exists a left-linear
grammar G such that L = L(G).

Linz Theorem 3.6(Equivalence of Regular Languages and Right-Linear
Grammars): A language L is regular if and only if there exists a regular
grammar G such that L = L(G).

The four theorems from this section enable us to convert back and forth among
finite automata and regular languages as shown in Linz Figure 3.19. Remember
that Linz Theorem 2.2 enabled us to translate from nfa to dfa.

Figure 34: Linz Fig. 3.19: Equivalence of Regular Languages and
Regular Grammars

57

3 Properties of Regular Languages
The questions answered in this chapter include:

• What can regular languages do?
• What can regular languages not do?

The concepts introduced in this chapter are:

• Closure of operations on regular languages
• Membership, finiteness, and equality of regular languages
• Identification of nonregular languages

3.1 Closure Properties of Regular Languages
3.1.1 Mathematical Interlude: Operations and Closure

Definition (Operation): An operation is a function p : V → Y where V ∈
X1×X2×· · ·×Xk for some sets Xi with 0 ≤ i ≤ k. k is the number of operands
(or arguments) of the operation.

• If k = 0, then p is a nullary operation.
• If k = 1, then p is a unary operation.
• If k = 2, then p is a binary operation.
• etc.

We often use special notation and conventions for unary and binary operations.
For example:

• a binary operation may be written in an infix style as in x + y and x · y

• a unary operation may be written in a prefix style as in −x, suffix style
such as x∗, or special style such as

√
3 or S̄

• a binary operation may be implied by the juxtaposition such as 3x for
multiplication or (in a different context) xy for string concatenation or
implied by superscripting such as x2 for exponentiation

Often we consider an operations on a set, where all the operands and the result
are drawn from the same set.

Definition (Closure): A set S is closed under a unary operation p if, for all
x ∈ S, p(x) ∈ S. Similarly, a set S is closed under a binary operation ⊙ if, for
all x ∈ S and y ∈ S, x⊙ y ∈ S.

Examples arithmetic on the set of natural numbers (N = {0, 1, ...})

• Binary operations addition (+) and multiplication (∗ in programming
languages) are closed on N

– ∀x, y ∈ N, x + y ∈ N
– ∀x, y ∈ N, x ∗ y ∈ N

58

• Binary operations subtraction (−) and division (/) are not closed on N

– ∃x, y ∈ N, x− y /∈ N
For example, 1− 2 is not a natural number.

– ∃x, y ∈ N, x/y /∈ N
For example, 3/2 is not a natural number.

• Unary operation negation (operator − written in prefix form) is not closed
on N.

However, the set of integers is closed under subtraction and negation. But it is
not closed under division or square root (as we normally define the operations).

Now, let’s consider closure of the set of regular languages with respect to the
simple set operations.

3.1.2 Closure under Simple Set Operations

Linz Theorem 4.1 (Closure under Simple Set Operations): If L1 and L2
are regular languages, then so are L1 ∪ L2, L1 ∩ L2, L1L2, L̄1, and L∗

1.

That is, we say that the family of regular languages is closed under union,
intersection, concatenation, complementation, and star-closure.

Proof of L1 ∪ L2

Let L1 and L2 be regular languages.

L1 ∪ L2
= { Th. 3.2: there exist regular expressions r1, r2 }

L(r1) ∪ L(r2)
= { Def. 3.2, rule 4 }

L(r1 + r2)

Thus, by Theorem 3.1 (regular expressions describe regular languages), the union
is a regular language.

Thus L1 ∪ L2 is a regular language. QED.

Proofs of L1L2 and L∗
1

Similar to the proof of L1 ∪ L2.

Proof of L̄1

Strategy: Given a dfa M for the regular language, construct a new dfa M̂ that
accepts everything rejected and rejects everything accepted by the given dfa.

L1 is a regular language on Σ.
≡ { Def. 2.3 }

59

∃ dfa M = (Q, Σ, δ, q0, F) such that L(M) = L1.

Thus

ω ∈ Σ∗

⇒ { by the properties of dfas and sets }
Either δ∗(q0, ω) ∈ F or δ∗(q0, ω) ∈ Q− F

⇒ { Def. 2.2: language accepted by dfa }
Either ω ∈ L(M) or ω ∈ L(M̂) for some dfa M̂

Let’s construct dfa M̂ = (Q, Σ, δ, q0, Q− F).

Clearly, L(M̂) = L̄1. Thus L̄1 is a regular language. QED.

Proof of L1 ∩ L2

Strategy: Given two dfas for the two regular languages, construct a new dfa that
accepts a string if and only if both original dfas accept the string.

Let L1 = L(M1) and L2 = L(M2) for dfas:

M1 = (Q, Σ, δ1, q0, F1)

M2 = (P, Σ, δ2, p0, F2)

Construct M̂ = (Q̂, Σ, δ̂, (q0, p0), F̂), where

Q̂ = Q× P

δ̂((qi, pj), a) = (qk, pl) when δ1(qi, a) = qk

δ2(pj , a) = pl

F̂ = {(q, p) : q ∈ F1, p ∈ F2}

Clearly, ω ∈ L1 ∩ L2 if and only if ω accepted by M̂ .

Thus, L1 ∩ L2 is regular. QED.

The previous proof is constructive.

• It establishes desired result.

• It provides an algorithm for building an item of interest (e.g., dfa to accept
L1 ∩ L2).

Sometimes nonconstructive proofs are shorter and easier to understand. But
they provide no algorithm.

Alternate (nonconstructive) proof for L1 ∩ L2

60

L1 and L2 are regular.
≡ { previously proved part of Theorem 4.1 }

L̄1 and L̄2 are regular.
⇒ { previously proved part of Theorem 4.1 }

L̄1 ∪ L̄ is regular
⇒ { previously proved part of Theorem 4.1 }

L̄1 ∪ L̄2 is regular
≡ { deMorgan’s Law for sets }

L1 ∩ L2 is regular

QED.

3.1.3 Closure under Difference (Linz Example 4.1)

Consider the difference between two regular languages L1 and L2, written
L1 − L2.

But this is just set difference, which is defined L1 − L2 = L1 ∩ L̄2.

From Theorem 4.1 above, we know that regular languages are closed under both
complementation and intersection. Thus, regular languages are closed under
difference as well.

3.1.4 Closure under Reversal

Linz Theorem 4.2 (Closure under Reversal): The family of regular lan-
guages is closed under reversal.

Proof (constructive)

Strategy: Construct an nfa for the regular language and then reverse all the
edges and exchange roles of the initial and final states.

Let L1 be a regular language. Construct an nfa M such that L1 = L(M) and
M has a single final state. (We can add λ transitions from the previous final
states to create a single new final state.)

Now construct a new nfa M̂ as follows.

• Make the initial state of M the final state of M̂ .
• Make the final state of M the initial state of M̂ .
• Reverse the direction of all edges of M keeping the same labels and add

the edges to M̂ .

Thus nfa M̂ accepts ωR ∈ Σ∗ if and only if the original nfa accepts ω ∈ Σ∗.
QED.

61

3.1.5 Homomorphism Definition

In mathematics, a homomorphism is a mapping between two mathematical
structures that preserves the essential structure.

Linz Definition 4.1 (Homomorphism): Suppose Σ and Γ are alphabets. A
function

h : Σ→ Γ∗

is called a homomorphism.

In words, a homomorphism is a substitution in which a single letter is replaced
with a string.

We can extend the domain of a function h to strings in an obvious fashion. If

w = a1a2 · · · an for n ≥ 0

then

h(w) = h(a1)h(a2) · · · h(an).

If L is a language on Σ, then we define its homomorphic image as

h(L) = {h(w) : w ∈ L}.

Note: The homomorphism function h preserves the essential structure of the
language. In particular, it preserves operation concatenation on strings, i.e.,
h(λ) = λ and h(uv) = h(u)h(v).

3.1.6 Linz Example 4.2

Let Σ = {a, b} and Γ = {a, b, c}.

Define h as follows:

h(a) = ab,

h(b) = bbc

Then h(aba) = abbbcab.

The homomorphic image of L = {aa, aba} is the language h(L) = {abab, abbbcab}.

If we have a regular expression r for a language L, then a regular expression for
h(L) can be obtained by simply applying the homomorphism to each Σ symbol
of r. We show this in the next example.

3.1.7 Linz Example 4.3

For Σ = {a, b} and Γ = {b, c, d}, define h:

h(a) = dbcc

h(b) = bdc

62

If L is a regular language denoted by the regular expression

r = (a + b∗)(aa)∗

then

r1 = (dbcc + (bdc)∗)(dbccdbcc)∗

denotes the regular language h(L).

The general result on the closure of regular languages under any homomorphism
follows from this example in an obvious manner.

3.1.8 Closure under Homomorphism Theorem

Linz Theorem 4.3 (Closure under Homomorphism): Let h be a homo-
morphism. If L is a regular language, then its homomorphic image h(L) is also
regular.

Proof: Similar to the argument in Example 4.3. See Linz textbook for full proof.

The family of regular languages is therefore closed under arbitrary homomor-
phisms.

3.1.9 Right Quotient Definition

Linz Definition 4.2 (Right Quotient): Let L1 and L2 be languages on the
same alphabet. Then the right quotient of L1 with L2 is defined as

L1/L2 = {x : xy ∈ L1 for some y ∈ L2}

3.1.10 Linz Example 4.4

Given languages L1 and L2 such that

L1 = {anbm : n ≥ 1, m ≥ 0} ∪ {ba}

L2 = {bm : m ≥ 1}

Then

L1/L2 = {anbm : n ≥ 1, m ≥ 0}.

The strings in L2 consist of one or more b’s. Therefore, we arrive at the answer
by removing one or more b’s from those strings in L1 that terminate with at
least one b as a suffix.

Note that in this example L1, L2, and L1/L2 are regular.

Can we construct a dfa for L1/L2 from dfas for L1 and L2?

Linz Figure 4.1 shows a dfa M1 that accepts L1.

An automaton for L1/L2 must accept any x such that xy ∈ L1 and y ∈ L2.

63

Figure 35: Linz Fig. 4.1: DFA for Example 4.4 L1

For all states q ∈M1, if there exists a walk labeled v from q to a final state qf

such that v ∈ L2, then make q a final state of the automaton for L1/L2.

In this example, we check states to see if there is bb∗ walk to any of the final
states q1, q2, or q4.

• q1 and q2 have such walks.

• q0, q3, and q4 do not.

The resulting automaton is shown in Linz Figure 4.2.

The next theorem generalizes this construction.

3.1.11 Closure under Right Quotient

Linz Theorem 4.4 (Closure under Right Quotient): If L1 and L2 are
regular languages, then L1/L2 is also regular. We say that the family of regular
languages is closed under right quotient with a regular language.

Proof

Let dfa M = (Q, Σ, δ, q0, F) such that L(M) = L1.

Construct dfa M̂ = (Q, Σ, δ, q0, F̂) for L1/L2 as follows.

64

Figure 36: Linz Fig. 4.2: DFA for Example 4.4 L1/L2 EXCEPT q4 NOT
FINAL

For all qi ∈ Q, let dfa Mi = (Q, Σ, δ, qi, F). That is, dfa Mi is the
same as M except that it starts at qi.

• From Theorem 4.1, we know L(Mi) ∩ L2 is regular. Thus we
can construct the intersection machine as show in the proof of
Theorem 4.1.

• If there is any path in the intersection machine from its initial
state to a final state, then L(Mi) ∩ L2 ̸= ∅. Thus qi ∈ F̂ in
machine M̂ .

Does L(M̂) = L1/L2?

First, let x ∈ L1/L2.

• By definition, there must be y ∈ L2 such that xy ∈ L1.

• Thus δ∗(q0, xy) ∈ F .

• There must be some q such that δ∗(q0, x) = q and δ∗(q, y) ∈ F .

• Thus, by construction, q ∈ F̂ . Hence, M̂ accepts x.

Now, let x be accepted by M̂ .

• δ∗(q0, x) = q ∈ F̂ .

65

• Thus, by construction, we know there is a y ∈ L2 such that δ∗(q, y) ∈ F .

Thus L(M̂) = L1/L2, which means L1/L2 is regular.

3.1.12 Linz Example 4.5

Find L1/L2 for

L1 = L(a∗baa∗)

L2 = L(ab∗)

We apply the construction (algorithm) used in the proof of Theorem 4.4.

Linz Figure 4.3 shows a dfa for L1.

Figure 37: Linz Fig. 4.3: DFA for Example 4.5 L1

Let M = (Q, Σ, δ, q0, F).

Thus if we construct the sequence of machines Mi

L(M0) ∩ L2 = ∅

L(M1) ∩ L2 = {a} ≠ ∅

L(M2) ∩ L2 = {a} ≠ ∅

L(M3) ∩ L2 = ∅

66

Figure 38: Linz Fig. 4.4: DFA for Example 4.5 L1/L2

then the resulting dfa for L1/L2 is shown in Linz Figure 4.4.

The automaton shown in Figure 4.4 accepts the language denoted by the regular
expression

a∗b + a∗baa∗

which can be simplified to

a∗ba∗

3.2 Elementary Questions about Regular Languages
3.2.1 Membership?

Fundamental question: Is w ∈ L?

It is difficult to find a membership algorithm for languages in general. But it is
relatively easy to do for regular languages.

A regular language is given in a standard representation if and only if described
with one of:

• a dfa or nfa
• a regular expression
• a regular grammar

67

Linz Theorem 4.5 (Membership): Given a standard representation of
any regular language L on Σ and any w ∈ Σ∗, there exists an algorithm for
determining whether or not w is in L.

Proof

We represent the language by some dfa, then test w to see if it is accepted by
this automaton. QED.

3.2.2 Finite or Infinite?

Linz Theorem 4.6 (Finiteness): There exists an algorithm for determining
whether a regular language, given in standard representation, is empty, finite, or
infinite.

Proof

Represent L as a transition graph of a dfa.

• If simple path exists from the initial state to any final state, then it is not
empty. Otherwise, it is empty.

• If any vertex on a cycle is in a path from the initial state to any final state,
then the language is infinite. Otherwise, it is finite.

QED.

3.2.3 Equality?

Consider the question L1 = L2?

This is practically important. But it is a difficult issue because there are many
ways to represent L1 and L2.

Linz Theorem 4.7 (Equality): Given a standard representation of two regular
languages L1 and L2, there exists an algorithm to determine whether or whether
not L1 = L2.

Proof

68

Let L3 = (L1 ∩ L̄2) ∪ (L̄1 ∩ L2).

By closure, L3 is regular. Hence, there is a dfa M that accepts L3.

Because of Theorem 4.6, we can determine whether L3 is empty or not.

But from Excerise 8, Section 1.1, we see that L3 = ∅ if and only if L1 = L2.
QED.

3.3 Identifying Nonregular Languages
A regular languages may be infinite

• but it is accepted by an automaton with finite “memory”
• which imposes restrictions on the language.

In processing a string, the amount of information that the automaton must
“remember” is strictly limited (finite and bounded).

3.3.1 Using the Pigeonhole Principle

In mathematics, the pigeonhole principle refers to the following simple observa-
tion:

If we put n objects into m boxes (pigeonholes), and, if n > m, at
least one box must hold more than one item.

This is obvious, but it has deep implications.

3.3.2 Linz Example 4.6

Is the language L = {anbn : n ≥ 0} regular?

The answer is no, as we show below.

Proof that L is not regular

69

Strategy: Use proof by contradiction. Assume that what we want to prove is
false. Show that this introduces a contradiction. Hence, the original assumption
must be true.

Assume L is regular.

Thus there exists a dfa M = (Q, {a, b}, δ, q0, F) such that L(M) = L.

Machine M has a specific number of states. However, the number of a’s in a
string in L(M) is finite but unbounded (i.e., no maximum value for the length).
If n is larger than the number of states in M , then, according to the pigeonhole
principle, there must be some state q such that

δ∗(q0, an) = q

and

δ∗(q0, am) = q

with n ̸= m. But, because M accepts anbn,

δ∗(q, bn) = qf ∈ F

for some qf ∈ F .

From this we reason as follows:

δ∗(q0, ambn)
= δ∗(δ∗(q0, am), bn)
= δ∗(q, bn)
= qf

But this contradicts the assumption that M accepts ambn only if n = m.
Therefore, L cannot be regular. QED

We can use the pigeonhole principle to make “finite memory” precise.

