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0 Preface
0.1 Dedication
0.1.1 July 2018

I dedicate this textbook to my parents—my mother, Mary Cunningham, and
my father, the late Harold “Sonny” Cunningham—and to my wife, Diana
Cunningham.

I thank Mother and Dad for their love and encouragement throughout my nearly
64 years on this earth. They taught me the importance of hard work, both
physical and mental. They taught me the importance of faith in God and of
personal integrity. I hope I have been a good student.

I write this sitting at a desk in my mother’s home late one evening in July 2018.
I remember a time more than a half century ago when I was struggling with an
elementary school writing assignment. Mother wrote an example page that I
remember as amazing. I thank her for that encouragement. I still suffer from a
deficit of creativity at times, but I was able to write this approximately 400-page
textbook.

I look around and see a plaque for an award my father received for serving
his church as a Sunday School teacher for 40 years. It reminds me of the
many positive contributions he made to his community and his church, many
unseen by others. I hope I am also making positive contributions to the various
communities, physical and virtual, in which I live and work.

I thank Diana, my wife of 42 years, for her love and friendship—for being my
companion on the journey of life. This textbook is an effort that has spanned
more than a quarter century. She has lived it nearly as much as I have. Many
times she has urged me to stop work and get some sleep, as she did just now.

0.1.2 November 2019 Addendum

My mother passed away in June 2019 at the age of 91 years and 8 months. We
miss her dearly! Her family and friends will remember for as long as we live.

We love you, Mom, and look forward to the reunion of our family in heaven.

0.2 Course 1 and Course 2
As the title suggests, I designed this textbook to be used for at least two different
kinds of courses:

1. A course on “functional programming” targeted at advanced undergrad-
uate and beginning graduate students who have previously programmed
using imperative languages but who have not used functional or relational
languages extensively.
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This functional and modular programming course focuses on parts of
Chapter 2 and 80 and Chapters 4-30.

I have been teaching such an elective course at the University of Mississippi
since 1991 (CSci 555, Functional Programming). I have been teaching the
Haskell programming language since 1993. Some of the content of this
textbook evolved from class notes I originally developed for the course in
the 1991-6 period.

My approach to the course was initially motivated by the first edition of
the classic Bird and Wadler textbook [13,15].

2. A course on programming language organization targeted at a similar
audience.

There are several approaches to teaching the programming languages
course. My approach in this textbook focuses on “exploring languages
with interpreters”. It seeks to guide students to learn how programming
languages work by developing interpreters for simple languages.

This programming language organization course focuses on Chapters 1-3,
Chapters 40-49, and parts of Chapters 4-30 as needed.

Kamin’s excellent textbook Programming Languages: An Interpreter-Based
Approach [108] motivated my approach. But, instead of using Pascal or C to
develop the interpreters as Kamin’s book did, this textbook primarily uses
Haskell. Other influences on my approach are the book by Sestoft [159,160],
the online books by Krishnamurthi [114,115], and an early manuscript by
Ramsey [148] (which is based on Kamin’s book).

I began experimenting with this approach using the Lua language in
my graduate Software Language Engineering (CSci 658) course in Fall
2013. I first taught the interpreter approach (using Lua) in the required
undergraduate Organization of Programming Languages (CSci 450) course
at the University of Mississippi in 2016. I used Haskell with the interpreter-
based approach in 2017 and 2018.

Of course, students must become familiar with basic functional programming
and Haskell for Course 2 to be possible.

Most real courses will likely be a mix of the two approaches.

0.3 Motivation: “Functional Programming”
Course type 1 is a course on functional and modular programming.

As a course on programming, Course 1 emphasizes the analysis and solution of
problems, the development of correct and efficient algorithms and data structures
that embody the solutions, and the expression of the algorithms and data
structures in a form suitable for processing by a computer. The focus is more on
the human thought processes than on the computer execution processes.
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As a course on functional programming, Course 1 approaches programming as
the construction of definitions for (mathematical) functions and (immutable)
data structures. Functional programs consist of expressions that use these
definitions. The execution of a functional program entails the evaluation of the
expressions making up the program. Thus this course’s focus is on problem
solving techniques, algorithms, data structures, and programming notations
appropriate for the functional approach.

As a course on modular programming, Course 1 approaches the construction of
large programs as sets of modules that collaborate to solve a problem. Each
module is a coherent collection of function and data type definitions. A module
hides its private features, allowing their use only within the module, and exposes
its public features, enabling their use by the other modules in the program.

Course 1 is not a course on functional or modular programming languages.
In particular, it does not undertake an in-depth study of the techniques for
implementing such languages on computers. (That is partly covered in Course
2.) The focus is on the concepts for programming, not on the internal details of
the technological artifact that executes the programs.

Of course, we want to be able to execute our programs on a computer and,
moreover, to execute them efficiently. Thus we must become familiar with some
concrete programming language and use an implementation of that language to
execute our programs. To be able to analyze program efficiency, we must also
become familiar with the basic techniques that are used to evaluate expressions.

The academic community has long been interested in functional programming.
In recent years, the practitioner community has also become interested in
functional programming techniques and language features. There is growing use
of languages that are either primarily functional or have significant functional
subsets—such as Haskell, OCaml, Scala, Clojure, F#, Erlang, and Elixir. Most
mainstream languages have been extended with new functional programming
features and libraries—for example, Java, C#, Python, JavaScript, and Swift.
Other interesting research languages such as Elm and Idris are also generating
considerable interest.

