
Expression Tree Calculator

H. Conrad Cunningham

27 April 2022

Contents
Expression Tree Calculator 1

Scala Versions (2008-19) . 1
Python versions (2018) . 1

Object-oriented versions . 1
Functional module versions . 2
Expression tree parser . 2

Lua Versions (2013-16) . 2
Recursive function versions (2013, 2014) 2
Object-oriented versions (2013, 2016) 2
LPEG parsers (2013) . 2

Haskell Version (2017) . 3
Acknowledgements . 3
References . 3

Copyright (C) 2008-2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

Expression Tree Calculator
Scala Versions (2008-19)
These Scala programs are from the chapter Notes on Scala for Java Programmers
[1] (as HTML) (as PDF).

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu
../ScalaFP/ScalaForJava/ScalaForJava.html

• Recursive function version using case classes ExprCase.scala

• Traditional object-oriented version ExprObj.scala

Python versions (2018)
Object-oriented versions

• Basic OO version ExprOO2.py

• OO versions using abstract base classes

TODO: In the following, I seem to have been exploring various OO ap-
proaches. These need to be reexamined to determine which should be
included here. In some of these, I was also exploring dataclasses and type
annotations.

– Using inheritance ExprABC2.py

– Using registration and class methods ExprABC_RegClassmeth2.py

– Using registration and mixin ExprABC_RegMixin2.py

– Using registration and delegation ExprABC_RegDelegate2.py

– Using dataclass decorators and type annotations ExprDC.py

Functional module versions

• Basic module of functions ExprFuncMod2.py

• Using dataclass decorators and type annotations ExprFuncMod2.py

• Using table (dictionary) of functions ExprEvalTab.py

Expression tree parser

These programs require the Python package Parsita, a parser combinator library
similar to Scala’s.

TODO: These are not complete. At least a test driver is needed.

• Abstract syntax tree calc_ast2.py adapted and extended to work with
Calculator expression parser – uses frozen data classes

• Parser calc_parser.py – uses Parsita combinator-based parser for simple
Calculator-like language including function calls

Lua Versions (2013-16)
Recursive function versions (2013, 2014)

• Lua Recursive Functions with Record Representation exprRecFuncRecord.lua

2

Scala/ExprCase.scala
Scala/ExprObj.scala
Python/ExprOO2.py
Python/ExprABC2.py
Python/ExprABC_RegClassmeth2.py
Python/ExprABC_RegMixin2.py
Python/ExprABC_RegDelegate2.py
Python/ExprDC.py
Python/ExprFuncMod2.py
Python/ExprFuncModDC.py
Python/ExprEvalTab.py
https://github.com/johnthagen/parsita
Python/calc_ast2.py
Python/calc_parser.py
Lua/exprRecFuncRecord.lua

• Lua Recursive Functions with List Representation exprRecFuncList2.lua

• Lua Evaluation Function Table with List Representation exprEvalTable2.lua

Object-oriented versions (2013, 2016)

• Lua Prototype Object-Based exprObjBased.lua

• Lua Object-Oriented with Inheritance

LPEG parsers (2013)

These programs require installation of a compatible LPEG library.

• Parser with captures exprParser.lua

• Parser with semantic actions exprParserSemantic.lua

Haskell Version (2017)
• Expression Tree Calculator case study

– as HTML
– as PDF
– Haskell source

Acknowledgements
What I call the “recursive function version using case classes” is more or less
the first version of these examples. It is closely based on the example in an
early version of the Schinz and Haller tutorial [3]. I modified that version and
also created the “traditional object-oriented version” for an assignment in the
prototype offering of the Multiparadigm Programming course. I subsequently
developed the Lua versions in 2013, the Haskell version in 2017, and the Python
versions in 2018 for that or other courses. The Expression Tree is one of the
examples or assignments I redesign and implement when I am learning and
teaching a new language or want an assignment of that nature.

This example has been more or less expanded into the ELI Calculator Language
introduced in several chapters of Exploring Languages with Interpreters and
Functional Programming (ELIFP) [2].

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on possible textbooks based on the course
materials I had developed during my three decades as a faculty member. In
January 2022, I began refining the existing content, integrating separately
developed materials together, reformatting the documents, constructing a unified
bibliography (e.g., using citeproc), and improving my build workflow and use of
Pandoc.

3

Lua/exprRecFuncList2.lua
Lua/exprEvalTable2.lua
Lua/exprObjBased.lua
Lua/exprObjInherit.lua
Lua/exprParser.lua
Lua/exprParserSemantic.lua
Haskell/ExprTreeCalculator.html
Haskell/ExprTreeCalculator.hs

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

References
[1] H. Conrad Cunningham. 2019. Notes on Scala for Java programmers.

University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/docs/ScaldFP/ScalaForJava/ScalaForJava.html

[2] H. Conrad Cunningham. 2022. Exploring programming languages with in-
terpreters and functional programming (ELIFP). University of Mississippi,
Department of Computer and Information Science, University, Mississippi,
USA. Retrieved from https://john.cs.olemiss.edu/~hcc/docs/ELIFP/EL
IFP.pdf

[3] Michel Schinz and Phillipp Haller. 2016. A Scala tutorial for Java.
Retrieved from https://docs.scala-lang.org/tutorials/scala-for-java-
programmers.html

4

https://john.cs.olemiss.edu/~hcc/docs/ScaldFP/ScalaForJava/ScalaForJava.html
https://john.cs.olemiss.edu/~hcc/docs/ScaldFP/ScalaForJava/ScalaForJava.html
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://john.cs.olemiss.edu/~hcc/docs/ELIFP/ELIFP.pdf
https://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
https://docs.scala-lang.org/tutorials/scala-for-java-programmers.html

	Expression Tree Calculator
	Scala Versions (2008-19)
	Python versions (2018)
	Object-oriented versions
	Functional module versions
	Expression tree parser

	Lua Versions (2013-16)
	Recursive function versions (2013, 2014)
	Object-oriented versions (2013, 2016)
	LPEG parsers (2013)

	Haskell Version (2017)
	Acknowledgements
	References