3.3.3 Pumping Lemma for Regular Languages

Linz Theorem 4.8 (Pumping Lemma for Regular Languages): Let L be
an infinite regular language. There exists some m > 0 such that any w ∈ L with
|w| ≥ m can be decomposed as

w = xyz

with

|xy| ≤ m

and

|y| ≥ 1

such that

70

wi = xyiz

is also in L for all i ≥ 0.

That is, we can break every sufficiently long string from L into three parts in
such a way that an arbitrary number of repetitions of the middle part yields
another string in L.

We can “pump” the middle string, which gives us the name pumping lemma for
this theorem.

Proof

Let L be an infinite regular language. Thus there exists a dfa M that accepts L.
Let M have states q0, q1, q2, · · · qn.

Consider a string w ∈ L such that |w| ≥ m = n + 1. Such a string exists because
L is infinite.

Consider the set of states q0, qi, qj , · · · qf that M traverses as it processes w.

The size of this set is exactly |w|+1. Thus, according to the pigeonhole principle,
at least one state must be repeated, and such a repetition must start no later
than the nth move.

Thus the sequence is of the form

q0, qi, qj , · · · , qr, · · · , qr, · · · , qf .

Then there are substrings x, y, and z of w such that

δ∗(q0, x) = qr

δ∗(qr, y) = qr

δ∗(qr, z) = qf

with |xy| ≤ n + 1 = m and |y| ≥ 1. Thus, for any k ≥ 0,

δ∗(q0, xykz) = qf

71

QED.

We can use the pumping lemma to show that languages are not regular. Each of
these is a proof by contradiction.

3.3.4 Linz Example 4.7

Show that L = {anbn : n ≥ 0} is not regular.

Assume that L is regular, so that the Pumping Lemma must hold.

If, for some n ≥ 0 and i ≥ 0, xyz = anbn and xyiz are both in L, then y must
be all a’s or all b’s.

We do not know what m is, but, whatever m is, the Pumping Lemma enables
us to choose a string w = ambm. Thus y must consist entirely of a’s.

Suppose k > 0. We must decompose w = xyz as follows for some p + k ≤ m:

x = ap

y = ak

z = am−p−kbm

From the Pumping Lemma

w0 = am−kbm.

Clearly, this is not in L. But this contradicts the Pumping Lemma.

Hence, the assumption that L is regular is false. Thus {anbn : n ≥ 0} is not
regular.

3.3.5 Using the Pumping Lemma (Viewed as a Game)

The Pumping Lemma guarantees the existence of m and decomposition xyz for
any string in a regular language.

• But we do not know what m and xyz are.

• We do not have contradiction if the Pumping Lemma is violated for some
specific m or xyz.

The Pumping Lemma holds for all w ∈ L and for all i ≥ 0 (i.e., xyiz ∈ L for all
i).

• We do have a contradiction if the Pumping Lemma is violated for some w
or i.

We can thus conceptualize a proof as a game against an opponent.

• Our goal: Establish a contradiction of the Pumping Lemma.

• Opponent’s goal: Stop us.

72

• Moves:

1. The opponent picks m.

2. Given m, we pick a string w in L of length equal or greater than
m. We are free to choose any w, subject to requirement w ∈ L and
|w| ≥ m.

3. The opponent chooses the decomposition xyz, subject to |xy| ≤ m
and |y| ≥ 1. We have to assume that the opponent makes the choice
that will make it hardest for us to win the game.

4. We try to pick i in such a way that the pumped string wi, as defined
in wi = xyiz, is not in L. If we can do so, we win the game.

Strategy:

• Choose w in step 2 carefully. So that, regardless of the xyz choice, contra-
diction can be established.

3.3.6 Linz Example 4.8

Let Σ = {a, b}. Show that

L = {wwR : w ∈ Σ∗}

is not regular.

We use the Pumping Lemma and assume L is regular.

Whatever m the opponent picks in step 1 (of the “game”), we can choose a w as
shown below in step 2.

Figure 39: Linz Fig. 4.5

Because of this choice, and the requirement that |xy| ≤ m, in step 3 the opponent
must choose a y that consists entirely of a’s. Consider

wi = xyiz

that must hold because of the Pumping Lemma.

In step 4, we use i = 0 in wi = xyiz. This string has fewer a’s on the left than
on the right and so cannot be of the form wwR.

Therefore, the Pumping Lemma is violated. L is not regular.

73

Warning: Be careful! There are ways we can go wrong in applying the Pumping
Lemma.

• If we choose w too short in step 2 of this example (i.e., where the first m
symbols include two or more b’s), then the opponent can choose a y having
an even number of b’s. In that case, we could not have reached a violation
of the pumping lemma on the last stap.

• If we choose a string w consisting of all a’s, say

w = a2m

which is in L. To defeat us, the opponent need only pick

y = aa

Now wi is in L for all i, and we lose. ˆ

• We must assume the opponent does not make mistakes. If, in the case
where we pick w = a2m, the opponent picks

y = a

then w0 is a string of odd length and therefore not in L. But any argument
is incorrect if it assumes the opponent fails to make the best possible choice
(i.e., y = aa).

3.3.7 Linz Example 4.9

For Σ = {a, b}, show that the language

L = {w ∈ Σ∗ : na(w) < nb(w)}

is not regular.

We use the Pumping Lemma to show a contradiction. Assume L is
regular.

Suppose the opponent gives us m. Because we have complete freedom in choosing
w ∈ L, we pick w = ambm+1. Now, because |xy| cannot be greater than m, the
opponent cannot do anything but pick a y with all a’s, that is,

y = ak for 1 ≤ k ≤ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated. L is not regular.

3.3.8 Linz Example 4.10

Show that

L = {(ab)nak : n > k, k ≥ 0}

74

is not regular

We use the Pumping Lemma to show a contradiction. Assume L is
regular.

Given some m, we pick as our string

w = (ab)m+1am

which is in L.

The opponent must decompose w = xyz so that |xy| ≤ m and |y| ≥ 1. Thus
both x and y must be in the part of the string consisting of ab pairs. The choice
of x does not affect the argument, so we can focus on the y part.

If our opponent picks y = a, we can choose i = 0 and get a string not in
L((ab)∗a∗) and, hence, not in L. (There is a similar argument for y = b.)

If the opponent picks y = ab, we can choose i = 0 again. Now we get the string
(ab)mam, which is not in L. (There is a similar argument for y = ba.)

In a similar manner, we can counter any possible choice by the opponent. Thus,
because of the contradiction, L is not regular.

3.3.9 Linz Example (Factorial Length Strings)

Note: This example is adapted from an earlier edition of the Linz textbook.

Show that

L = {an! : n ≥ 0}

is not regular.

We use the Pumping Lemma to show a contradiction. Assume L is regular.

Given the opponent’s choice for m, we pick w to be the string am! (unless the
opponent picks m < 3, in which case we can use a3! as w).

The possible decompositions w = xyz (such that |xy| ≤ m) differ only in the
lengths of x and y. Suppose the opponent picks y such that

|y| = k ≤ m.

According to the Pumping Lemma, xz = am!−k ∈ L. But this string can only
be in L if there exists a j such that

m!− k = j!.

But this is impossible, because for m ≥ 3 and k ≤ m we know (see argument
below) that

m!− k > (m− 1)!.

75

Therefore, L is not regular.

Aside: To see that m!− k > (m− 1)! for m ≥ 3 and k ≤ m, note that

m!− k ≥ m!−m = m(m− 1)!−m = m((m− 1)!− 1) > (m− 1)!.

3.3.10 Linz Example 4.12

Show that the language

L = {anbkcn+k : n ≥ 0, k ≥ 0}

is not regular.

Strategy: Instead of using the Pumping Lemma directly, we show that L is
related to another language we already know is nonregular. This may be an
easier argument.

In this example, we use the closure property under homomorphism (Linz Theorem
4.3).

Let h be defined such that

h(a) = a, h(b) = a, h(c) = c.

Then

h(L) = {an+kcn+k : n + k ≥ 0}
= {aici : i ≥ 0}

But we proved this language was not regular in Linz Example 4.6. Therefore,
because of closure under homomorphism, L cannot be regular either.

Alternative proof by contradiction

Assume L is regular.

Thus h(L) is regular by closure under homomorphism (Linz Theorem 4.3).

But we know h(L) is not regular, so there is a contradiction.

Thus, L is not regular.

3.3.11 Linz Example 4.13

Show that the language

L = {anbl : n ̸= l}

is not regular.

We use the Pumping Lemma, but this example requires more ingenuity to set
up than previous examples.

76

Assume L is regular.

Choosing a string w ∈ L with m = n = l + 1 or m = n = l + 2 will not lead to a
contradiction.

In these cases, the opponent can always choose a decomposition w = xyz (with
|xy| ≤ m and |y| ≥ 1) that will make it impossible to pump the string out of
the language (that is, pump it so that it has an equal number of a’s and b’s).
For w = al+1bl, the opponent can chose y to be an even number of a’s. For
w = al+2bl, the opponent can chose y to be an odd number of a’s greater than 1.

We must be more creative. Suppose we choose w ∈ L where n = m! and
l = (m + 1)!.

If the opponent decomposes w = xyz (with |xy| ≤ m and |y| = k ≥ 1), then y
must consist of all a’s.

If we pump i times, we generate string xyiz where the number of a’s is m!+(i−1)k

We can contradict the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m + 1)!.

But we can do this, because it is always possible to choose

i = 1 + mm!/k.

For 1 ≤ k ≤ m, the expression 1 + mm!/k is an integer.

Thus the generated string has m! + ((1 + mm!/k)− 1)k occurrences of a.

m! + ((1 + mm!/k)− 1)k
= m! + mm!
= m!(m + 1)
= (m + 1)!

This introduces a contradiction of the Pumping Lemma. Thus L is not regular.

Alternative argument (more elegant)

Suppose L = {anbl : n ̸= l} is regular.

Because of complementation closure, L̄ is regular.

Let L1 = L̄ ∩ L(a∗b∗).

But L(a∗b∗) is regular and thus, by intersection closure, L1 is also regular.

But L1 = {anbn : n ≥ 0}, which we have shown to be nonregular. Thus we have
a contradiction, so L is not regular.

77

3.3.12 Pitfalls in Using the Pumping Lemma

The Pumping Lemma is difficult to understand and, hence, difficult to apply.

Here are a few suggestions to avoid pitfalls in use of the Pumping Lemma.

• Do not attempt to use the Pumping Lemma to show a language is regular.
Only use it to show a language is not regular.

• Make sure you start with a string that is in the language.

• Avoid invalid assumptions about the decomposition of a string w into xyz.
Use only that |xy| ≤ m and |y| ≥ 1.

Like most interesting “games”, knowledge of the rules for use of the Pumping
Lemma is necessary, but it is not sufficient to become a master “player”. To
master the use of the Pumping Lemma, one must work problems of various
difficulties. Practice, practice, practice.

78

4 Context-Free Languages
In Linz Section 4.3, we saw that not all languages are regular. We examined
the Pumping Lemma for Regular Languages as a means to prove that a specific
language is not regular.

In Linz Example 4.6, we proved that

L = {anbn : n ≥ 0}

is not regular.

If we let a = “(” and b = “)”, then L becomes a language of nested parenthesis.

This language is in a larger family of languages called the context-free languages.

Context-free languages are very important because many practical aspects of
programming languages are in this family.

In this chapter, we explore the context-free languages, beginning with context-free
grammars.

One key process we explore is parsing, which is the process of determining the
grammatical structure of a sentence generated from a grammar.

4.1 Context-Free Grammars
4.1.1 Definition of Context-Free Grammars

Remember the restrictions we placed on regular grammars in Linz Section 3.3:

• The left side consists of a single variable.
• The right side has a special form.

To create more powerful grammars (i.e., that describe larger families of languages),
we relax these restrictions.

For context-free grammars, we maintain the left-side restriction but relax the
restriction on the right side.

Linz Definition 5.1 (Context-Free Grammar): A grammar G = (V, T, S, P)
is context-free if all productions in P have the form

A→ x

where A ∈ V and x ∈ (V ∪ T)∗. A language L is context-free if and only if there
is a context-free grammar G such that L = L(G).

The family of regular languages is a subset of the family of context-free languages!

Thus, context-free grammars

• enable the right side of a production to be substituted for a variable on
the left side at any time in a sentential form

79

• with no dependencies on other symbols in the sentential form.

4.1.2 Linz Example 5.1

Consider the grammar G = ({S}, {a, b}, S, P) with productions:

S → aSa
S → bSb
S → λ

Note that this grammar satisfies the definition of context-free.

A possible derivation using this grammar is as follows:

S ⇒ aSa⇒ aaSaa⇒ aabSbaa⇒ aabbaa

From this derivation, we see that

L(G) = {wwR : w ∈ {a, b}∗}.

The language is context-free, but, as we demonstrated in Linz Example 4.8, it is
not regular.

This grammar is linear because it has at most one variable on the right.

4.1.3 Linz Example 5.2

Consider the grammar G with productions:

S → abB
A→ aaBb
B → bbAa
A→ λ

Note that this grammar also satisfies the definition of context free.

A possible derivation using this grammar is:

S ⇒ abB ⇒ abbbAa⇒ abbbaaBba⇒ abbbaabbAaba
⇒ abbbaabbaaBbaba⇒ abbbaabbaabbAababa⇒ abbbaabbaabbababa

We can see that:

L(G) = {ab(bbaa)nbba(ba)n : n ≥ 0}

This grammar is also linear (as defined in Linz Section 3.3). Although linear
grammars are context free, not all context free grammars are linear.

4.1.4 Linz Example 5.3

Consider the language

L = {anbm : n ̸= m}.

80

This language is context free. To show that this is the case, we must construct a
context-free grammar that generates the language

First, consider the n = m case. This can be generated by the productions:

S → aSb | λ

Now, consider the n > m case. We can modify the above to generate extra a’s
on the left.

S → AS1
S1 → aS1b | λ
A→ aA | a

Finally, consider the n < m case. We can further modify the grammar to
generate extra b’s on right.

S → AS1 | S1B
S1 → aS1b | λ
A→ aA | a
B → bB | b

This grammar is context free, but it is not linear because the productions with
S on the left are not in the required form.

Although this grammar is not linear, there exist other grammars for this language
that are linear.

4.1.5 Linz Example 5.4

Consider the grammar with productions:

S → aSb | SS | λ

This grammar is also context-free but not linear.

Example strings in L(G) include abaabb, aababb, and ababab. Note that:

• a and b are always generated in pairs.

• a precedes the matching b.

• A prefix of a string may contain several more a’s than b’s.

We can see that L(G) is

{ w ∈ {a, b}∗ : na(w) = nb(w) and na(v) ≥ nb(v) for any prefix v of
w }.

What is a programming language connection for this language?

• Let a = “(” and b = “)”.

• This gives us a language of properly nested parentheses.

81

4.1.6 Leftmost and Rightmost Derivations

Consider grammar G = ({A, B, S}, {a, b}, S, P) with productions:

S → AB
A→ aaA
A→ λ
B → Bb
B → λ

This grammar generates the language L(G) = {a2nbm : n ≥ 0, m ≥ 0}.

Now consider the two derivations:

S ⇒ AB ⇒ aaAB ⇒ aaB ⇒ aaBb⇒ aab
S ⇒ AB ⇒ ABb⇒ aaABb⇒ aaAb⇒ aab

These derivations yield the same sentence using exactly the same productions.
However, the productions are applied in different orders.

To eliminate such incidental factors, we often require that the variables be
replaced in a specific order.

Linz Definition 5.2 (Leftmost and Rightmost Derivations): A derivation
is leftmost if, in each step, the leftmost variable in the sentential form is replaced.
If, in each step, the rightmost variable is replaced, then the derivation is rightmost.

4.1.7 Linz Example 5.5

Consider the grammar with productions:

S → aAB
A→ bBb
B → A | λ

A leftmost derivation of the string abbbb is:

S ⇒ aAB ⇒ abBbB ⇒ abAbB ⇒ abbBbbB ⇒ abbbbB ⇒ abbbb

Similarly, a rightmost derivation of the string abbbb is:

S ⇒ aAB ⇒ aA⇒ abBb⇒ abAb⇒ abbBbb⇒ abbbb

4.1.8 Derivation Trees

We can also use a derivation tree to show derivations in a manner that is
independent of the order in which productions are applied.