In this textbook, we use the Haskell 2010 language. Haskell is a “lazy” functional
language whose development began in the late 1980’s. We also use a set of
programming tools based on GHC, the Glasgow Haskell Compiler. GHC is
distributed in a “batteries included” bundle called the the Haskell Platform.
(That is, it bundles GHC with commonly used libraries and tools.)

Most of the concepts, techniques, and skills learned in this Haskell-based course
can be applied in other functional and multiparadigm languages and libraries.

More importantly, any time we learn new approaches to problem solving and
programming, we become better programmers in whatever language we are
working. A course on functional programming provides a novel, interesting, and,
probably at times, frustrating opportunity to learn more about the nature of
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the programming task.

Enjoy the “functional programming” aspects of the course and textbook!

0.4 Motivation: “Exploring Languages with Interpreters”
Course type 2 is a course on programming language organization that emphasizes
design and implementation of a sequence of interpreters for simple languages.

When we first approach a new programming language, we typically think about
the syntax of the language—how the external (e.g., textual) representation of
the language is structured.

Syntax is important, but the semantics is more important. The semantics defines
what the language means: how it “behaves” at “runtime”.

In Course 2 we primarily focus on the semantics. We express the essential aspects
of a expression’s structure (i.e., syntax) with an abstract syntax tree (AST) and
then process the AST to obtain a result. For example, we may have:

• an interpreter that takes an AST and evaluates it in some environment to
obtain its value

• a transformer that takes the AST and produces a related but different
(e.g., more efficient) program in the same language

• a compiler that takes an AST and produces a related program in a different
language

By “exploring languages with interpreters”, we can better understand the seman-
tics of the programming languages. We can learn to use languages more effectively.
We can explore alternative designs and implementations for languages.

This textbook uses functional and modular programming in Haskell—a paradigm
and language that most students in Course 2 do not know—to implement the
interpreters. Students learn new language concepts by both learning Haskell and
by building language processors.

0.5 Textbook Prerequisites
This textbook assumes the reader has basic knowledge and skills in program-
ming, algorithms, and data structures at least at the level of a three-semester
introductory computer science sequence. It assumes that the reader has pro-
gramming experience using a language such as Java, C++, Python, or C#;
it does not assume any previous experience in functional programming. (For
example, successful completion of at least CSci 211, Computer Science III, at
the University of Mississippi should be sufficient.)

This textbook also assumes the reader has basic knowledge and understanding
of introductory computer architecture from a programmer’s perspective. (For
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example, successful completion of at least CSci 223, Computer Organization and
Assembly Language, at the University of Mississippi should be sufficient.)

In addition, this course assumes the reader has basic knowledge and skills
in mathematics at the level of a college-level course in discrete mathematical
structures for computer science students. (For example, concurrent enrollment in
Math 301, Discrete Mathematics, at the University of Mississippi should suffice.)
The “Review of Relevant Mathematics” chapter (appendix) reviews some of the
concepts, terminology, and notation used in this course.

0.6 Author’s Perspective
In the 1974 Turing Award Lecture Computer Programming as an Art, Donald
Knuth said [111]:

The chief goal of my work as an educator and author is to help people
learn to write beautiful programs.

In my writing and my teaching, I hope I can emulate Knuth.

I approach writing this textbook, most of my teaching and research for that
matter, from the following (opinionated) perspectives:

• The essence of computing science is programming. Programming is fun!

Of course, by “programming” I do not mean merely “coding”—and defi-
nitely not “hacking”.

I view programming as the process: of determining what the problem is,
whether a solution is needed, what the desired nature of a solution is, and
whether such a solution is feasible, ethical, and socially useful; of devising
specific abstractions, algorithms, and information structures that correctly,
elegantly, and efficiently solve the problem; of implementing the solution
effectively within the concrete resources available and validating that it
indeed solves the problem; and of evolving the solution and its implemen-
tation to handle changing needs. This, of course, encompasses most of
what is traditionally called computer science and software engineering.

• Abstraction is the primary tool we have to deal with the complexity we
must face as programmers.

To become good programmers, we need to learn to develop good abstrac-
tions. To learn to develop good abstractions, most of us need to work
upward from lots of concrete examples and experiences.

Perhaps instead of computer science our field should be called abstraction
engineering.

• Our programs should be elegant—both conceptually in terms of their design
(architecture, algorithms, data structures, use of appropriate abstraction)
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and physically in terms of their style (use of language features, layout, use
of names, appropriate comments).

• We should rigorously describe what a program must do. For example, we
can define a rigorous contract that specifies what the clients of a program
must do and what the program must do in response.

• We should construct larger programs as sets of collaborating modules. The
modules should be designed and constructed according to the information-
hiding and abstract interface principles.

• We should design our programs to be testable and test them thoroughly.

• We should reflect upon what we have done. What about our successes and
failures can we observe and exploit in the future? Did our specific problem
reveal or reinforce a general principle? What can we do better next time?

• To learn a programming paradigm and language well, we should immerse
ourselves in the paradigm and language for a period ot time. We need to
learn to think in that paradigm and language even if it is quite different
from our previous experiences.