A derivation tree is an ordered tree in which we label the nodes with the left
sides of productions and the children of a node represent its corresponding right
sides.

The production

82

A→ abABc

is shown as a derivation tree in Linz Figure 5.1.

Figure 40: Linz Fig. 5.1: Derivation Tree for Production A→ abABc

Linz Definition 5.3 (Derivation Tree): Let G = (V, T, S, P) be a context-free
grammar. An ordered tree is a derivation tree for G if and only if it has the
following properties:

1. The root is labeled S.

2. Every leaf has a label from T ∪ {λ}.

3. Every interior vertex (i.e., a vertex that is not a leaf) has a label from V .

4. If a vertex has a label A ∈ V , and its children are labeled (from left
to right) a1, a2, · · · , an, then P must contain a production of the form
A→ a1a2 · · · an.

5. A leaf labeled λ has no siblings, that is, a vertex with a child labeled λ
can have no other children.

If properties 3, 4, and 5 and modified property 2 (below) hold for a tree, then it
is a partial derivation tree.

2. (modified) Every leaf has a label from V ∪ T ∪ {λ}

If we read the leaves of a tree from left to right, omitting any λ’s encountered,
we obtain a string called the yield of the tree.

The descriptive term from left to right means that we traverse the tree in a
depth-first manner, always exploring the leftmost unexplored branch first. The
yield is the string of terminals encountered in this traversal.

4.1.9 Linz Example 5.6

Consider the grammar G with productions:

S → aAB
A→ bBb
B → A | λ

83

Linz Figure 5.2 shows a partial derivation tree for G with the yield abBbB. This
is a sentential form of the grammar G.

Figure 41: Linz Fig. 5.2: Partial Derivation Tree

Linz Figure 5.3 shows a derivation tree for G with the yield abbbb. This is a
sentence of L(G).

Figure 42: Linz Fig. 5.3: Derivation Tree

4.1.10 Relation Between Sentential Forms and Derivation Trees

Derivation trees give explicit (and visualizable) descriptions of derivations. They
enable us to reason about context-free languages much as transition graphs
enable use to reason about regular languages.

Linz Theorem 5.1 (Connection between Derivations and Derivation
Trees): Let G = (V, T, S, P) be a context-free grammar. Then the following
properties hold:

84

• For every w ∈ L(G), there exists a derivation tree of G whose yield is w.

• The yield of any derivation tree of G is in L(G).

• If tG is any partial derivation tree for G whose root is labeled S, then the
yield of tG is a sentential form of G.

Proof: See the proof in the Linz textbook.

Derivation trees:

• show which productions are used to generate a sentence

• abstract out the order in which individual productions are applied

• enable the construction of eiher a leftmost or rightmost derivation

4.2 Parsing and Ambiguity
4.2.1 Generation versus Parsing

The previous section concerns the generative aspects of grammars–using a
grammar to generate strings in the language.

This section concerns the analytical aspects of grammars–processing strings from
the language to determine their derivations. This process is called parsing.

For example, a compiler for a programming language must parse a program (i.e.,
a sentence in the language) to determine the derivation tree for the program.

• This verifies that the program is indeed in the language (syntactically).

• Construction of the derivation tree is needed to execute the program (e.g.,
to generate the machine-level code corresponding to the program).

4.2.2 Exhaustive Search Parsing

Given some w ∈ L(G), we can parse w with respect to grammar G by:

• systematically constructing all derivations

• determining whether any derivation matches w

This is called exhaustive search parsing or brute force parsing. A more complete
description of the algorithm is below.

This is a form of top-down parsing in which a derivation tree is constructed from
the root downward.

Note: An alternative approach is bottom-up parsing in which the derivation tree
is constructed from leaves upward. Bottom-up parsing techniques often have
limitations in terms of the grammars supported but often give more efficient
algorithms.

Exhaustive Search Parsing Algorithm

85

– Add root and 1st level of all derivation trees
F ← {x : s→ x in P of G}
while F ̸= ∅ and w /∈ F do

F ′ ← ∅
– Add next level of all derivation trees
for all x ∈ F do

if x can generate w then
V ← leftmost variable of x
for all productions V → y in G do

F ′ ← F ′ ∪ {x′} where x′ = x with V ← y
F ← F ′

Note: The above algorithm determines whether a string w is in L(G). It can be
modified to build the actual derivation or derivation tree.

4.2.3 Linz Example 5.7

Note: The presentation here uses the algorithm above, rather than the approach
in the Linz textbook.

Consider the grammar G with productions:

S → SS | aSb | bSa | λ

Parse the string w = aabb.

After initialization: F = {SS, aSb, bSa, λ} (from the righthand sides of the
grammar’s four productions with S on the left).

First iteration: The loop test is true because F is nonempty and w is not
present.

The algorithm does not need to consider the sentential forms bSa and λ in F
because neither can generate w.

The inner loop thus adds {SSS, aSbS, bSaS, S} from the leftmost derivations
from sentential form SS and also adds {aSSb, aaSbb, abSab, ab} from the leftmost
derivations from sentential form aSb.

Thus F = {SSS, aSbS, bSaS, S, aSSb, aaSbb, abSab, ab} at the end of the first
iteration.

Second iteration: The algorithm enters the loop a second time because F is
nonempty and does not contain w.

The algorithm does not need to consider any sentential form beginning with b or
ab, thus eliminating {bSaS, abSab, ab} and leaving {SSS, aSbS, S, aSSb, aaSbb}
of interest.

This iteration generates 20 new sentential forms from applying each of the 4
productions to each of the 5 remaining sentential forms.

86

In particular, note that that sentential form aaSbb yields the target string aabb
when production S → λ is applied.

Third iteration: The loop terminates because w is present in F .

Thus we can conclude w ∈ L(G).

4.2.4 Flaws in Exhaustive Search Parsing

Exhaustive search parsing has serious flaws:

• It is tedious and inefficient.

• It might not terminate when w /∈ L(G).

For example, if we choose w = abb in the previous example, the algorithm goes
into an infinite loop.

The fix for nontermination is to ensure sentential forms increase in length for
each production. That is, we eliminate productions of forms:

A→ λ
A→ B

Chapter 6 of the Linz textbook (which we will not cover this semester) shows
that this does not reduce the power of the grammar.

4.2.5 Linz Example 5.8

Consider the grammar with productions:

S → SS | aSb | bSA | ab | ba

This grammar generates the same language as the one in Linz Example 5.7
above, but it satisfies the restrictions given in the previous subsection.

Given any nonempty string w, exhaustive search will terminate in no more than
|w| rounds for such grammars.

4.2.6 Toward Better Parsing Algorithms

Linz Theorem 5.2 (Exhaustive Search Parsing): Suppose that G =
(V, T, S, P) is a context-free grammar that does not have any rules of one of the
forms

A→ λ
A→ B

where A, B ∈ V . Then the exhaustive search parsing method can be formulated
as an algorithm which, for any w ∈ T∗, either parses w or tells us that parsing
is impossible.

Proof outline

87

• Each production must increase either the length or number of terminals.

• The maximum length of a sentential form is |w|, which is the maximum
number of terminal symbols.

• Thus for some w, the number of loop iterations is at most 2|w|.

But exhaustive search is still inefficient. The number of sentential forms to be
generated is∑2|w|

i=1 |P |i.

That is, it grows exponentially with the length of the string.

Linz Theorem 5.3 (Efficient Parsing): For every context-free grammar there
exists an algorithm that parses any w ∈ L(G) in a number of steps proportional
to |w|3.

• Construction of more efficient context-free parsing methods is left to
compiler courses.

• |w|3 is still inefficient.

• We would prefer linear (|w|) parsing.

• Again we must restrict the grammar in our search for more efficient parsing.
The next subsection illustrates on such grammar.

4.2.7 Simple Grammar Definition

Linz Definition 5.4 (Simple Grammar): A context-free grammar G =
(V, T, S, P) is said to be a simple grammar or s-grammar if all its productions
are of the form

A→ ax

where A ∈ V, a ∈ T, x ∈ V ∗, and any pair (A, a) occurs at most once in P .

4.2.8 Linz Example 5.9

The grammar

S → aS | bSS | c

is an s-grammar.

The grammar

S → aS | bSS | aSS | c

is not an s-grammar because (S, a) occurs twice.

88

4.2.9 Parsing Simple Grammars

Although s-grammars are quite restrictive, many features of programming lan-
guages can be described with s-grammars (e.g., grammars for arithmetic expres-
sions).

If G is s-grammar, then w ∈ L(G) can be parsed in linear time.

To see this, consider string w = a1a2 · · · an and use the exhaustive search parsing
algorithm.

1. The s-grammar has at most one rule with a1 on left: S → a1A1A2 · · ·.
Choose it!

2. Then the s-grammar has at most one rule with a2 on left: A1 → a2B1B2 · · ·.
Choose it!

3. And so forth up to the nth terminal.

The number of steps is proportional to |w| because each step consumes one
symbol of w.

4.2.10 Ambiguity in Grammars and Languages

A derivation tree for some string generated by a context-free grammar may not
be unique.

Linz Definition 5.5 (Ambiguity): A context-free grammar G is said to be
ambiguous if there exists some w ∈ L(G) that has at least two distinct derivation
trees. Alternatively, ambiguity implies the existence of two or more leftmost or
rightmost derivations.

4.2.11 Linz Example 5.10

Again consider the grammar in Linz Example 5.4. Its productions are

S → aSb | SS | λ.

The string w = aabb has two derivation trees as shown in Linz Figure 5.4

The left tree corresponds to the leftmost derivation S ⇒ aSb⇒ aaSbb⇒ aabb.

The right tree corresponds to the leftmost derivation S ⇒ SS ⇒ λS ⇒ aSb⇒
aaSbb⇒ aabb.

Thus the grammar is ambiguous.

4.2.12 Linz Example 5.11

Consider the grammar G = (V, T, E, P) with

V = {E, I}
T = {a, b, c, +, ∗, (,)}

89

Figure 43: Linz Fig. 5.4: Two Derivation Trees for aabb

and P including the productions:

E → I
E → E + E
E → E ∗ E
E → (E)
I → a | b | c

This grammar generates a subset of the arithmetic expressions for a language
like C or Java. It contains strings such as (a + b) ∗ c and a ∗ b + c.

Linz Figure 5.5 shows two derivation trees for the string a + b ∗ c. Thus this
grammar is ambiguous.

Why is ambiguity a problem?

Remember that the semantics (meaning) of the expression is also associated
with the structure of the expression. The structure determines how the (machine
language) code is generated to carry out the computation.

How do real programming languages resolve this ambiguity?

Often, they add precedence rules that give priority to “∗” over “+”. That is, the
multiplication operator binds more tightly than addition.

This solution is totally outside the world of the context-free grammar. It is, in
some sense, a hack.

A better solution is to rewrite the grammar (or sometimes redesign te language)
to eliminate the ambiguity.

90

Figure 44: Linz Fig. 5.5: Two Derivation Trees for a + b ∗ c

4.2.13 Linz Example 5.12

To rewrite the grammar in Linz Example 5.11, we introduce new variables,
making V the set {E, T, F, I}, and replacing the productions with the following:

E → T
T → F
F → I
E → E + T
T → T ∗ F
F → (E)
I → a | b | c

Linz Figure 5.6 shows the only derivation tree for string a + b ∗ c in this revised
grammar for arithmetic expressions.

4.2.14 Inherently Ambiguous

Linz Definition 5.6: If L is a context-free language for which there exists an
unambiguous grammar, then L is said to be unambiguous. If every grammar
that generates L is ambiguous, then language is called inherently ambiguous.

It is difficult to demonstrate that a grammar is inherently ambiguous. Often the
best we can do is to give examples and argue informally that all grammars must
be ambiguous.

4.2.15 Linz Example 5.13

The language

91

Figure 45: Linz Fig. 5.6: Derivation Tree for a+b∗c in Revised Grammar

L = {anbncm} ∪ {anbmcm},

with n and m non-negative, is an inherently ambiguous context-free language.

Note that L = L1 ∪ L2.

We can generate L1 with the context-free grammar:

S1 = S1c | A
A→ aAb | λ

Similarly, we can generate L2 with the context-free grammar:

S2 = aS2 | B
B → bBc | λ

We can thus construct the union of these two sublanguages by adding a new
production:

S → S1 | S2

Thus this is a context-free language.

But consider a string of the form anbncn (i.e., n = m). It has two derivations,
one starting with

S ⇒ S1

and another starting with

92

S ⇒ S2.

Thus the grammar is ambiguous.

L1 and L2 have conflicting requirements. L1 places restrictions on the number
of a’s and b’s while L2 places restrictions on the number of b’s and c’s. It is
imposible to find production rules that satisfy the n = m case uniquely.

4.3 Context-Free Grammars and Programming Languages
The syntax for practical programming language syntax is usually expressed with
context-free grammars. Compilers and interpreters must parse programs in these
language to execute them.

The grammar for programming languages is often expressed using the Backus-
Naur Form (BNF) to express productions.

For example, the language for arithmetic expressing in Linz Example 5.12 can
be written in BNF as:

<expression> ::= <term> | <expression> + <term>
<term> ::= <factor> | <term> * <factor>

The items in angle brackets are variables, the symbols such as “+” and “-” are
terminals, the “|” denotes alternatives, and “::=” separates the left and right
sides of the productions.

Programming languages often use restricted grammars to get linear parsing: e.g.,
regular grammars, s-grammars, LL grammars, and LR grammars.

The aspects of programming languages that can be modeled by context-free
grammars are called the the syntax.

Aspects such as type-checking are not context-free. Such issues are sometimes
considered (incorrectly in your instructor’s view) as part of the semantics of the
language.

These are really still syntax, but they must be expressed in ways that are not
context free.

5 OMIT Chapter 6

93

6 Pushdown Automata
Finite automata cannot recognize all context-free languages.

To recognize language {anbn : n ≥ 0}, an automaton must do more than just
verify that all a’s precede all b’s; it must count an unbounded number of symbols.
This cannot be done with the finite memory of a dfa.

To recognize language {wwR : w ∈ Σ∗}, an automaton must do more than
just count; it must remember a sequence of symbols and compare it to another
sequence in reverse order.

Thus, to recognize context-free languages, an automaton needs unbounded
memory. The second example above suggests using a stack as the “memory”.

Hence, the class of machines we examine in this chapter are called pushdown
automata.

In this chapter, we examine the connection between context-free languages and
pushdown automata.

Unlike the situation with finite automata, deterministic and nondeterministic
pushdown automata differ in the languages they accept.

• Nondeterministic pushdown automata (npda) accept precisely the class of
context-free languages.

• Deterministic pushdown automata (dpda) just accept a subset–the deter-
ministic context-free languages.

6.1 Nondeterministic Pushdown Automata
6.1.1 Schematic Drawing

Linz Figure 7.1 illustrates a pushdown automaton.

On each move, the control unit reads a symbol from the input file. Based on the
input symbol and symbol on the top of the stack, the control unit changes the
content of the stack and enters a new state.

6.1.2 Definition of a Pushdown Automaton

Linz Definition 7.1 (Nondeterministic Pushdown Accepter): A nonde-
terministic pushdown accepter (npda) is defined by the tuple

M = (Q, Σ, Γ, δ, q0, z, F),

where

Q is a finite set of internal states of the control unit,
Σ is the input alphabet,
Γ is a finite set of symbols called the stack alphabet,
δ : Q × (Σ ∪ {λ}) × Γ → finite subsets of Q × Γ∗ is the transition

94

Figure 46: Linz Fig. 7.1: Pushdown Automaton

function,
q0 ∈ Q is the initial state of the control unit,
z ∈ Γ is the stack start symbol,
F ⊆ Q is the set of final states.

Note that the input and stack alphabets may differ and that start stack symbol
z must be an element of Γ.

Consider the transition function δ : Q× (Σ∪{λ})×Γ→ finite subsets of Q×Γ∗.

• 1st argument from Q is the current state.

• 2nd argument from Σ ∪ {λ}) is either the next input symbol or λ for a
move that does not consume input.

• 3rd argument from Γ is the current symbol at top of stack. (The stack
cannot be empty! The stack start symbol represents the empty stack.)

• The result value is a finite set of pairs (q, w) where

– q is the new state,
– w is the (possibly empty) string that replaces the top symbol on the

stack. (The first element of w will be the new top of the stack, second
element under that, etc.)

The machine is nondeterministic, but there are only a finite number of possible
results for each step.

6.1.3 Linz Example 7.1

Suppose the set of transition rules of an npda contains

δ(q1, a, b) = {(q2, cd), (q3, λ)}.

A possible change in the state of the automaton from q1 to q2 is shown in
following diagram.

95

This transition function can be drawn as a transition graph as shown below. The
triple marking the edges represent the input symbol, the symbol at the top of
the stack, and the string pushed back on the stack. Here we use “/” to separate
the elements of the triple on the edges; the book uses commas for this purpose.

6.1.4 Linz Example 7.2

Consider an npda (Q, Σ, Γ, δ, q0, z, F) where

Q = {q0, q1, q2, q3}
Σ = {a, b}

96

Γ = {0, 1}
z = 0
F = {q3}

with the initial state q0 and the transition function defined as follows:

1. δ(q0, a, 0) = {(q1, 10), (q3, λ)}
2. δ(q0, λ, 0) = {(q3, λ)}
3. δ(q1, a, 1) = {(q1, 11)}
4. δ(q1, b, 1) = {(q2, λ)}
5. δ(q2, b, 1) = {(q2, λ)}
6. δ(q2, λ, 0) = {(q3, λ)}.

There are no transitions defined for final state q3 or in the cases

(q0, b, 0), (q2, a, 1), (q0, a, 1), (q0, b, 1), (q1, a, 0), and (q1, b, 0).

These are dead configurations of the npda. In these cases, δ maps the arguments
to the empty set.

The machine executes as follows.

1. The first transition rule is nondeterministic, with two choices for input
symbol a and stack top 0.
(a) The machine can push 1 on the stack and transition to state q1. (This

is the only choice that will allow the machine to accept additional
input.)

(b) The machine can pop the start symbol 0 and transition to final state
q3. (This is the only choice that will allow the machine to accept a
single a.)

2. For stack top z, the machine can also transition from the initial state q0 to
final state q3 without consuming any input. (This is only choice that will
allow the machine to accept an empty string.) Note that rule 2 overlaps
with rule 1, giving additional nondeterminism.

3. While the machine reads a’s, it pushes a 1 on the stack and stays in state
q1.

4. When the machine reads a b (with stack top 1), it pops the 1 from the
stack and transitions to state q2.

5. While the machine reads b’s (with stack top 1), it pops the 1 from the
stack and stays in state q2.

6. When the machine encounters the stack top 0, it pops the stack and
transitions to final state q3.

Acceptance or rejection?

• If the machine reaches final state q3 with no unprocessed input using any
possible sequence of transitions, then the machine accepts the input string.

• If every sequence of possible transitions reaches a configuration in which no
move is defined or reaches the final state with unprocessed input remaining,
then the machine rejects the input string.

97

The machine accepts:

• λ (via rule 2)
• singleton string a (via rule 1b)
• any string in which there are some number of a’s followed by the same

number of b’s (via rules 1a-3-4-5-6 as applicable)

Other strings will always end in dead configurations. For example:

• b gets stuck in q3 with unprocessed input (via rule 2)
• aa gets stuck in q1 (via rules 1a-3) or in q3 with unprocessed input (via

rule 1b or rule 2)
• aab gets stuck in q2 with stack top 1 (via rules 1a-3-4) or in q3 with

unprocessed input (via rule 1b or 2)
• abb gets stuck in q3 with unprocessed input (via rule 1b or rule 2 or rules

1a-4-5-6)
• aba gets stuck in q2 (via rules 1a-4) or in q3 with unprocessed input (via

rule 1b or rule 2 or rules 1a-4-6)

Thus, it is not difficult to see that L = {anbn : n ≥ 0} ∪ {a}.

Linz Figure 7.2 shows a transition graph for this npda. The triples marking the
edges represent the input symbol, the symbol at the top of the stack, and the
string pushed back on the stack.

Figure 47: Linz Fig. 7.2: Transition Graph for Example 7.2

6.1.5 Instantaneous Descriptions of Pushdown Automata

Transition graphs are useful for describing pushdown automata, but they are
not useful in formal reasoning about them. For that, we use a concise notation
for describing configurations of pushdown automata with tuples.

The triple (q, w, u) where

q is the control unit state
w is the unread input string
u is the stack as string, beginning with the top symbol

is called an instantaneous description of a pushdown automaton.

We introduce the symbol ⊢ to denote a move from one instantaneous description
to another such that

98

(q1, aw, bx) ⊢ (q2, w, yx)

is possible if and only if

(q2, y) ∈ δ(q1, a, b).

We also introduce the notation ⊢∗ to denote an arbitrary number of steps of the
machine.

6.1.6 Language Accepted by an NPDA

Linz Definition 7.2 (Language Accepted by a Pushdown Automaton):
Let M = (Q, Σ, Γ, δ, q0, z, F) be a nondeterministic pushdown automaton. The
language accepted by M is the set

L(M) = {w ∈ Σ∗ : (q0, w, z) ⊢∗
M (p, λ, u), p ∈ F, u ∈ Γ∗}.

In words, the language accepted by M is the set of all strings that can put M
into a final state at the end of the string. The stack content u is irrelevant to
this definition of acceptance.

6.1.7 Linz Example 7.4

Construct an npda for the language

L = {w ∈ {a, b}∗ : na(w) = nb(w)}.

We must count a’s and b’s, but their relative order is not important.

The basic idea is:

• on “a”, push 0
• on “b”, pop 0

But, what if nb > na at some point?

We must allow a “negative” count. So we modify the above solution as follows:

• on “a”,

if top is z or 0
push 0

else if top is 1
pop 1

• on “b”,

if top is z or 1
push 1

else if top is 0
pop 0

So the solution is an npda.

M = ({q0, qf}, {a, b}, {0, 1, z}, δ, q0, z, {qf}), with δ given as

99

1. δ(q0, λ, z) = {(qf , z)}
2. δ(q0, a, z) = {(q0, 0z)}
3. δ(q0, b, z) = {(q0, 1z)}
4. δ(q0, a, 0) = {(q0, 00)}
5. δ(q0, b, 0) = {(q0, λ)}
6. δ(q0, a, 1) = {(q0, λ)}
7. δ(q0, b, 1) = {(q0, 11)}.

Linz Figure 7.3 shows a transition graph for this npda.

Figure 48: Linz Fig. 7.3: Transition Graph for Example 7.4

In processing the string baab, the npda makes the following moves (as indicated
by transition rule number):

(q0, baab, z)
(3) ⊢ (q0, aab, 1z)
(6) ⊢ (q0, ab, z)
(2) ⊢ (q0, b, 0z)
(5) ⊢ (q0, λ, z)
(1) ⊢ (qf , λ, z)

Hence, the string is accepted.

6.1.8 Linz Example 7.5

Construct an npda for accepting the language L = {wwR : w ∈ {a, b}+},

The basic idea is:

• push symbols from w on stack from left to right

• pop symbols from stack for wR (which is w right-to-left)

Problem: How do we find the middle?

Solution: Use nondeterminism!

• Each symbol could be at middle.

100

• Automaton “guesses” when to switch.

For L = {wwR : w ∈ {a, b}+}, a solution to the problem is given by M =
(Q, Σ, Γ, δ, q0, z, F), where:

Q = {q0, q1, q2}
Σ = {a, b}
Γ = {a, b, z} – which is Σ plus the staack start symbol F = {q2}

The transition function can be visualized as having several parts.

• a set of transitions to push w on the stack (one for each element of Σ× Γ):

1. δ(q0, a, a) = {(q0, aa)}
2. δ(q0, b, a) = {(q0, ba)}
3. δ(q0, a, b) = {(q0, ab)}
4. δ(q0, b, b) = {(q0, bb)}
5. δ(q0, a, z) = {(q0, az)}
6. δ(q0, b, z) = {(q0, bz)}

• a set of transitions to guess the middle of the string, where the npda
switches from state q0 to q1 (any position is potentially the middle):

7. δ(q0, λ, a) = {(q1, a)}
8. δ(q0, λ, b) = {(q1, b)}

• a set of transitions to match wR against the contents of the stack:

9. δ(q1, a, a) = {(q1, λ)}
10. δ(q1, b, b) = {(q1, λ)}

• a transition to recognize a successful match:

11. δ(q1, λ, z) = {(q2, z)}

Remember that, to be accepted, a final state must be reached with no unprocessed
input remaining.

The sequence of moves accepting abba is as follows, where the number in paren-
thesis gives the transition rule applied:

(q0, abba, z)
(5) ⊢ (q0, bba, az)
(2) ⊢ (q0, ba, baz)
(8) ⊢ (q1, ba, baz)
(10) ⊢ (q1, a, az)
(9) ⊢ (q1, λ, z)
(11) ⊢ (q2, z)

101

6.2 Pushdown Automata and Context-Free Languages
6.2.1 Pushdown Automata for CFGs

Underlying idea: Given a context-free language, construct an npda that
simulates a leftmost derivation for any string in the language.

We assume the context-free language is represented as grammar in Greibach
Normal Form, as defined in Linz Chapter 6. We did not cover that chapter, but
the definition and key theorem are shown below.

Greibach Normal Form restricts the positions at which terminals and variables
can appear in a grammar’s productions.

Linz Definition 6.5 (Greibach Normal Form): A context-free grammar is
said to be in Greibach Normal Form if all productions have the form

A→ ax,

where a ∈ T and x ∈ V ∗.

The structure of a grammar in Greibach Normal Form is similar to that of an
s-grammar except that, unlike s-grammars, the grammar does not restrict pairs
(A, a) to single occurrences within the set of productions.

Linz Theorem 6.7 (Existence of Greibach Normal Form Grammars):
For every context-free grammar G with λ /∈ L(G), there exists an equivalent
grammar Ĝ in Greibach normal form.

Underlying idea, continued: Consider a sentential form, for example,

x1x2x3x4x5x6

where x1x2x3 are the terminals read from the input and x4x5x6 are the variables
on the stack.

Consider a production A→ ax.

If variable A is on top of stack and terminal a is the next input symbol, then
remove A from the stack and push back x.

An npda transition function δ for A→ ax must be defined to have the move

(q, aw, Ay) ⊢ (q, w, xy)

for some state q, input string suffix w, and stack y. This, we define δ such that

δ(q, a, A) = {(q, x)}.

6.2.2 Linz Example 7.6

Construct a pda to accept the language generated by grammar with productions

S → aSbb | a.

First, we transform this grammar into Greibach Normal Form:

102

S → aSA | a
A→ bB
B → b

We define the pda to have three states – an initial state q0, a final state q2, and
an intermediate state q1.

We define the initial transition rule to push the start symbol S on the stack:

δ(q0, λ, z) = {(q1, Sz)}

We simulate the production S → aSA with a transition that reads a from the
input and replaces S on the top of the stack by SA.

Similarly, we simulate the production S → a with a transition that reads a
while simply removing S from the top of the stack. We represent these two
productions in the pda as the nondeterministic transition rule:

δ(q1, a, S) = {(q1, SA), (q1, λ)}

Doing the same for the other productions, we get transition rules:

δ(q1, b, A) = {(q1, B)}
δ(q1, b, B) = {(q1, λ)}

When the stack start symbol appears at the top of the stack, the derivation is
complete. We define a transition rule to move the pda into its final state:

δ(q1, λ, z) = {(q2, λ)}

6.2.3 Constructing an NPDA for a CFG

Linz Theorem 7.1 (Existence of NPDA for Context-Free Language):
For any context-free language L, there exists an npda M such that L = L(M).

Proof: The proof partly follows from the following construction (algorithm).

Algorithm to construct an npda for a context-free grammar

• Let G = (V, T, S, P) be a grammar for L in Greibach Normal Form.

• Construct npda M = ({q0, q1, qf}, T, V ∪ {z}, δ, q0, z, {qf}) where:

– z /∈ V
– T is the input alphabet for the npda
– V ∪ {z} is the stack alphabet for the npda

• Define transition rule δ(q0, λ, z) = {(q1, Sz)} to initialize the stack.

• For every A→ au in P , define transition rules

(q1, u) ∈ δ(q1, a, A)

that read a, pop A, and push u. (Note the possible nondeterminism.)

• Define transition rule δ(q1, λ, z) = {(qf , z)} to detect the end of processing.

103

6.2.4 Linz Example 7.7

Consider the grammar:

S → aA
A→ aABC | bB | a
B → b
C → c

This grammar is already in Greibach Normal Form. So we can apply the
algorithm above directly.

In addition to the transition rules for the startup and shutdown, i.e.,

1. δ(q0, λ, z) = {(q1, Sz)}
2. δ(q1, λ, z) = {(qf , z)}

the npda has the following transition rules for the productions:

3. δ(q1, a, S) = {(q1, A)}
4. δ(q1, a, A) = {(q1, ABC), (q1, λ)}
5. δ(q1, b, A) = {(q1, B)}
6. δ(q1, b, B) = {(q1, λ)}
7. δ(q1, c, C) = {(q1, λ)}

The sequence of moves made by M in processing is aaabc is

(q0, aaabc, z)
(1) ⊢ (q1, aaabc, Sz)
(3) ⊢ (q1, aabc, Az)
(4a) ⊢ (q1, abc, ABCz)
(4b) ⊢ (q1, bc, BCz)
(6) ⊢ (q1, c, Cz)
(7) ⊢ (q1, λ, z)
(2) ⊢ (qf , λ, z)

This corresponds to the derivation

S ⇒ aA⇒ aaABC ⇒ aaaBC ⇒ aaabC ⇒ aaabc.

The previous construction assumed Greibach Normal Form. This is not necessary,
but the needed construction technique is more complex, as sketched below.

A→ Bx

(q1, Bx) ∈ δ(q1, λ, A)

A→ abCx

e.g.,
(q2, λ) ∈ δ(q1, a, a)

104

(q3, λ) ∈ δ(q2, b, b)
(q1, Cx) ∈ δ(q3, λ, A)

etc.

6.2.5 Constructing a CFG for an NPDA

Linz Theorem 7.2 (Existence of a Context-Free Language for an
NPDA): If L = L(M) for some npda M , then L is a context-free language.

Basic idea: To construct a context-free grammar from an npda, reverse the
previous construction.

That is, construct a grammar to simulate npda moves:

• The stack content becomes the variable part of the grammar.

• The processed input becomes the terminal prefix of sentential form.

This leads to a relatively complicated construction. This is described in the Linz
textbook in more detail, but we will not cover it in this course.

6.3 Deterministic Pushdown Automata and Deterministic
Context-Free Languages

6.3.1 Deterministic Pushdown Automata

A deterministic pushdown accepter (dpda) is a pushdown automaton that never
has a choice in its move.

Linz Definition 7.3 (Deterministic Pushdown Automaton): A pushdown
automaton M = (Q, Σ, Γ, δ, q0, z, F) is deterministic if it is an automaton as
defined in Linz Definition 7.1, subject to the restrictions that, for every q ∈
Q, a ∈ Σ ∪ {λ}, and b ∈ Γ,

1. δ(q, a, b) contains at most one element,

2. if δ(q, λ, b) is not empty, then δ(q, c, b) must be empty for every c ∈ Σ.

Restriction 1 requires that for, any given input symbol and any stack top, at
most one move can be made.

Restriction 2 requires that, when a λ-move is possible for some configuration, no
input-consuming alternative is available.

Consider the difference between this dpda definition and the dfa definition:

• A dpda allows λ-moves, but the moves are deterministic.

• A dpda may have dead configurations.

Linz Definition 7.4 (Deterministic Context-Free Language): A language
L is a deterministic context-free language if and only if there exists a dpda M
such that L = L(M).

105

6.3.2 Linz Example 7.10

The language L = {anbn : n ≥ 0} is a deterministic context-free language.

The pda M = ({q0, q1, q2}, {a, b}, {0, 1}, δ, q0, 0, {q0}) with transition rules

δ(q0, a, 0) = {(q1, 10)}
δ(q1, a, 1) = {(q1, 11)}
δ(q1, b, 1) = {(q2, λ)}
δ(q2, b, 1) = {(q2, λ)}
δ(q2, λ, 0) = {(q0, λ)}

accepts the given language. This grammar satisfies the conditions of Linz
Definition 7.4. Therefore, it is deterministic.