• Although we learn to program in a particular language and paradigm, we
should seek to compare how the new concepts, features, and patterns of
thought apply to other approaches to programming that we have learned
in the past or will in the future.

• Many tasks can be viewed as language design or language processing tasks.
Language design and processing are fun!

• As much as feasible, we should make instructional materials accessible
(e.g., compatible with screen readers) and available in multiple formats at
a low cost.

Toward that end, I have developed most of my new instructional materials
using Pandoc’s dialect of Markdown and tools compatible with Pandoc.

0.7 The Journey
Although I only began to write this textbook in Summer 2016, it is a result of a
journey I began long ago. Many other writers, colleagues, students, and friends
have helped me during this journey.

0.7.1 Notes on Functional Programming with Haskell

I created the course CSci 555, Functional Programming, at the University of
Mississippi and first taught it during the Spring 1991 semester.

I adopted the first edition of Bird and Wadler [15] as the initial textbook for
the course. I thank Richard Bird and Philip Wadler for writing this excellent

24



textbook. I thank Jeremy Gibbons for suggesting that book in a response to an
inquiry I posted to a Usenet newsgroup in Summer 1990.

I also used Wentworth’s RUFL (Rhodes University Functional Language) inter-
preter and his tutorial [178] in the first two offerings of the course. I thank Peter
Wentworth for sending me (unsolicited, in response to my Usenet post) his inter-
preter and tutorial on a floppy disk through snail mail from the then-sanctioned
South Africa.

My approach was also shaped by my research on formal methods and my previous
teaching on that topic. I created the course Program Semantics and Derivation
(CSci 550) and first taught it in Spring 1990 [40,41]. I followed that with the
course Theory of Concurrent Programming (Engr 664), which I first taught in
Fall 1990. I thank my dissertation advisor Gruia-Catalin Roman for developing
my interests in formal methods, Jan Tijmen Udding for teaching a graduate
course on program derivation that piqued my interests, and the other researchers
or authors who have influenced my thinking: Edsger Dijkstra, Tony Hoare, David
Gries, Mani Chandy, Jayadev Misra, Edward Cohen, and many others.

For the third offering of CSci 555 in Fall 1993, I switched the course to use the
Gofer interpreter for the Haskell language. I thank the international committee
of researchers, including Simon Peyton Jones, Paul Hudak, Philip Wadler, and
others, who have developed and sustained Haskell since the late 1980s. I also
thank Mark Jones for developing the lightweight Gofer interpreter and making
it and its successor HUGS widely available.

Because of the need for a tutorial like Wentworth’s and an unexpected delay
in getting copies of the Bird and Wadler textbook [15] from Prentice Hall that
semester, I began writing, on an emergency basis, what evolved into my Notes
on Functional Programming with Haskell [42].

Some parts of the Notes were based on my handwritten class notes from the the
1991 and 1992 offerings of the course. Many pages of the Notes were written
“just-in-time” in late-night sessions before I taught them the next day. I thank
Prentice Hall (now Pearson) for its delay in shipping books across the “big pond”,
my wife Diana Cunningham for tolerating my disruptive schedule, and my Fall
1993 students for not complaining too vigorously about a quite raw set of class
notes.

I continued to develop the Notes for the Fall 1994 and Fall 1995 offerings of the
course. In early 1996, I created a relatively stable version of the Notes that I
continued to use in subsequent offerings of CSci 555. I thank my students and
others who pointed out typos and suggested improvements during the 1993-1996
period.

I thank David Gries for encouraging me to expand these notes into a textbook.
I am doing that, albeit over 20 years later than Gries intended.

I formatted the Notes using LaTeX augmented by BibTeX for the bibliography
and makeIndex for the index. I thank Donald Knuth, Leslie Lamport, and the
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many others who have developed and maintained TeX, LaTeX, and the other
tools and packages over four decades. They form an excellent system for creating
beautiful scientific documents.

I used GNU Emacs for writing and editing the source files for the Notes. I
thank Richard Stallman and the many others who developed, maintained, and
popularized Emacs over more than four decades.

For the Spring 1997 offering of CSci 555, I started using the new HUGS interpreter
and the 1st edition of Thompson’s textbook [171] (now it its 3rd edition [173]).
I thank Simon Thompson for writing his excellent, comprehensive introductory
textbook on Haskell programming.

Over the next 17 years, I corrected a few errors but otherwise the Notes were
stable. However, I did create supplementary notes for CSci 555 and related
courses. These drew on the works of Abelson and Sussman [1], Thompson
[171–173], Parnas [20,134], and others. I formated these notes with HTML,
Microsoft Word and Powerpoint, or plain text.

I decided to use Haskell as one of the languages in the Fall 2014 offering of
Organization of Programming Languages (CSci 450). But I needed to change
the language usage from the Haskell 98 standard and HUGS to the new Haskell
2010 standard and the Glasgow Haskell Compiler (GHC) and its interactive user
interface GHCi. I edited the Notes through chapter 10 on Problem Solving to
reflect the changes in Haskell 2010.

0.7.2 Organization of Programming Languages

ACM Curriculum ’78 [5] influenced how most computer science academic pro-
grams were structured when they are established in the 1970s and 1980s. It
defined eight core courses, most of which are still prominent in contemporary
computer science curricula.