6.3.3 Linz Example 7.5 Revisited

Consider language

L = {wwR : w ∈ {a, b}+}

and machine

M = (Q, Σ, Γ, δ, q0, z, F)

where:

Q = {q0, q1, q2}
Σ = {a, b}
Γ = {a, b, z}
F = {q2}

The transition function can be visualized as having several parts:

• a set of transition rules to push w on the stack

δ(q0, a, a) = {(q0, aa)} ← Restriction 2 violation
δ(q0, b, a) = {(q0, ba)}
δ(q0, a, b) = {(q0, ab)}
δ(q0, b, b) = {(q0, bb)}
δ(q0, a, z) = {(q0, az)}
δ(q0, b, z) = {(q0, bz)}

• a set of transition rules to guess the middle of the string, where the npda
switches from state q0 to q1

δ(q0, λ, a) = {(q1, a)} ← Restriction 2 violation
δ(q0, λ, b) = {(q1, b)}

• a set of transition rules to match wR against the contents of the stack

δ(q1, a, a) = {(q1, λ)}
δ(q1, b, b) = {(q1, λ)}

106

• a transition rule to recognize a successful match

δ(q1, λ, z) = {(q2, z)}

This machines violates Restriciton 2 of Linz Definition 7.3 (Deterministic Push-
down Automaton) as indicated above. Thus, it is not deterministic.

Moreover, L is itself not deterministic (which is not proven here).

6.4 Grammars for Deterministic Context-Free Grammars
Deterministic context-free languages are important because they can be parsed
efficiently.

• The dpda essentially defines a parsing machine.

• Because it is deterministic, there is no backtracking involved.

• We can thus easily write a reasonably efficient computer program to
implement the parser.

• Thus deterministic context-free languages are important in the theory and
design of compilers for programming languages.

An LL-grammar is a generalization of the concept of s-grammar. This family of
grammars generates the deterministic context-free languages.

Compilers for practical programming languages may use top-down parsers based
on LL-grammars to parse the languages efficiently.

107

7 Properties of Context-Free Languages
Chapter 4 examines the closure properties of the family of regular languages,
algorithms for determining various properties of regular languages, and methods
for proving languages are not regular (e.g., the Pumping Lemma).

Chapter 8 examines similar aspects of the family of context-free languages.

7.1 Two Pumping Lemmas
Because of insufficient time and extensive coverage of the Pumping Lemma for
regular languages, we will not cover the Pumping Lemmas for Context-Free
Languages in this course. See section 8.1 of the Linz textbook if you are interested
in this topic.

7.1.1 Context-Free Languages

Linz Section 8.1 includes the following language examples. The
results of these are used in the remainder of this chapter.

1. Linz Example 8.1 shows L = {anbncn : n ≥ 0} is not context free.

2. Linz Example 8.2 shows L = {ww : w ∈ {a, b}∗} is not context free.

3. Linz Example 8.3 shows L = {an! : n ≥ 0} is not context free.

4. Linz Example 8.4 shows L = {anbj : n = j2} is not context free.

7.1.2 Linear Languages

Linz Section 8.1 includes the following definitions. (The definition of linear
grammar is actually from Chapter 3.)

Definition (Linear Grammar): A linear grammar is a grammar in which at
most one variable can appear on the right side of any production.

A linear context-free grammar is thus a context-free grammar that is also a linear
grammar.

Linz Definition 8.5 (Linear Language): A context-free language L is linear
if there exists a linear context-free grammar G such that L = L(G).

Linz Section 8.1 also includes the following language examples.

5. Linz Example 8.5 shows L = {anbn : n ≥ 0} is a linear language.

6. Linz Example 8.6 shows L = {w : na(w) = nb(w)} is not linear.

108

7.2 Closure Properties and Decision Algorithms for
Context-Free Languages

In most cases, the proofs and algorithms for the properties of regular languages
rely upon manipulation of transition graphs for finite automata. Hence, they
are relatively straightforward.

When we consider similar properties for context-free languages, we encounter
more difficulties.

• Some properties do not hold.
• Other properties require more complex arguments.
• Some intuitively simple questions cannot be answered.

Let’s consider closure under the simple set operations as we did for regular
languages in Linz Theorem 4.1.

7.2.1 Closure under Union, Concatenation, and Star-Closure

Linz Theorem 8.3 (Closure under Union, Concatenation, and Star-
Closure): The family of context-free languages is closed under (a) union, (b)
concatenation, and (c) star-closure.

(8.3a) Proof of Closure under Union:

Let L1 and L2 be context-free languages with the corresponding context-free
grammars G1 = (V1, T1, S1, P1) and G2 = (V2, T2, S2, P2).

Assume V1 and V2 are disjoint. (If not, we can make them so by renaming.)

Consider L(G3) where

G3 = (V1 ∪ V2 ∪ {S3}, T1 ∪ T2, S3, P3)

with:

S3 /∈ V1 ∪ V2 – i.e, S3 is a fresh variable
P3 = P1 ∪ P2 ∪ { S3 → S1 | S2 }

Clearly, G3 is a context-free grammar. So L(G3) is a context-free language.

Now, we need to show that L(G3) = L1 ∪ L2.

For w ∈ L1, there is a derivation in G3:

(1) S3 ⇒ S1
∗⇒ w

Similarly, for w ∈ L2, there is a derivation in G3:

(2) S3 ⇒ S2
∗⇒ w

Also, for w ∈ L(G3), the first step of the derivation must be either (1) S3 ⇒ S1
or (2) S3 ⇒ S2.

109

For choice 1, the sentential forms derived from S1 only have variables from V1.
But V1 is disjoint from V2. Thus the derivation

S1
∗⇒ w

can only involve productions from from P1. Hence, for choice 1, w ∈ L1.

Using a similar argument for choice 2, we conclude w ∈ L2.

Therefore, L(G3) = L1 ∪ L2.

QED.

(8.3b) Proof of Closure under Concatenation:

Consider L(G4) where

G4 = (V1 ∪ V2 ∪ {S4}, T1 ∪ T2, S4, P4)

with:

S4 /∈ V1 ∪ V2
P4 = P1 ∪ P2 ∪ { S4 → S1S2 }

Then L(G4) = L1L2 follows from a similar argument to the one in part (a).

QED.

(8.3c) Proof of Closure under Star-Closure:

Consider L(G5) where

G5 = (V1 ∪ {S5}, T1, S5, P5)

with:

S5 /∈ V1
P5 = P1 ∪ { S5 → S1S5 | λ }

Then L(G5) = L∗
1 follows from a similar argument to the one in part (a).

QED.

7.2.2 Non-Closure under Intersection and Complementation

Linz Theorem 8.4 (Non-closure under Intersection and Complementa-
tion): The family of context-free languages is not closed under (a) intersection
and (b) complementation.

(8.4b) Proof of Non-closure under Intersection:

Assume the family of context-free languages is closed under intersection. Show
that this leads to a contradiction.

It is sufficient to find two context-free languages whose intersection is not context-
free.

110

Consider languages L1 and L2 defined as follows:

L1 = {anbncm : n ≥ 0, m ≥ 0}
L2 = {anbmcm : n ≥ 0, m ≥ 0}

One way to show that a language is context-free is to find a context-free grammar
that generates it. The following context-free grammar generates L1:

S → S1S2
S1 → aS1b | λ
S2 → cS2 | λ

Alternatively, we could observe that L1 is the concatenation of two context-free
languages and, hence, context-free by Linz Theorem 8.3 above.

Similarly, we can show that L2 is context free.

From the assumption, we thus have that L1 ∩ L2 is context free.

But

L1 ∩ L2 = {anbncn : n ≥ 0},

which is not context free. Linz proves this in Linz Example 8.1 (which is in the
part of this chapter we did not cover in this course).

Thus we have a contradiction. Therefore, the family of context-free languages is
not closed under intersection.

QED.

(8.4b) Proof of Non-closure under Complementation:

Assume the family of context-free languages is closed under complementation.
Show that this leads to a contradiction.

Consider arbitrary context-free languages L1 and L2.

From set theory, we know that

L1 ∩ L2 = L̄1 ∪ L̄2.

From Linz Theorem 8.3 and the assumption that context-free languages are
closed under complementation, we deduce that the right side (L̄1 ∪ L̄2) is a
context-free language for all L1 and L2.

However, we know from part (a) that the left side (L1 ∩ L2) is not necessarily a
context-free language for all L1 and L2.

Thus we have a contradiction. Therefore, the family of context-free languages is
not closed under complementation.

QED.

111

7.2.3 Closure under Regular Intersection

Although context-free languages are not, in general, closed under intersection,
there is a useful special case that is closed.

Linz Theorem 8.5 (Closure Under Regular Intersection): Let L1 be a
context-free language and L2 be a regular language. Then L1 ∩ L2 is context
free.

Proof:

Let M1 = (Q, Σ, Γ, δ1, q0, z, F1) be an npda that accepts context-free language
L1.

Let M2 = (P, Σ, δ2, p0, F2) be a dfa that accepts regular language L2.

We construct an npda

M̂ = (Q̂, Σ, Γ, δ̂, q̂0, F̂)

that simulates M1 and M2 operating simultaneously (i.e., executes the moves of
both machines for each input symbol).

We choose pairs of states from M1 and M2 to represent the states of M̂ as
follows:

Q̂ = Q× P
q̂0 = (q0, p0)
F̂ = F1 × F2

We specify δ̂ such that the moves of M̂ correspond to simultaneous moves of M1
and M2. That is,

((qk, pl), x) ∈ δ̂((qi, pj), a, b)

if and only if

(qk, x) ∈ δ1(qi, a, b)

and

δ2(pj , a) = pl.

For moves (qi, λ, b) in δ1, we extend δ2 so that δ2(pl, λ) = pl for all l.

By induction on the length of the derivations, we can prove that

((q0, p0), w, z) ⊢∗
M̂

((qr, ps), λ, x),

with qr ∈ F1 and ps ∈ F2 if and only if

(q0, w, z) ⊢∗
M1

(qr, λ, x)

and

δ∗(p0, w) = ps.

112

Therefore, a string is accepted by M̂ if and only if it is accepted by both M1
and M2. That is, the string is in L(M1) ∩ L(M2) = L1 ∩ L2.

QED.

7.2.4 Linz Example 8.7

Show that the language

L = {anbn : n ≥ 0, n ̸= 100}

is context free.

We can construct an npda or context-free grammar for L, but this is tedious.
Instead, we use closure of regular intersection (Linz Theorem 8.5).

Let L1 = {a100b100}.

L1 is finite, and thus also regular. Hence, L̄1 is regular because regular languages
are closed under complementation.

From previous results, we know that L = {anbn : n ≥ 0} is context free.

Clearly, L = {anbn : n ≥ 0} ∩ L̄1.

By the closure of context-free languages under regular intersection, L is a
context-free language.

7.2.5 Linz Example 8.8

Show that

L = {w ∈ {a, b, c}∗ : na(w) = nb(w) = nc(w)}

is not context free.

Although we could use the Pumping Lemma for Context-Free Languages, we
again use closure of regular intersection (Linz Theorem 8.5).

Assume that L is context free. Show that this leads to a contradiction.

Thus

L ∩ L(a∗b∗c∗) = {anbncn : n ≥ 0}

is also context free. But we have previously proved that this language is not
context free.

Thus we have a contradiction. Therefore, L is not context free.

7.2.6 Some Decidable Properties of Context Free Languages

There exist algorithms for determine whether a context-free language is empty
or nonempty and finite or infinite.

113

These algorithms process the context-free grammars for the languages. They
assume that the grammars are first transformed using various algorithms from
Linz Chapter 6 (which we did not cover in this course).

The algorithms from Chapter 6 include the removal of

• useless symbols and productions (i.e., variables and productions that can
never generate a sentence)

• λ-productions (i.e., productions with λ on the right side)

• unit productions (i.e., productions of the form A→ B)

Linz Theorem 8.6 (Determining Empty Context-Free Languages):
Given a context-free grammar G = (V, T, S, P), then there exists an algorithm
for determining whether or not L(G) is empty.

Basic idea of algorithm: Assuming λ /∈ L, remove the useless productions. If the
start symbol is useless, then L is empty. Otherwise, L is nonempty.

Linz Theorem 8.7 (Determining Infinite Context-Free Languages):
Given a context-free grammar G = (V, T, S, P), then there exists an algorithm
for determining whether or not L(G) is infinite.

Basic idea of algorithm: Remove useless symbols, λ-productions, and unit
productions. If there are variables A that repeat as in

A
∗⇒ xAy

then the language is infinite. Otherwise, the language is finite. To determine
repeated variables, we can build a graph of the dependencies of the variables on
each other. If this graph has a cycle, then the variable at the base of the cycle is
repeated.

Unfortunately, other simple properties are not as easy as the above.

For example, there is no algorithm to determine whether two context-free gram-
mars generate the same language.

114

8 Turing Machines
A finite accepter (nfa, dfa)

• has no local storage
• accepts a regular language

A pushdown accepter (npda, dpda)

• has a stack for local storage

• accepts a language from a larger family

– an npda accepts a context-free language
– a dpda accepts a deterministic context-free language

The family of regular languages is a subset of the deterministic context-free
languages, which is a subset of the context-free languages.

But, as we saw in Chapter 8, not all languages of interest are context-free. To
accept languages like {anbncn : n ≥ 0} and {ww : w ∈ {a, b}∗}, we need an
automaton with a more flexible internal storage mechanism.

What kind of internal storage is needed to allow the machine to accept languages
such as these? multiple stacks? a queue? some other mechanism?

More ambitiously, what is the most powerful automaton we can define? What
are the limits of mechanical computation?

This chapter introduces the Turing machine to explore these theoretical ques-
tions. The Turing machine is a fundamental concept in the theoretical study of
computation.

The Turing machine

• has a tape, a one-dimensional array of readable and writable cells that is
unbounded in both directions

• accepts a language from the family of recursively enumerable languages, a
larger family of languages than context-free

Although Turing machines are simple mechanisms, the Turing thesis (also known
as the Church-Turing thesis) maintains that any computation that can be carried
out on present-day computers an be done on a Turing machine.

Note: Much of the work on computability was published in the 1930’s, before
the advent of electronic computers a decade later. It included work by Austrian
(and later American) logician Kurt Goedel on primitive recursive function theory,
American mathematician Alonso Church on lambda calculus (a foundation of
functional programming), British mathematician Alan Turing (also later a PhD
student of Church’s) on Turing machines, and American mathematician Emil
Post on Post machines.

115

8.1 The Standard Turing Machine
8.1.1 What is a Turing Machine?

8.1.1.1 Schematic Drawing of Turing Machine Linz Figure 9.1 shows a
schematic drawing of a standard Turing machine.

This deviates from the general scheme given in Chapter 1 in that the input
file, internal storage, and output mechanism are all represented by a single
mechanism, the tape. The input is on the tape at initiation and the output is
on that tape at termination.

On each move, the tape’s read-write head reads a symbol from the current tape
cell, writes a symbol back to that cell, and moves one cell to the left or right.

Figure 49: Linz Fig. 9.1: Standard Turing Machine

8.1.1.2 Definition of Turing Machine Turing machines were first defined
by British mathematician Alan Turing in 1937, while he was a graduate student
at Cambridge University.

Linz Definition 9.1 (Turing Machine): A Turing machine M is defined by

M = (Q, Σ, Γ, δ, q0,□, F)

where

1. Q is the set of internal states
2. Σ is the input alphabet
3. Γ is a finite set of symbols called the tape alphabet
4. δ is the transition function
5. □ ∈ Γ is a special symbol called the blank
6. q0 ∈ Q is the initial state
7. F ⊆ Q is the set of final states

We also require

8. Σ ⊆ Γ− {□}

and define

9. δ : Q× Γ→ Q× Γ× {L, R}.

116

Requirement 8 means that the blank symbol □ cannot be either an input or an
output of a Turing machine. It is the default content for any cell that has no
meaningful content.

From requirement 9, we see that the arguments of the transition function δ are:

• the current state of the control unit
• the current tape symbol

The result of the transition function δ gives:

• the new state of the control unit
• the symbol that replaces the current symbol on the tape
• a move symbol L or R, denoting a move of the read-write head to the left

or the right on the tape

In general, δ is a partial function. That is, not all configurations have a next
move defined.