Organization of Programming Languages (CS 8) is one of those core courses.
Curriculum ’78 describes CS 8 as “an applied course in programming language
constructs emphasizing the run-time behavior of programs” and providing “ap-
propriate background for advanced level courses involving formal and theoretical
aspects of programming languages and/or the compilation process” [5].

I first taught the required Organization of Programming Languages (CSci 450)
course at the University of Mississippi in Fall 1995. I took over that class for
another instructor and used the textbook the Department Chair had already
selected. The textbook was the 2nd Edition of Sebesta’s book [157].

Although the Sebesta book, now in its 11th edition, is probably one of the better
and more popular books for CS 8-type courses, I found it difficult for me to use
that semester. It and its primary competitors seem to be large, expensive tomes
that try to be all things to all instructors and students. I personally find the
kind of survey course these books support to be a disjointed hodgepodge. There
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is much more material than I can cover well in one semester. I abandoned the
Sebesta book mid-way through the semester and have never wanted to use it
again.

I had a copy of Kamin’s textbook [108] and used two of its interpreters after
abandoning Sebesta’s book. It seemed to work better than Sebesta. So I ended
the semester with a positive view of the Kamin approach.

My only involvement with CSci 450 for the next 18 years was to schedule and
staff the course (as Department Chair 2001-15). In 2013, I began planning to
teach CSci 450 again.

I decided to try an experiment. I planned to use the Kamin approach for part
of the course but to redevelop the interpreters in the Lua language. Lua is a
minimalist, dynamically typed language that can support multiple paradigms.

I chose Lua because (a) learning it would be a new experience for almost all of
my students, (b) as a small language it should be easy for students to learn, (c)
its flexibility would enable me to explore how to extend the language itself to
provide new features, (d) its associated LPEG library supported the development
of simple parsers, and (e) its use in computer games might make it interesting
to students. I thank the Lua authors—Roberto Ierusalimschy, Waldemar Celes,
and Luiz Henrique de Figueiredo—for developing this interesting platform and
making it available. I thank Ierusalimschy for developing LPEG and for writing
an excellent textbook on Lua programming [105].

I used the Fall 2013 offering of my Software Language Engineering (CSci 658)
course to explore Lua programming and interpreters. I thank the students in
that class for their feedback and suggestions—Michael Macias, Blake Adams,
Cornelius Hughes, Zhendong Zhao, Joey Carlisle, and others.

However, in Summer 2014, I did not believe I was ready to undertake the
interpreter-based approach in the large Fall 2014 class. Instead, I planned to try
a multiple paradigm survey. I planned to begin with Haskell statically typed
functional programming (using my Notes), then cover Lua dynamically typed,
multiparadigm programming, and then use the logic language Prolog. I had
taught Haskell, Lua, and Prolog in elective courses in the past.

I was comfortable with the Haskell part, but I found a required course a more
challenging environment in which to teach Haskell than an elective. Covering
Haskell took nearly two-thirds of the semester, leaving Lua in one-third, and
squeezing out coverage of the logic language and most of the interpreter material.

I was scheduled to teach CSci 450 again in Fall 2016. For this offering, I decided
to (a) begin with Lua and then follow with Haskell (the reverse order from 2014)
and (b) to use the interpreter approach in the Lua segment. I adopted the 4th
edition of Scott’s textbook [156] to support the general material (but did not
use the book much).

Unfortunately, that offering suffered from immature teaching materials for both
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Lua and for the interpreter approach. I was unable to invest sufficient time
in Summer 2016 to prepare course materials and revise the interpreters. Also,
students, who mostly had experience with Java, had considerable difficulty
modifying and debugging the dynamically typed Lua programs with 1000+ lines
of code. (For various reasons, I decided to use the new Elm language instead of
Haskell in the last three weeks of the semester.)

I thank the students in the Fall 2014 and Fall 2016 CSci 450 classes for giving
me valuable feedback on what works and what does not—much more on the
latter than the former. I also thank my Teaching Assistant (TA) for CSci 450 in
the Fall 20a6 semester, Ajay Sharma, for his assistance. I learned that a large,
required course like CSci 450 needs more mature teaching materials and tools
than a small, elective course does. It should have been obvious!

0.7.3 Exploring Languages with Interpreters and Functional Pro-
gramming

In Summer 2016, I participated in the eLearning Training Course (eTC) at the
University of Mississippi to become eligible to teach online. As a part of that
course, I was expected to prepare a syllabus and at least one module for some
class. I chose to focus on CSci 555, Functional Programming.

This stimulated me to begin reorganizing my previous Notes on Functional
Programming with Haskell to be a textbook for an online course on functional
programming. I thank the eTC instructors Patty O’Sullivan and Wan Latartara,
for (unintentionally) pushing me to begin developing this textbook.

For the textbook, I expanded the Notes by adapting materials I had originally
developed for other purposes—such as papers with former graduate students
Pallavi (Tadepalli) Darbhamulla, Yi Liu, and Cuihua Zhang—and some notes
from my courses on functional programming, multiparadigm programming,
software architecture, and software language engineering. I thank Darbhamulla,
Liu, and Zhang. I also thank former graduate student James Church (author of
a Haskell-based book [32]) for his feedback and encouragement to repackage my
class notes as a textbook.