8.1.1.3 Linz Example 9.1 Consider a Turing machine with a move defined
as follows:

δ(q0, a) = (q1, d, R)

Linz Figure 9.2 shows the situation (a) before the move and (b) after the move.

Figure 50: Linz Fig. 9.2: One Move of a Turing Machine

8.1.1.4 A Simple Computer A Turing machine is a simple computer. It
has

• a processing unit that has a finite memory
• a tape that provides unlimited secondary storage capacity
• a limited set of instructions

The Turing machine can

• sense the symbol under the tape’s read-write head
• use the result to decide what to do next
• write a symbol back to the tape
• change the state of the control
• move the read-write head one position to the left or right on the tape

The transition function δ determines the behavior of the machine, i.e., it is the
machine’s program.

117

The Turing macine starts in initial state q0 and then goes through a sequence of
moves defined by δ. A cell on the tape may be read and written many times.

Eventually the Turing machine may enter a configuration for which δ is undefined.
When it enters such a state, the machine halts. Hence, this state is called a halt
state.

Typically, no transitions are defined on any final state.

8.1.1.5 Linz Example 9.2 Consider the Turing machine defined by

Q = {q0, q1},
Σ = {a, b},
Γ = {a, b,□},
F = {q1}

where δ is defined as follows:

1. δ(q0, a) = (q0, b, R),

2. δ(q0, b) = (q0, b, R),

3. δ(q0,□) = (q1,□, L).

Linz Figure 9 .3 shows a sequence of moves for this Turing machine:

• It begins in state q0 with the input positioned over an a.
• When an a is read, transition rule 1 fires, replaces a by b on the tape,

moves right, and stays in state q0.
• When a b is read, transition rule 2 fires, leaves b on the tape, moves right,

and stays in state q0.
• It continues moving right, replacing each a by a b and leaving each b

unchanged.
• When a blank (□) is read, transition rule 3 fires, leaves the blank on the

tape, moves left, and enters final state q1.

Figure 51: Linz Fig. 9.3: A Sequence of Moves of a Turing Machine

8.1.1.6 Transition Graph for Turing Machine As with finite and push-
down automata, we can use transition graphs to represent Turing machines. We
label the edges of the graph with a triple giving (1) the current tape symbol, (2)
the symbol that replaces it, and (3) the direction in which the read-write head
moves.

118

Linz Figure 9.4 shows a transition graph for the Turing machine given in Linz
Example 9.2.

Figure 52: Linz Fig. 9.4: Transition Graph for Example 9.2

8.1.1.7 Linz Example 9.3 (Infinite Loop) Consider the Turing machine
defined in Linz Figure 9.5.

Figure 53: Linz Fig. 9.5: Infinite Loop

Suppose the tape initially contains ab . . . with the read-write head positioned
over the a and in state q0. Then the Turing machine executes the following
sequence of moves:

1. The machine reads symbol a, leaves it unchanged, moves right (now over
symbol b), and enters state q1.

2. The machine reads b, leaves it unchanged, moves back left (now over a
again), and enters state q0 again.

3. The machine then repeats steps 1-3.

Clearly, regardless of the tape configuration, this machine does not halt. It goes
into an infinite loop.

8.1.1.8 Standard Turing Machine Because we can define a Turing ma-
chine in several different ways, it is useful to summarize the main features of our
model.

A standard Turing machine:

119

1. has a tape that is unbounded in both directions, allowing any number of
left and right moves

2. is deterministic in that δ defines at most one move for each configuration

3. has no special input or output files. At the initial time, the tape has
some specified content, some of which is considered input. Whenever the
machine halts, some or all of the contents of the tape is considered output.

These definitions are chosen for convenience in this chapter. Chapter 10 (which
we do not cover in this course) examines alternative versions of the Turing
machine concept.

8.1.1.9 Instantaneous Description of Turing Machine As with push-
down automata, we use instantaneous descriptions to examine the configurations
in a sequence of moves. The notation (using strings)

x1qx2

or (using individual symbols)

a1a2 · · · ak−1qakak+1 · · · an

gives the instantaneous description of a Turing machine in state q with the tape
as shown in Linz Figure 9.5.

By convention, the read-write head is positioned over the symbol to the right of
the state (i.e., ak above).

Figure 54: Linz Fig. 9.6: Tape Configuration a1a2 · · · ak−1qakak+1 · · · an

A tape cell contains □ if not otherwise defined to have a value.

Example: The diagrams in Linz Figure 9.3 (above) show the instantaneous
descriptions q0aa, bq0a, bbq0□, and bq1b.

As with pushdown automata, we use ⊢ to denote a move.

Thus, for transition rule

δ(q1, c) = (q2, e, R)

we can have the move

abq1cd ⊢ abeq2d.

120

As usual we denote the transitive closure of move (i.e., arbitrary number of
moves) using:

⊢∗

We also use subscripts to distinguish among machines:

⊢M

8.1.1.10 Computation of Turing Machine Now let’s summarize the
above discussion with the following definitions.

Linz Definition 9.2 (Computation): Let M = (Q, Σ, Γ, δ, q0,□, F) be a
Turing machine. Then any string a1 · · · ak−1q1akak+1 · · · an with ai ∈ Γ and
q1 ∈ Q, is an instantaneous description of M .

A move

a1 · · · ak−1q1akak+1 · · · an ⊢ a1 · · · ak−1bq2ak+1 · · · an

is possible if and only if

δ(q1, ak) = (q2, b, R).

A move

a1 · · · ak−1q1akak+1 · · · an ⊢ a1 · · · q2ak−1bak+1 · · · an

is possible if and only if

δ(q1, ak) = (q2, b, L).

M halts starting from some initial configuration x1qix2 if

x1qix2 ⊢∗ y1qjay2

for any qj and a, for which δ(qj , a) is undefined.

The sequence of configurations leading to a halt state is a computation.

If a Turing machine does not halt, we use the following special notation to
describe its computation:

x1qx2 ⊢∗ ∞

8.1.2 Turing Machines as Language Acceptors

Can a Turing machine accept a string w?

Yes, using the following setup:

• Write w on the tape initially.
• Fill all the unused cells on the tape with blanks □.
• Start the Turing machine with read-write head over leftmost symbol of w.
• If the machine halts in a final state, then it accepts string w.

121

Linz Definition 9.3 (Language Accepted by Turing Machine): Let
M = (Q, Σ, Γ, δ, q0,□, F) be a Turing machine. Then the language accepted by
M is

L(M) = {w ∈ Σ+ : q0w ⊢∗ x1qf x2, qf ∈ F, x1, x2 ∈ Γ∗}.

Note: The finite string w must be written to the tape with blanks on both sides.
No blanks can are embedded within the input string w itself.

Question: What if w ̸∈ L(M)?

The Turing machine might:

1. halt in nonfinal state
2. never halt

Any string for which the machine does not halt is, by definition, not in L(M).

8.1.2.1 Linz Example 9.6 For Σ = {0, 1}, design a Turing machine that
accepts the language denoted by the regular expression 00∗.

We use two internal states Q = {q0, q1}, one final state F = {q1}, and transition
function:

δ(q0, 0) = (q0, 0, R),
δ(q0,□) = (q1,□, R)

The transition graph shown below implements this machine.

• While a 0 appears under the read-write head, the head moves to the right.
• If a blank is read, the machine halts in final state q1.
• If a 1 is read, the machine halts in the nonfinal state q0 because δ(q0, 1) is

undefined.

The Turing machine also halts in a final state if started in state q0 on a blank.
We could interpret this as acceptance of λ, but for technical reasons the empty
string is not included in Linz Definition 9.3.

8.1.2.2 Linz Example 9.7 For Σ = {a, b}, design a Turing machine that
accepts

122

L = {anbn : n ≥ 1}.

We can design a machine that incorporates the following algorithm:

While both a’s and b’s remain
replace leftmost a by x
replace leftmost b by y

If no a’s or b’s remain
accept

else
reject

Filling in the details, we get the following Turing machine for which:

Q = {q0, q1, q2, q3, q4}
F = {q4}
Σ = {a, b}
Γ = {a, b, x, y,□}

The transitions can be broken into several sets.

The first set

1. δ(q0, a) = (q1, x, R)

2. δ(q1, a) = (q1, a, R)

3. δ(q1, y) = (q1, y, R)

4. δ(q1, b) = (q2, y, L)

replaces the leftmost a with an x, then causes the read-write head to travel
right to the first b, replacing it with a y. The machine then enters a state q2,
indicating that an a has been successfully paired with a b.

The second set

5. δ(q2, y) = (q2, y, L)

6. δ(q2, a) = (q2, a, L)

7. δ(q2, x) = (q0, x, R)

reverses the direction of movement until an x is encountered, repositions the
read-write head over the leftmost a, and returns control to the initial state.

The machine is now back in the initial state q0, ready to process the next a-b
pair.

After one pass through this part of the computation, the machine has executed
the partial computation:

q0aa · · · abb · · · b ⊢∗ xq0a · · · ayb · · · b

123

So, it has matched a single a with a single b.

The machine continues this process until no a is found on leftward movement.

If all a’s have been replaced, then state q0 detects a y instead of an a and changes
to state q3. This state must verify that all b’s have been processed as well.

8. δ(q0, y) = (q3, y, R)

9. δ(q3, y) = (q3, y, R)

10. δ(q3,□) = (q4,□, R)

The input aabb makes the moves shown below. (The bold number in parenthesis
gives the rule applied in that step.)

q0aabb – start at left end
(1) ⊢ xq1abb – process 1st a-b pair
(2) ⊢ xaq1bb – moving to right
(4) ⊢ xq1ayb
(6) ⊢ q2xayb – move back to left
(7) ⊢ xq0ayb
(1) ⊢ xxq1yb – process 2nd a-b pair
(3) ⊢ xxyq1b – moving to right
(4) ⊢ xxq2yy
(5) ⊢ xq2xyy – move back to left
(7) ⊢ xxq0yy
(8) ⊢ xxyq3y – no a’s
(9) ⊢ xxyyq3□ – check for extra b’s
(10) ⊢ xxyy□q4□ – done, move to final

The Turing machine halts in final state q4, thus accepting the string aabb.

If the input is not in the language, the Turing machine will halt in a nonfinal
state.

For example, consider:

• anbm for n > m?
– halts in nonfinal state q1 when □ found

• anbm for 0 < n < m?
– halts in nonfinal state q3 when b found

• aba?
– halts in nonfinal state q3 when a found

• b?
– halts in nonfinal state q0 when b found

124

8.1.3 Turing Machines as Transducers

Turing machines are more than just language accepters. They provide a simple
abstract model for computers in general. Computers transform data. Hence,
Turing machines are transducers (as we defined them in Chapter 1). For a
computation, the

• input consists of all the nonblank symbols on the tape initially

• output consists of is whatever is on the tape when the machine halts in a
final state

Thus, we can view a Turing machine transducer M as an implementation of a
function f defined by

ŵ = f(w)

provided that

q0w ⊢∗
M qf ŵ,

for some final state qf .

Linz Definition 9.4 (Turing Computable): A function f with domain D is
said to be Turing-computable, or just computable, if there exists some Turing
machine M = (Q, Σ, Γ, δ, q0,□, F) such that

q0w ⊢∗
M qf f(w), qf ∈ F ,

for all w ∈ D.

Note: A transducer Turing machine must start on the leftmost symbol of the
input and stop on the leftmost symbol of the output.

8.1.3.1 Linz Example 9.9 Compute x + y for positive integers x and y.

We use unary notation to represent the positive integers, i.e., a positive integer
is represented by a sequence of 1’s whose length is equal to the value of the
integer. For example:

1111 = 4

The computation is

q0w(x)0w(y) ⊢∗ qf w(x + y)0

where 0 separates the two numbers at initiation and after the result at termina-
tion.

Key idea: Move the separating 0 to the right end.

To achieve this, we construct M = (Q, Σ, Γ, δ, q0,□, F) with

Q = {q0, q1, q2, q3, q4}
F = {q4}

125

δ(q0, 1) = (q0, 1, R)
δ(q0, 0) = (q1, 1, R)
δ(q1, 1) = (q1, 1, R)
δ(q1,□) = (q2,□, L)
δ(q2, 1) = (q3, 0, L)
δ(q3, 1) = (q3, 1, L)
δ(q3,□) = (q4,□, R)

The sequence of instantaneous descriptions for adding 111 to 11 is shown below.

q0111011 ⊢ 1q011011 ⊢ 11q01011 ⊢ 111q0011
⊢ 1111q1111 ⊢ 11111q11 ⊢ 111111q1□
⊢ 11111q21 ⊢ 1111q310 ⊢ 111q3110
⊢ 11q31110 ⊢ 1q311110 ⊢ q3111110
⊢ q3□111110 ⊢ q4111110

8.1.3.2 Linz Example 9.10 Construct a Turing machine that copies strings
of 1’s. More precisely, find a machine that performs the computation

q0w ⊢∗ qf ww,

for any w ∈ {1}+.

To solve the problem, we implement the following procedure:

1. Replace every 1 by an x.
2. Find the rightmost x and replace it with 1.
3. Travel to the right end of the current nonblank region and create a 1 there.
4. Repeat steps 2 and 3 until there are no more x’s.

A Turing machine transition function for this procedure is as follows:

δ(q0, 1) = (q0, x, R)
δ(q0,□) = (q1□, L)
δ(q1, x) = (q2, 1, R)
δ(q2, 1) = (q2, 1, R
δ(q2,□) = (q1, 1, L)
δ(q1, 1) = (q1, 1, L)
δ(q1,□) = (q3,□, R)

where q3 is the only final state.

Linz Figure 9.7 shows a transition graph for this Turing machine.

This is not easy to follow, so let us trace the program with the string 11. The
computation performed is as shown below.

q011 ⊢ xq01 ⊢ xxq0□ ⊢ xq1x
⊢ x1q2□ ⊢ xq111 ⊢ q1x11

126

⊢ 1q211 ⊢ 11q21 ⊢ 111q2□
⊢ 11q111 ⊢ 1q1111
⊢ q11111 ⊢ q1□1111 ⊢ q31111

8.1.3.3 Linz Example 9.11 Suppose x and y are positive integers repre-
sented in unary notation.

Construct a Turing machine that halts in a final state qy if x ≥ y and in a
nonfinal state qn if x < y.

That is, the machine must perform the computation:

q0w(x)0w(y) ⊢∗ qyw(x)0w(y), if x ≥ y
q0w(x)0w(y) ⊢∗ qnw(x)0w(y), if x < y

We can adapt the approach from Linz Example 9.7. Instead of matching a’s and
b’s, we match each 1 on the left of the dividing 0 with the 1 on the right. At the
end of the matching, we will have on the tape either

xx · · · 110xx · · ·x□

or

xx · · ·xx0xx · · ·x11□,

depending on whether x > y or y > x.

A transition graph for machine is shown below.

127

Figure 55: Linz Fig. 9.7: Transition Graph for Example 9.10

128

8.2 Combining Turing Machines for Complicated Tasks
8.2.1 Introduction

How can we compose simpler operations on Turing machines to form more
complex operations?

Techniques discussed in this section include use of:

• Top-down stepwise refinement, i.e., starting with a high-level description
and refining it incrementally until we obtain a description in the actual
language

• Block diagrams or pseudocode to state high-level descriptions

8.2.2 Using Block Diagrams

In the block diagram technique, we define high-level computations in boxes
without internal details on how computation is done. The details are filled in on
a subsequent refinement.

To explore the use of block diagrams in the design of complex computations,
consider Linz Example 9.12, which builds on Linz Examples 9.9 and 9.11 (above).

8.2.2.1 Linz Example 9.12 Design a Turing machine that computes the
following function:

f(x, y) = x + y, if x ≥ y,
f(x, y) = 0, if x < y.

For simplicity, we assume x and y are positive integers in unary representation
and the value zero is represented by 0, with the rest of the tape blank.

Linz Figure 9.8 shows a high-level block diagram of this computation. This
computation consists of a network of three simpler machines:

• a Comparer C to determine whether or not x ≥ y
• an Adder A that computes x + y
• an Eraser E that changes every 1 to a blank

Figure 56: Linz Fig. 9.8: Block Diagram

129

We use such high-level diagrams in subsequent discussions of large computations.
How can we justify that practice?

We can implement:

• the Comparer program C as suggested in Linz Example 9.11, using a
Turing machine having states indexed with C

• the Adder program A as suggested in Linz Example 9.9, with states indexed
with A

• the Eraser program E by constructing a Turing machine having states
indexed with E

Comparer C carries out the computations

qC,0w(x)0w(y) ⊢∗ qA,0w(x)0w(y), if x ≥ y,

and

qC,0w(x)0w(y) ⊢∗ qE,0w(x)0w(y), if x < y.

If qA,0 and qE,0 are the initial states of computations A and E, respectively,
then C starts either A or E.

Adder A carries out the computation

qA,0w(x)0w(y) ⊢∗ qA,f w(x + y)0.

And, Eraser E carries out the computation

qE,0w(x)0w(y) ⊢∗ qE,f 0.

The outer diagram in Linz Figure 9.8 thus represents a single Turing machine
that combines the actions of machines C, A, and E as shown.

8.2.3 Using Pseudocode

In the pseudocode technique, we outline a computation using high-level descriptive
phrases understandable to people. We refine and translate it to lower-level
implementations later.

8.2.3.1 Macroinstructions A simple kind of pseudocode is the macroin-
struction. A macroinstruction is a single statement shorthand for a sequence of
lower-level statements.

We first define the macroinstructions in terms of the lower-level language. Then
we compose macroinstructions into a larger program, assuming the relevant
substitutions will be done.

8.2.3.2 Linz Example 9.13 For this example, consider the macroinstruction

if a then qj else qk.

130

This means:

• If the Turing machine reads an a, then it, regardless of its current state,
transitions into state qj without changing the tape content or moving the
read-write head.

• If the symbol read is not an a, then it transitions into state qk without
changing anything.

We can implement this macroinstruction with several steps of a Turing machine:

δ(qi, a) = (qj0, a, R) for all qi ∈ Q
δ(qj0, c) = (qj , c, L) for all c ∈ Γ

δ(qi, b) = (qk0, b, R) for all qi ∈ Q and all b ∈ Γ− {a}
δ(qk0, c) = (qk, c, L) for all c ∈ Γ

States qj0 and qk0 just back up Turing machine tape position one place.

Macroinstructions are expanded at each occurrence.

8.2.3.3 Subprograms While each occurrence of a macroinstruction is ex-
panded into actual code, a subprogram is a single piece of code that is invoked
repeatedly.

As in higher-level language programs, we must be able to call a subprogram and
then, after execution, return to the calling point and resume execution without
any unwanted effects.

How can we do this with Turing machines?

We must be able to:

• preserve information about the calling program’s configuration (state, read-
write head position, tape contents), so that it can be restored on return
from the subprogram

• pass information from the calling program to the called subprogram and
vice versa

We can do this by partitioning the tape into several regions. Linz Figure 9.9
illustrates this technique for a program A (a Turing machine) that calls a
subprogram B (another Turing machine).

1. A executes in its own workspace.
2. Before transferring control to B, A writes information about its configura-

tion and inputs for B into some separate region T .
3. After transfer, B finds its input in T .
4. B executes in its own separate workspace.
5. When B completes, it writes relevant results into T .
6. B transfers control back to A, which resumes and gets the needed results

from T .

131

Figure 57: Linz Fig. 9.9: Tape Regions for Subprograms

Note: This is similar to what happens in an actual computer for a subprogram
(function, procedure) call. The region T is normally a segment pushed onto the
program’s runtime stack or dynamically allocated from the heap memory.

8.2.3.4 Linz Example 9.14 Design a Turing machine that multiplies x and
y, positive integers represented in unary notation.

Assume the initial and final tape configurations are as shown in Linz Figure 9.10.

We can multiply x by y by adding y to itself x times as described in the algorithm
below.

Repeat until x contains no more 1’s\
Find a 1 in x and replace it with another symbol a\
Replace the leftmost 0 by 0y\

Replace all a’s with 1’s

Figure 58: Linz Fig. 9.10: Multiplication

Although the above description of the pseudocode approach is imprecise, the
idea is sufficiently simple that it is clear we can implement it.

We have not proved that the block diagram, macroinstruction, or subprogram
approaches will work in all cases. But the discussion in this section shows that
it is plausible to use Turing machines to express complex computations.

8.3 Turing’s Thesis
The Turing thesis is an hypothesis that any computation that can be carried out
by mechanical means can be performed by some Turing machine.

This is a broad assertion. It is not something we can prove!

The Turing thesis is actually a definition of mechanical computation: a compu-
tation is mechanical if and only if it can be performed by some Turing machine.

132

Some arguments for accepting the Turing thesis as the definition of mechanical
computation include:

1. Anything that can be computed by any existing digital computer can also
be computed by a Turing machine.

2. There are no known problems that are solvable by what we intuitively
consider an algorithm for which a Turing machine program cannot be
written.

3. No alternative model for mechanical computation is more powerful than
the Turing machine model.

The Turing thesis is to computing science as, for example, classical Newtonian
mechanics is to physics. Newton’s “laws” of motion cannot be proved, but they
could possibly be invalidated by observation. The “laws” are plausible models
that have enabled humans to explain much of the physical world for several
centuries.

Similarly, we accept the Turing thesis as a basic “law” of computing science. The
conclusions we draw from it agree with what we know about real computers.

The Turing thesis enables us to formalize the concept of algorithm.

Linz Definition 9.5 (Algorithm): An algorithm for a function f : D → R is
a Turing machine M , which given as input any d ∈ D on its tape, eventually
halts with the correct answer f(d) ∈ R on its tape. Specifically, we can require
that

q0d ⊢∗
M qf f(d), qf ∈ F ,

for all d ∈ D.

To prove that “there exists an algorithm”, we can construct a Turing machine
that computes the result.

However, this is difficult in practice for such a low-level machine.

An alternative is, first, to appeal to the Turing thesis, arguing that anything that
we can compute with a digital computer we can compute with a Turing machine.
Thus a program in suitable high-level language or precise pseudocode can compute
the result. If unsure, then we can validate this by actually implementing the
computation on a computer.

Note: A higher-level language is Turing-complete if it can express any algorithm
that can be expressed with a Turing machine. If we can write a Turing machine
simulator in that language, we consider the language Turing complete.

9 OMIT Chapter 10

133

10 A Hierarchy of Formal Languages and Au-
tomata

The kinds of questions addressed in this chapter:

• What is the family of languages accepted by Turing machines?

• Are there any languages that are not accepted by any Turing machine?

• What is the relationship between Turing machines and various kinds of
grammars?

• How can we classify the various families of languages and their relationships
to one another?

Note: We assume the languages in this chapter are λ-free unless otherwise stated.

10.1 Recursive and Recursively Enumerable Languages
Here we make a distinction between languages accepted by Turing machines and
languages for which there is a membership algorithm.

10.1.1 Aside: Countability

Definition (Countable and Countably Infinite): A set is countable if it
has the same cardinality as a subset of the natural numbers. A set is countably
infinite if it can be placed into one-to-one correspondence with the set of all
natural numbers.

Thus there is some ordering on any countable set.

Also note that, for any finite set of symbols Σ, then Σ∗ and any its subsets are
countable. Similarly for Σ+.

From Linz Section 10.4 (not covered in this course), we also have the following
theorem about the set of Turing machines.

Linz Theorem 10.3 (Turing Machines are Countable): The set of all
Turing machines is countably infinite.

10.1.2 Definition of Recursively Enumerable Language

Linz Definition 11.1 (Recursively Enumerable Language): A language L
is recursively enumerable if there exists a Turing machine that accepts it.

This definition implies there is a Turing machine M such that for every w ∈ L

q0w ⊢∗
M x1qf x2

with the initial state q0 and a final state qf .

But what if w /∈ L?

134

• M might halt in a nonfinal state.
• M might go into an infinite loop.

10.1.3 Definition of Recursive Language

Linz Definition 11.2 (Recursive Language): A language L on Σ is recursive
if there exists a Turing machine M that accepts L and that halts on every w in
Σ∗.

That is, a language is recursive if and only if there exists a membership algorithm
for it.

10.1.4 Enumeration Procedure for Recursive Languages

If a language is recursive, then there exists an enumeration procedure, that is, a
method for counting and ordering the strings in the language.

• Let M be a Turing machine that determines membership in a recursive
language L on an alphabet Σ.

• Let M ′ be M modified to write the accepted strings to its tape.

• Σ+ is countable, so there is some ordering of w ∈ Σ+. Construct Turing
machine M̂ that generates all w ∈ Σ+ in order, say w1, w2, · · ·.

Thus M̂ generates the candidate strings wi in order. M ′ writes the the accepted
strings to its tape in order.

10.1.5 Enumeration Procedure for Recursively Enumerable Lan-
guages

Problem: A Turing machine M might not halt on some strings.

Solution: Construct M̂ to advance “all” strings simultaneously, one move at a
time. The order of string generation and moves is illustrated in Linz Figure 11.1.

Now machine M̂ advances each candidate string wi (columns of Linz Figure
11.1) one M -move at a time.

Because each string is generated by M̂ and accepted by M in a finite number of
steps, every string in L is eventually produced by M . The machine does not go
into an infinite loop for a wi that is not accepted.

Note: Turing machine M̂ does not terminate and strings for which M does not
halt will never complete processing, but any string that can be accepted by M
will be accepted within a finite number of steps.

10.1.6 Languages That are Not Recursively Enumerable

Linz Theorem 11.1 (Powerset of Countable Set not Countable) Let S
be an countably infinite set. Then its powerset 2S is not countable.

135

Figure 59: Linz Fig. 11.1: Enumeration Procedure for Recursively
Enumerable Languages

Proof: Let S = { s1, s2, s3, · · · } be an countably infinite set.

Let t ∈ 2S . Then t can represented by a bit vector b1b2 · · · such that bi = 1 if
and only if si ∈ t.

Assume 2S is countable. Thus 2S can be written in order t1, t2, · · · and put into
a table as shown in Linz Figure 11.2.

Figure 60: Linz Fig. 11.2: Cantor’s Diagonalization

Consider the main diagonal of the table (circled in Linz Figure 11.2). Complement
the bits along this diagonal and let td be a set represented by this bit vector.

Clearly td ∈ 2S . But td ̸= ti for any i, because they differ at least at si. This is
a contradicts the assumption that 2S is countable.

So the assumption is false. Therefore, 2S is not countable. QED.

This is Cantor’s diagonalization argument.

136

Linz Theorem 11.2 (Existence of Languages Not Recursively Enu-
merable): For any nonempty Σ, there exist languages that are not recursively
enumerable.

Proof: Any L ⊆ Σ∗ is a language on Σ. Thus 2Σ∗ is the set of all languages on
Σ.

Because Σ∗ is infinite and countable, Linz Theorem 11.1 implies that the set
of all languages on Σ is not countable. From Linz Theorem 10.3 (see above),
we know the set of Turing machines can be enumerated. Hence, the recursively
enumerable languages are countable.

Therefore, some languages on Σ are not recursively enumerable. QED.

10.1.7 A Language That is Not Recursively Enumerable

Linz Theorem 11.3: There exists a recursively enumerable language whose
complement is not recursively enumerable.

Proof: Let Σ = {a}.

Consider the set of all Turing machines with input alphabet Σ, i.e.,
{M1, M2, M3, · · · }.

By Linz Theorem 10.3 (see above), we know that this set of is countable. So it
has some order.

For each Mi there exists a recursively enumerable language L(Mi).

Also, for each recursively enumerable languages on Σ, there is some Turing
machine that accepts it.

Let L = {ai : ai ∈ L(Mi)}.

L is recursively enumerable because here is a Turing machine that accepts it.
E.g., the Turing machine works as follows:

• Count a’s in the input w to get i.
• Use Turing machine Mi to accept w.
• The combined Turing machine thus accepts L.

Now consider L̄ = {ai : ai /∈ L(Mi)}.

Assume L̄ is recursively enumerable.

There must be some Turing machine Mk, for some k, that accepts L̄. Hence,
L̄ = L(Mk).

Consider ak. Is it in L? Or in L̄?

Consider the case ak ∈ L̄. Thus ak ∈ L(Mk). Hence, ak ∈ L by the definition of
L. This is a contradiction.

137

Consider the case ak ∈ L, i.e., ak /∈ L̄. Thus ak /∈ L(Mk) by definition of L̄. But
from the defintion of L, ak ∈ L̄. This is also be a contradiction.

In all cases, we have a contradiction, so the assumption is false. Therefore, L̄ is
not recursively enumerable. QED.

10.1.8 A Language That is Recursively Enumerable but Not Recur-
sive

Linz Theorem 11.4: If a language L and its complement L̄ are both recursively
enumerable, then both languages are recursive. If L is recursive, then L̄ is also
recursive, and consequently both are recursively enumerable.

Proof: See Linz Section 11.2 for the details.

Linz Theorem 11.5: There exists a recursively enumerable language that is
not recursive; that is, the family of recursive languages is a proper subset of the
family of recursively enumerable languages.

Proof: Consider the language L of Linz Theorem 11.3.

This language is recursively enumerable, but its complement is not. Therefore,
by Linz Theorem 11.4, it is not recursive, giving us the required example. QED.

There are well-defined languages that have no membership algorithms.

10.2 Unrestricted Grammars
Linz Definition 11.3 (Unrestricted Grammar): A grammar G = (V, T, S, P)
is an unrestricted gramar if all the productions are of the form

u→ v,

where u is in (V ∪ T)+ and v is in (V ∪ T)∗.

Note: There is no λ on left, but otherwise the use of symbols is unrestricted.

Linz Theorem 11.6 (Recursively Enumerable Language for Unre-
stricted Grammar): Any language generated by an unrestricted grammar is
recursively enumerable.

Proof: See Linz Section 11.2 for the details.

The grammar defines an enumeration procedure for all strings.

Linz Theorem 11.7 (Unrestricted Grammars for Recursively Enumer-
able Language): For every recursively enumerable language L, there exists an
unrestricted grammar G, such that L = L(G).

Proof: See Linz Section 11.2 for the details.

138

10.3 Context-Sensitive Grammars and Languages
Between the restricted context-free grammars and the unrestricted grammars,
there are a number of kinds of “somewhat restricted” families of grammars.

Linz Definition 11.4 (Context-Sensitive Grammar): A grammar G =
(V, T, S, P) is said to be context-sensitive if all productions are of the form

x→ y,

where x, y ∈ (V ∪ T)+ and

|x| ≤ |y|.

This type of grammar is noncontracting in that the length of successive sentential
forms can never decrease.

All such grammars can be rewritten in a normal form in which all productions
are of the form

xAy → xvy.

This is equivalent to saying that the production

A→ v

can only be applied in a context where A occurs with string x on the left and
string y on the right.

Linz Definition 11.5 (Context-Sensitive) : A language L is said to be
context-sensitive if there exists a context-sensitive grammar G, such that L =
L(G) or L = L(G) ∪ {λ}.

Note the special cases for λ. This enables us to say that the family of context-free
languages is a subset of the family of context-sensitive languages.

10.3.1 Linz Example 11.2

The language L = {anbncn : n ≥ 1} is a context-sensitive language. We show this
by defining a context-sensitive grammar for the language, such as the following:

S → abc | aAbc
Ab→ bA
Ac→ Bbcc
bB → Bb
aB → aa | aaA

Consider a derivation of a3b3c3:

S ⇒ aAbc⇒ abAc⇒ abBbcc
⇒ aBbbcc⇒ aaAbbcc⇒ aabAbcc
⇒ aabbAcc⇒ aabbBbccc⇒ aabBbbccc
⇒ aaabbbccc

139

The grammar uses the variables A and B as messengers.

• An A is created on the left, travels to the right to the first c, where it
creates another b and c.

• Messanger B is sent back to the left to create the corresponding a.

The process is similar to how a Turing machine would work to accept the language
L.

L is not context-free.

10.3.2 Linear Bounded Automata (lba)

In Linz Section 10.5 (not covered in this course), a linear-bounded automaton is
defined as a nondeterministic Turing machine that is restricted to the part of its
tape occupied by its input (bounded on the left by [and right by]).

[______].

Linz Theorem 11.8: For every context-sensitive language L not including λ,
there exists some linear bounded automaton M such that L = L(M):

Proof: See Linz Section 11.3 for the details.