Unfortunately, I devoted too much time to this project in Summer 2016 and not
enough to developing Lua-based materials and tools for the Fall 2016 offering of
CSci 450, as I discussed above.

The eTC also sensitized me to the need to produce accessible instructional ma-
terials (e.g., materials compatible with screen readers for the visually impaired).
I decided to expand my use of Pandoc-flavored Markdown and the Pandoc
tools for producing materials in a variety of accessible formats (HTML, possibly
LaTeX/PDF).

In Summer 2016, I had materials in a variety of formats. The Notes on Functional
Programming with Haskell used LaTeX, BibTeX, and makeIndex. This is a great
format for producing printed scientific documents, but not as good for display on
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the Web. Some of my other materials used HTML, which is great for the Web,
but not for printed documents. I also had some material in Microsoft Office
formats, Pandoc-flavored Markdown, and plain text (e.g., program comments).

Pandoc-flavored Markdown offered a means for achieving both greater flexibility
and greater accessibility. Of course, sometimes I have to compromise on the
appearance in some formats.

The Pandoc tool uses a language-processing approach, is implemented in Haskell,
and supports Lua as its builtin scripting language. So it is a good fit for this
textbook project. I thank John MacFarlane and many others who have developed
and maintained the excellent Pandoc tools.

In Spring and Summer 2017, I combined the efforts from the previous years and
sought to expand the Haskell-based functional programming course materials
to include materials for the interpreter-based approach to the programming
languages course and new Haskell-related material on type classes.

I redirected the work from developing materials for an online course to developing
a textbook for the types of courses I describe in the “Course 1 and Course 2”
section above.

In Fall 2017, I taught CSci 450 from the 2017 version of the textbook. Given my
more mature materials, it worked better than the Lua-based course the previous
year. But that effort identified the need for additional work on the textbook:
shorter, more focused chapters, some explicit discussion of software testing, more
attention to the language-processing issues, etc.

I thank my Fall 2017 and Fall 2018 TA for CSci 450, Kyle Moore, for his
suggestions and corrections in a number of areas. I also thank the Spring 2017
Multiparadigm Programming (CSci 556) and Fall 2017 CSci 450 students for
their feedback on the textbook materials.

I thank my long-time colleague, and current Department Chair, Dawn Wilkins,
for her general suggestions on the CSci 450 course and the textbook and for the
Department’s continued support of my textbook writing efforts.

I also thank Armando Suarez, my Spring 2018 TA for Senior Project and student
in Software Language Engineering that semester, for his suggestions on my
materials and approach to those courses—some of which I have applied to this
textbook and its associated courses.

In 2018, I began restructuring the 2017 version of the textbook to better meet
the needs of the CSci 450 course. I changed the title to Exploring Languages
with Interpreters and Functional Programming.

I incorporated additional chapters from the Notes on Functional Programming
with Haskell and other materials that had not been previously included. I also
developed new chapters on software testing, the language processing pipeline,
and the Imperative Core language interpreter. I plan to develop additional
interpreters, such as one for a Scheme-like language.
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Because of this project, I have come to appreciate how much time, effort, and
attention to detail must be invested to develop a good programming language
organization textbook. I think Samuel Kamin, Robert Sebesta, Michael Scott,
Norman Ramsey, Shriram Krishnamurthi, and other authors for their investment
in writing and updating their books.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I plan to continue work on this textbook. However, the work went
slowly until 2022 because of the COVID-19 pandemic disruptions, my continued
work with two PhD students until mid-2021, and various personal factors. In
January 2022, I began refining the existing content, integrating separately
developed materials, reformatting the document (e.g., using CSS), constructing
a bibliography (e.g., using citeproc), and improving the build workflow and use
of Pandoc features.

As I have noted above, I maintain this preface as text in Pandoc’s dialect of
Markdown using embedded LaTeX markup for the mathematical formulas and
then translate the document to HTML, PDF, and other forms as needed. I
continue to learn how better to apply the Pandoc-related tools to accomplish
this.
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1 Evolution of Programming Languages
1.1 Chapter Introduction
The goal of this chapter is motivate the study of programming language organi-
zation by:

• describing the evolution of computers since the 1940’s and its impact upon
contemporary programming language design and implementation

• identifying key higher-level programming languages that have emerged
since the early 1950’s

1.2 Evolving Computer Hardware Affects Programming
Languages

To put our study in perspective, let’s examine the effect of computing hardware
evolution on programming languages by considering a series of questions.

1. When were the first “modern” computers developed? That is, programmable
electronic computers.

Although the mathematical roots of computing go back more than a
thousand years, it is only with the invention of the programmable electronic
digital computer during the World War II era of the 1930s and 1940s that
modern computing began to take shape.

One of the first computers was the ENIAC (Electronic Numerical Inte-
grator and Computer), developed in the mid-1940s at the University of
Pennsylvania. When construction was completed in 1946, it cost about
$500,000. In today’s terms, that is nearly $7,000,000.

The ENIAC weighed 30 tons, occupied as much space as a small house,
and consumed 160 kilowatts of electric power.

Initially, the ENIAC had no main memory. Instead it had 20 accumulators,
each 10 decimal digits wide. Later 100 words of core were added.

Similarly, the ENIAC had no external memory as we know it today. It
could read and write stacks of punch cards.

The ENIAC was not a stored program computer. It was programmed
mostly by connecting cables in plugboards. It took several days of careful
work to enter one program. The program was only changed every few
weeks.

Aside: Many of the early programmers were women. This is quite a
contrast to contemporary programming teams that are mostly male. What
happened?

The ENIAC and most other computers of that era were designed for
military purposes, such as calculating firing tables for artillery or breaking
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codes. As a result, many observers viewed the market for such devices to
be quite small. The observers were wrong!

Electronics technology has improved greatly in 70 years. Today, a computer
with the capacity of the ENIAC would be smaller than a coin from our pockets,
would consume little power, and cost just a few dollars on the mass market.

2. How have computer systems and their use evolved over the past 70 years?

• Contemporary processors are much smaller and faster. They use
much less power, cost much less money (when mass produced), and
operate much more reliably.

• Contemporary “main” memories are much larger in capacity, smaller
in physical size, and faster in access speed. They also use much less
power, cost much less money, and operate much more reliably.

• The number of processors per machine has increased from one to
many. First, channels and other co-processors were added, then
multiple CPUs. Today, computer chips for common desktop and
mobile applications have several processors—cores—on each chip,
plus specialized processors such as graphics processing units (GPUs)
for data manipulation and parallel computation. This trend toward
multiprocessors will likely continue given that physics dictates limits
on how small and fast we can make computer processors; to continue
to increase in power means increasing parallelism.

• Contemporary external storage devices are much larger in capacity,
smaller in size, faster in access time, and cost less.

• The number of computers available per user has increased from much
less than one to many more than one.

• Early systems were often locked into rooms, with few or no direct
connections to the external world and just a few kinds of input/output
devices. Contemporary systems may be on the user’s desktop or in
the user’s backpack, be connected to the internet, and have many
kinds of input/output devices.

• The range of applications has increased from a few specialized ap-
plications (e.g., code-breaking, artillery firing tables) to almost all
human activities.

• The cost of the human staff to program, operate, and support com-
puter systems has probably increased somewhat (in constant dollars).

3. How have these changes affected programming practice?

• In the early days of computing, computers were very expensive and
the cost of the human workers to use them relatively less. Today, the
opposite holds. So we need to maximize human productivity.
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• In the early days of computing, the slow processor speeds and small
memory sizes meant that programmers had to control these precious
resources to be able to carry out most routine computations. Al-
though we still need to use efficient algorithms and data structures
and use good coding practices, programmers can now bring large
amounts of computing capacity to bear on most problems. We can
use more computing resources to improve productivity to program
development and maintenance. The size of the problems we can
solve computationally has increased beyond what would be possible
manually.

• In the early days of computing, multiple applications and users usually
had to share one computer. Today, we can often apply many processors
for each user and application if needed. Increasingly, applications
must be able to use multiple processors effectively.

• Security on early systems meant keeping the computers in locked
rooms and restricting physical access to those rooms. In contemporary
networked systems with diverse applications, security has become a
much more difficult issue with many aspects.

• Currently, industry can devote considerable hardware and software
resources to the development of production software.

The first higher-level programming languages began to appear in the 1950s. IBM
released the first compiler for a programming language in 1957–for the scientific
programming language Fortran. Although Fortran has evolved considerably
during the past 60 years, it is still in use today.

4. How have the above changes affected programming language design and
implementation over the past 60 years?

• Contemporary programming languages often use automatic memory
allocation and deallocation (e.g., garbage collection) to manage a
program’s memory. Although programs in these languages may use
more memory and processor cycles than hand-optimized programs,
they can increase programmer productivity and the security and
reliability of the programs. Think Java, C#, and Python versus C
and C++.

• Contemporary programming languages are often implemented using
an interpreter instead of a compiler that translates the program to the
processor’s machine code–or be implemented using a compiler to a
virtual machine instruction set (which is itself interpreted on the host
processor). Again they use more processor and memory resources to
increase programmer productivity and the security and reliability of
the programs. Think Java, C#, and Python versus C and C++.

• Contemporary programming languages should make the capabilities
of contemporary multicore systems conveniently and safely available
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to programs and applications. To fail to do so limits the performance
and scalability of the application. Think Erlang, Scala, and Clojure
versus C, C++, and Java.

• Contemporary programming languages increasingly incorporate de-
clarative features (higher-order functions, recursion, immutable data
structures, generators, etc.). These features offer the potential of
increasing programming productivity, increasing the security and
reliability of programs, and more conveniently and safely providing
access to multicore processor capabilities. Think Scala, Clojure, and
Java 8 and beyond versus C, C++, and older Java.

As we study programming and programming languages in this and other courses,
we need to keep the nature of the contemporary programming scene in mind.

1.3 History of Programming Languages
From the instructor’s perspective, key languages and milestones in the history
of programming languages include the following.

Note: These descriptions use terminology such as imperative and function that
is defined in Chapters 2 and 3 on programming paradigms.