Linz Theorem 11.9: If a language L is accepted by some linear bounded
automaton M , then there exists a context-sensitive grammar that generates L.

Proof: See Linz Section 11.3 for the details.

10.3.3 Relation Between Recursive and Context-Sensitive Languages

Linz Theorem 11.10: Every context-sensitive language L is recursive.

Linz Theorem 11.11: There exists a recursive language that is not context-
sensitive.

We have studied a number of automata in this course. Ordered by decreasing
power these include:

• Turing machine (accept recursively enumerable languages)
• linear-bounded automata (accept context-sensitive languages)

• npda (accept context-free languages)
• dpda (accept deterministic context-free languages)
• nfa, dfa (accept regular languages)

10.4 The Chomsky Hierarchy
We have studied a number of types of languages in this course, including

0. recursively enumerable languages LRE

1. context-sensitive languages LCS

140

2. context-free languages LREG

3. regular languages LREG

One way of showing the relationship among these families of languages is to use
the Chomsky hierarchy, where the types are numbered as above and as diagrams
in Linz Figures 11.3 and 11.4.

This classification was first described in 1956 by American linguist Noam Chom-
sky, a founder of formal language theory.

Figure 61: Linz Fig 11.3: Original Chomsky Hierarchy

141

Figure 62: Linz Fig 11.4: Extended Chomsky Hierarchy

11 Limits of Algorithmic Computation
In Linz Chapter 9, we studied the Turing thesis, which concerned what Turing
machines can do.

This chapter we study: What Turing machines cannot do.

This chapter considers the concepts:

• computability
• decidability

11.1 Some Problems That Cannot Be Solved with Turing
Machines

11.1.1 Computability

Recall the following definition from Chapter 9.

Linz Definition 9.4 (Turing Computable): A function f with domain D is
said to be Turing-computable, or just computable, if there exists some Turing
machine M = (Q, Σ, Γ, δ, q0,□, F) such that

q0w ⊢∗
M qf f(w), qf ∈ F ,

for all w ∈ D.

Note:

142

• A function f can be computable only if it is defined on the entire domain
D.

• Otherwise, f is uncomputable.
• So the domain of f is crucial to the issue of computability.

11.1.2 Decidability

Here we work in a simplified setting: the result of a computation is either “yes” or
“no”. In this context, the problem is considered either decidable or undecidable.

Problem: We have a set of related statements, each either true or false.

This problem is decidable if and only if there exists a Turing machine that gives
the correct answer for every statement in the domain. Otherwise, the problem is
undecidable.

Example problem statement: For a context-free grammar G, the language L(G)
is ambiguous. This is a true statement for some G and false for others.

If we can answer this question, with either the result true or false, for every
context-free grammar, then the problem is decidable. If we cannot answer the
question for some context-free grammar (i.e., the Turing machine does not halt),
then the problem is undecidable.

(In Linz Theorem 12.8, we see that this question is actually undecidable.)

11.1.3 The Turing Machine Halting Problem

Given the description of a Turing machine M and input string w, does M , when
started in the initial configuration q0w, perform a computation that eventually
halts?

What is the domain D?

• all Turing machines and all strings w on the Turing machine’s alphabet

We cannot solve this problem by simulating M . That is an infinite computation
if the Turing machine does not halt.

We must analyze the Turing machine description to get an answer for any
machine M and string w. But no such algorithm exists!

Linz Definition 12.1 (Halting Problem): Let wM be a string that describes
a Turing machine M = (Q, Σ, Γ, δ, q0,□, F) and let w be a string in M ’s alphabet.
Assume that wM and w are encoded as strings of 0’s and 1’s (as suggested in
Linz Section 10.4). A solution to the halting problem is a Turing machine H,
which for any wM and w, performs the computation

q0wM w ⊢∗ x1qyx2

if M is applied to w halts, and

q0wM w ⊢∗ y1qny2,

143

if M is applied to w does not halt. Here qy and qn are both final states of H.

Linz Theorem 12.1 (Halting Problem is Undecidable): There does not
exist any Turing machine H that behaves as required by Linz Definition 12.1.
Thus the halting problem is undecidable.

Proof: Assume there exists such a Turing machine H that solves the halting
problem.

The input to H is wM w, where wM is a description of Turing machine M . H
must halt with a “yes” or “no” answer as indicated in Linz Figure 12.1.

Figure 63: Linz Fig. 12.1: Turing Machine H

We next modify H to produce a Turing machine H ′ with the structure shown in
Linz Figure 12.2.

Figure 64: Linz Fig. 12.2: Turing Machine H ′

When H ′ reaches a state where H halts, it enters an infinite loop.

From H ′ we construct Turing machine Ĥ, which takes an input wM and copies
it, ending in initial state q0 of H ′. After that, it behaves the same as H ′.

The behavior of Ĥ is

q0wM ⊢∗
Ĥ

q0wM wM ⊢∗
Ĥ
∞

if M applied to wM halts, and

q0wM ⊢∗
Ĥ

q0wM wM ⊢∗
Ĥ

y1qny2

if M applied to wM does not halt.

144

Now Ĥ is itself a Turing machine, which can be also be encoded as a string ŵ.

So, let’s apply Ĥ to its own description ŵ. The behavior is

q0ŵ ⊢∗
Ĥ
∞

if Ĥ applied to ŵ halts, and

q0ŵ ⊢∗
Ĥ

y1qny2

if M applied to ŵ does not halt.

In the first case, Ĥ goes into an infinite loop (i.e., does not halt) if Ĥ halts. In
the second case, Ĥ halts if Ĥ does not halt. This is clearly impossible!

Thus we have a contradiction. Therefore, there exists no Turing machine H.
The halting problem is undecidable. QED.

It may be possible to determine whether a Turing machine halts in specific cases
by analyzing the machine and its input.

However, this theorem says that there exists no algorithm to solve the halting
problem for all Turing machines and all possible inputs.

Linz Theorem 12.2: If the halting problem were decidable, then every re-
cursively enumerated language would be recursive. Consequently, the halting
problem is undecidable.

Proof: Let L be a recursively enumerable language on Σ, M be a Turing
machine that accepts L, and wM be an encoding of M as a string.

Assume the halting problem is decidable and let H be a Turing machine that
solves it.

Consider the following procedure.

1. Apply H to wM w.
2. If H says “no”, then w /∈ L.
3. If H says “yes”, then apply M to w, which will eventually tell us whether

w ∈ L or w /∈ L.

The above is thus a membership algorithm, so L must be recursive. But we
know that there are recursively enumerable languages that are not recursive. So
this is a contradiction.

Therefore, H cannot exist and the halting problem is undecidable. QED.

11.1.4 Reducing One Undecidable Problem to Another

In the above, the halting problem is reduced to a membership algorithm for
recursively enumerable languages.

145

A problem A is reduced to problem B if the decidability of B implies the
decidability of A. We transform a new problem A into a problem B whose
decidability is already known.

Note: The Linz textbook gives three example reductions in Section 12.1

11.2 Undecidable Problems for Recursively Enumerable
Languages

Linz Theorem 12.3 (Empty Unrestricted Grammars Undecidable): Let
G be an unrestricted grammar. Then the problem of determining whether or not

L(G) = ∅

is undecidable.

Proof: See Linz Section 12.2 for the details of this reduction argument. The
decidability of membership problem for recursively enumerated languages implies
the problem in this theorem.

Linz Theorem 12.4 (Finiteness of Turing Machine Languages is Un-
decided): Let M be a Turing Machine. Then the question of whether or not
L(M) is finite is undecidable.

Proof: See Linz Section 12.2 for the details of this proof.

Rice’s theorem, a generalization of the above, states that any nontrivial property
of a recursively enumerable language is undecidable. The adjective “nontrivial”
refers to a property possessed by some but not all recursively enumerated
languages.

11.3 The Post Correspondence Problem
This section is not covered in this course.

11.4 Undecidable Problems for Context-Free Languages
Linz Theorem 12.8: There exists no algorithm for deciding whether any given
context-free grammar is ambiguous.

Proof: See Linz Section 12.4 for the details of this proof.

Linz Theorem 12.9: There exists no algorithm for deciding whether or not

L(G1) ∩ L(G2) = ∅

for arbitrary context-free grammars G1 and G2.

Proof: See Linz Section 12.4 for the details of this proof.

146

Keep in mind that the above and other such decidability results do not eliminate
the possibility that there may be specific cases–perhaps even many interesting
and important cases–for which there exist decision algorithms.

However, these theorems do say that there are no general algorithms to decide
these problems. There are always some cases in which specific algorithms will
fail to work.

11.5 A Question of Efficiency
This section is not covered in this course.

147

11.6 References

148

	Introduction to the Theory of Computation
	Mathematical Preliminaries and Notation
	Sets
	Functions
	Relations
	Graphs
	Trees
	Proof Techniques

	Three Basic Concepts
	Languages
	Language Concepts
	Formal Interlude: Inductive Definitions and Induction
	More Language Concepts
	Linz Example 1.9: Example Languages
	Operations on Languages
	Language Operation Examples

	Grammars
	Grammar Concepts
	Linz Example 1.11 (Grammar)
	Linz Example 1.12: Finding a Grammar for a Language
	More Grammar Concepts
	Linz Example 1.13

	Automata

	Applications
	Linz Example 1.15: C Identifiers
	Linz Example 1.17: Binary Adder

	Finite Automata
	Deterministic Finite Accepters
	Accepters
	Transition Graphs
	Linz Example 2.1
	Extended Transition Function for a DFA
	Language Accepted by a DFA
	Linz Example 2.2
	Linz Example 2.3
	Linz Example 2.4
	Regular Languages
	Linz Example 2.5
	Linz Example 2.6

	Nondeterministic Finite Accepters
	Nondeterministic Accepters
	Linz Example 2.7
	Linz Example 2.8
	Extended Transition Function for an NFA
	Language Accepted by an NFA
	Linz Example 2.10 (Example 2.8 Revisited)
	Why Nondeterminism

	Equivalence of DFAs and NFAs
	Meaning of Equivalence
	Linz Example 2.11
	Power of NFA versus DFA
	Linz Example 2.12
	Linz Example 2.13

	Reduction in the Number of States in Finite Automata

	Regular Languages and Regular Grammars
	Regular Expressions
	Syntax
	Languages Associated with Regular Expressions
	Linz Example 3.2
	Examples of Languages for Regular Expressions
	Linz Example 3.4
	Linz Example 3.5
	Examples of Regular Expressions for Languages

	Connection Between Regular Expressions and Regular Languages
	Regular Expressions Denote Regular Languages
	Linz Example 3.7
	Converting Regular Expressions to Finite Automata
	Example Conversion of Regular Expression to NFA
	Converting Finite Automata to Regular Expressions
	Example Conversion of Finite Automata to Regular Expressions
	Another Example Conversion of Finite Automa to Regular Expressions
	Regular Expressions for Describing Simple Patterns

	Regular Grammars
	Linz Example 3.13
	Linz Example 3.14
	Right-Linear Grammars Generate Regular Languages
	Example: Converting Regular Grammar to NFA
	Linz Example 3.5
	Right-Linear Grammars for Regular Languages
	Example: Converting NFA to Regular Grammar
	Equivalence Between Regular Languages and Regular Grammars

	Properties of Regular Languages
	Closure Properties of Regular Languages
	Mathematical Interlude: Operations and Closure
	Closure under Simple Set Operations
	Closure under Difference (Linz Example 4.1)
	Closure under Reversal
	Homomorphism Definition
	Linz Example 4.2
	Linz Example 4.3
	Closure under Homomorphism Theorem
	Right Quotient Definition
	Linz Example 4.4
	Closure under Right Quotient
	Linz Example 4.5

	Elementary Questions about Regular Languages
	Membership?
	Finite or Infinite?
	Equality?

	Identifying Nonregular Languages
	Using the Pigeonhole Principle
	Linz Example 4.6
	Pumping Lemma for Regular Languages
	Linz Example 4.7
	Using the Pumping Lemma (Viewed as a Game)
	Linz Example 4.8
	Linz Example 4.9
	Linz Example 4.10
	Linz Example (Factorial Length Strings)
	Linz Example 4.12
	Linz Example 4.13
	Pitfalls in Using the Pumping Lemma

	Context-Free Languages
	Context-Free Grammars
	Definition of Context-Free Grammars
	Linz Example 5.1
	Linz Example 5.2
	Linz Example 5.3
	Linz Example 5.4
	Leftmost and Rightmost Derivations
	Linz Example 5.5
	Derivation Trees
	Linz Example 5.6
	Relation Between Sentential Forms and Derivation Trees

	Parsing and Ambiguity
	Generation versus Parsing
	Exhaustive Search Parsing
	Linz Example 5.7
	Flaws in Exhaustive Search Parsing
	Linz Example 5.8
	Toward Better Parsing Algorithms
	Simple Grammar Definition
	Linz Example 5.9
	Parsing Simple Grammars
	Ambiguity in Grammars and Languages
	Linz Example 5.10
	Linz Example 5.11
	Linz Example 5.12
	Inherently Ambiguous
	Linz Example 5.13

	Context-Free Grammars and Programming Languages

	OMIT Chapter 6
	Pushdown Automata
	Nondeterministic Pushdown Automata
	Schematic Drawing
	Definition of a Pushdown Automaton
	Linz Example 7.1
	Linz Example 7.2
	Instantaneous Descriptions of Pushdown Automata
	Language Accepted by an NPDA
	Linz Example 7.4
	Linz Example 7.5

	Pushdown Automata and Context-Free Languages
	Pushdown Automata for CFGs
	Linz Example 7.6
	Constructing an NPDA for a CFG
	Linz Example 7.7
	Constructing a CFG for an NPDA

	Deterministic Pushdown Automata and Deterministic Context-Free Languages
	Deterministic Pushdown Automata
	Linz Example 7.10
	Linz Example 7.5 Revisited

	Grammars for Deterministic Context-Free Grammars

	Properties of Context-Free Languages
	Two Pumping Lemmas
	Context-Free Languages
	Linear Languages

	Closure Properties and Decision Algorithms for Context-Free Languages
	Closure under Union, Concatenation, and Star-Closure
	Non-Closure under Intersection and Complementation
	Closure under Regular Intersection
	Linz Example 8.7
	Linz Example 8.8
	Some Decidable Properties of Context Free Languages

	Turing Machines
	The Standard Turing Machine
	What is a Turing Machine?
	Schematic Drawing of Turing Machine
	Definition of Turing Machine
	Linz Example 9.1
	A Simple Computer
	Linz Example 9.2
	Transition Graph for Turing Machine
	Linz Example 9.3 (Infinite Loop)
	Standard Turing Machine
	Instantaneous Description of Turing Machine
	Computation of Turing Machine

	Turing Machines as Language Acceptors
	Linz Example 9.6
	Linz Example 9.7

	Turing Machines as Transducers
	Linz Example 9.9
	Linz Example 9.10
	Linz Example 9.11

	Combining Turing Machines for Complicated Tasks
	Introduction
	Using Block Diagrams
	Linz Example 9.12

	Using Pseudocode
	Macroinstructions
	Linz Example 9.13
	Subprograms
	Linz Example 9.14

	Turing's Thesis

	OMIT Chapter 10
	A Hierarchy of Formal Languages and Automata
	Recursive and Recursively Enumerable Languages
	Aside: Countability
	Definition of Recursively Enumerable Language
	Definition of Recursive Language
	Enumeration Procedure for Recursive Languages
	Enumeration Procedure for Recursively Enumerable Languages
	Languages That are Not Recursively Enumerable
	A Language That is Not Recursively Enumerable
	A Language That is Recursively Enumerable but Not Recursive

	Unrestricted Grammars
	Context-Sensitive Grammars and Languages
	Linz Example 11.2
	Linear Bounded Automata (lba)
	Relation Between Recursive and Context-Sensitive Languages

	The Chomsky Hierarchy

	Limits of Algorithmic Computation
	Some Problems That Cannot Be Solved with Turing Machines
	Computability
	Decidability
	The Turing Machine Halting Problem
	Reducing One Undecidable Problem to Another

	Undecidable Problems for Recursively Enumerable Languages
	The Post Correspondence Problem
	Undecidable Problems for Context-Free Languages
	A Question of Efficiency
	References