1950’s

• Fortran, 1957; imperative; first compiler, math-like language for scientific
programming, developed at IBM by John Backus, influenced most subse-
quent languages, enhanced versions still in use today (first programming
language learned by the author in 1974)

• Lisp [121,122,145,182], 1958; mix of imperative and functional features;
innovations include being homoiconic (i.e., code and data have same
format), extensive use of recursion, syntactic macros, automatic storage
management, higher-order functions; related to Church’s lambda calculus
theory, developed at MIT by John McCarthy, influenced most subsequent
languages/research, enhanced versions still in use today

• Algol, 1958, 1960; imperative; innovations included nested block structure,
lexical scoping, use of BNF to define syntax, call-by-name parameter
passing; developed by an international team from Europe and the USA,
influenced most subsequent languages

• COBOL, 1959; imperative; focus on business/accounting programming,
decimal arithmetic, record data structures, key designer Grace Hopper,
still in use today (third language learned by instructor in late 1975)

1960’s

• Simula; 1962, 1967; imperative; original purpose for discrete-event sim-
ulation, developed in Norway by Ole-Johan Dahl and Kristen Nygaard,
Simula 67 is first object-oriented language (in Scandinavian school of
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object-oriented languages), Simula 67 influenced subsequent object-oriented
languages

• Snobol, 1962; imperative; string processing, patterns as first-class data,
backtracking on failure, developed at AT&T Bell Laboratories by David J.
Farber, Ralph E. Griswold and Ivan P. Polonsky

• PL/I, 1964; imperative; IBM-designed language to merge scientific (For-
tran), business (COBOL), and systems programming (second language
learned by the instructor in early 1975)

• BASIC, 1964; imperative; simple language developed for interactive com-
puting in early timesharing and microcomputer environments, developed
at Dartmouth College by John G. Kemeny and Thomas E. Kurtz

• Algol 68, 1968; imperative; ambitious and rigorously defined successor to
Algol 60; designed by international team, greatly influenced computing
science theory and subsequent language designs, but not widely or fully
implemented because of its complexity

1970’s

• Pascal, 1970; imperative; simplified Algol family language designed by
Niklaus Wirth (Switzerland) because of frustration with complexity of Algol
68, structured programming, one-pass compiler, important for teaching in
1980s and 1990s, Pascal-P System virtual machine implemented on many
early microcomputers (Pascal used by UM CIS in CS1 and CS2 until 1999)

• Prolog [33,163], 1972; logic (relational); first and most widely used logic
programming language, originally developed by a team headed by Alain
Colmerauer (France), rooted in first-order logic, most modern Prolog
implementations based on the Edinburgh dialect (which ran on the Warren
Abstract Machine), used extensively for artificial intelligence research in
Europe, influenced subsequent logic languages and also Erlang

• C, 1972; imperative; systems programming language for Unix operating
system, widely used today; developed by Dennis Ritchie at AT&T Bell
Labs, influenced many subsequent languages (first used by the author in
1977)

• Smalltalk [84], 1972; imperative object-oriented; ground-up object-oriented
programming language, message-passing between objects (in American
school of object-oriented languages), extensive GUI development environ-
ment; developed by Alan Kay and others at Xerox PARC, influenced many
subsequent object-oriented languages and user interface approches

• ML, 1973; mostly functional; polymorphic type system on top of Lisp-like
language, pioneering statically typed functional programming, algebraic
data types, module system; developed by Robin Milner at the University of
Edinburgh as the “meta language” for a theorem-proving system, influenced
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subsequent functional programming languages, modern dialects include
Standard ML (SML), CAML, and OCAML

• Scheme [81,82,183], 1975; mixed functional and imperative; minimalist
dialect of Lisp with lexical scoping, tail call optimization, first-class con-
tinuations; developed by Guy Steele and Gerald Jay Sussman at MIT,
influenced subsequent languages/research

• Icon, 1977; imperative; structured programming successor to Snobol, uses
goal-directed execution based on success or failure of expressions; developed
by a team led by Ralph Griswold at the University of Arizona

1980’s

• C++, 1980; imperative and object-oriented; C with Simula-like classes;
developed by Bjarne Stroustrup (Denmark)

• Ada, 1983; imperative and modular; designed by US DoD-funded com-
mittee as standard language for military applications, design led by Jean
Ichbiah and a team in France, statically typed, block structured, modular,
synchronous message passing, object-oriented extensions in 1995 (instructor
studied this language while working in the military aerospace industry
1980-83)

• Eiffel, 1985; imperative object-oriented language; designed with strong
emphasis on software engineering concepts such as design by contract and
command-query separation; developed by Bertrand Meyer (France)

• Objective C, 1986; imperative object-oriented; C with Smalltalk-like mes-
saging; developed by Brad Cox and Tom Love at Stepstone, selected by
Steve Jobs’ NeXT systems, picked up by Apple when NeXT absorbed, key
language for MacOS and iOS

• Erlang, 1986; functional and concurrent; message-passing concurrency on
functional programming base (actors), fault-tolerant/real-time systems,
dynamic typing, virtual machine, originally used in real-time telephone
switches; developed by Joe Armstrong, Robert Virding, and Mike Williams
at Ericsson (Sweden)

• Self [158,175], 1986; imperative prototype-based; dialect of Smalltalk, first
prototype-based language, used virtual machine with just-in-time compila-
tion (JIT); developed by David Ungar and Randall Smith while at Xerox
PARC, Stanford University, and Sun Microsystems, language influenced
JavaScript and Lua, JIT influenced Java HotSpot JIT development

• Perl, 1987; imperative; dynamic programming language originally focused
on providing powerful text-processing facilities based around regular ex-
pressions; developed by Larry Wall

1990’s
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• Haskell [120,173,179], 1990; purely functional language; non-strict se-
mantics (i.e., lazy evaluation) and strong static typing; developed by an
international committee of functional programming researchers, widely
used in research community

• Python [[144];] [146]], 1991; imperative, originally object-based; dynam-
ically typed, multiparadigm language; developed by Guido van Rossum
(Netherlands)

• Ruby [149,169], 1993; imperative, object-oriented; dynamically typed, sup-
ports reflective/metaprogramming and internal domain-specific languages;
developed by Yukihiro “Matz” Matsumoto (Japan), popularized by Ruby
on Rails web framework, influenced subsequent languages

• Lua [105,116], 1993; imperative; minimalistic language designed for embed-
ding in any environment supporting standard C, dynamic typing, lexical
scoping, first-class functions, garbage collection, tail recursion optimization,
pervasive table/metatable data structure, facilities for prototype object-
oriented programming, coroutines, used as scripting language in games;
developed by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes (Brazil)

• R [167,181], 1993; imperative; designed for statistical computing and
graphics, open-source implementation of the language S; developed by Ross
Ihaka and Robert Gentleman (New Zealand), influenced programming in
the data science community

• Java, 1995; imperative object-oriented; statically typed, virtual machine,
version 8+ has functional programming features (higher-order functions,
streams); developed by Sun Microsystems, now Oracle

• JavaScript, 1995 (standardized as ECMAScript); imperative and prototype-
based; designed for embedding in web pages, dynamic typing, first-class
functions, prototype-based object-oriented programming, internals influ-
enced by Scheme and Self but using a Java-like syntax; developed by
Brendan Eich at Netscape in 12 days to meet a deadline, became popular
quickly before language design made clean, evolving slowly because of
requirement to maintain backward compatibility

• PHP, 1995; imperative; server-side scripting language fordynamic web
applications; originally developed by Rasmus Lerdorf (Canada), evolved
organically

• OCaml (originally Objective Caml), 1996; mostly functional with impera-
tive and object-oriented features; a dialect of ML that adds object-oriented
constructs, focusing on performance and practical use; developed by a
team lead by Xavier Leroy (France)

2000’s
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• C#, 2001; imperative object-oriented programming; statically typed, lan-
guage runs on Microsoft’s Common Language Infrastructure; developed by
Microsoft (in response to Sun’s Java)

• F#, 2002; OCaml re-envisioned for Microsoft’s Common Language Infra-
structure (.Net), replaces OCaml’s object and module systems with .Net
concepts; developed by a team led by Don Syme at Microsoft Research in
the UK

• Scala [132,151], 2003; hybrid functional and object-oriented language; runs
on the Java Virtual Machine and interoperates with Java; developed by
Martin Odersky’s team at EPFL in Switzerland

• Groovy, 2003; imperative object-oriented; dynamically typed “scripting”
language, runs on the Java Virtual Machine; originally proposed by James
Strachan

• miniKanren [26,27,80], 2005; relational; a family of relational programming
languages, developed by Dan Friedman’s team at Indiana University, im-
plemented as an extension to other languages (originally Scheme), most
popular current usage probably in Clojure

• Clojure [75,94,95], 2007; mixed functional and imperative; Lisp dialect,
runs on Java Virtual Machine, Microsoft Common Language Runtime, and
JavaScript platform, emphasis on functional programming, concurrency
(e.g., software transactional memory), and immutable data structures;
developed by Rich Hickey

2010’s

• Idris [18,19], 2011 (1.0 release 2017); functional; eagerly evaluated, Haskell-
like language with dependent types, incorporating ideas from proof assis-
tants (e.g., Coq), intended for practical programming; developed by Edwin
Brady (UK)

• Julia, 2012 (1.0 release 2018); dynamic programming language designed to
address high-performance numerical and scientific programming, intended
as a modern replacement for MATLAB, Python, and R

• Elixir [68,168], 2012 (1.0 release 2014); functional concurrent programming
language; dynamic strong typing, metaprogramming, protocols, Erlang
actors, runs on Erlang Virtual Machine, influenced by Erlang, Ruby, and
Clojure; developed by a team led by Jose Valim (Brazil)

• Elm [60,70], 2012 (0.19.1 release October 2019); simplified, eagerly eval-
uated Haskell-like functional programming language that compiles to
JavaScript, intended primarily for user-interface programming in a browser,
supports reactive-style programming; developed by Evan Czaplicki (original
version for his senior thesis at Harvard)
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• Rust [110,150], 2012 (1.0 release 2015); imperative; systems programming
language that incorporates contemporary language concepts and focuses on
safety and performance, meant to replace C and C++; developed originally
at Mozilla Research by Graydon Hoare

• PureScript [79,143], 2013 (0.12 release May 2018); mostly functional; an
eagerly evaluated language otherwise similar to Haskell, primarily compiles
to human-readable JavaScript; originally developed by Phil Freeman

• Swift, 2014; Apple’s replacement for Objective C that incorporates con-
temporary language concepts and focuses on program safety; “Objective C
without the C”

The evolution continues!

1.4 What Next?
Computer systems, software development practices, and programming languages
have evolved considerably since their beginnings in the 1940s and 1950s. Con-
temporary languages build on many ideas that first emerged in the early decades
of programming languages. But they mix the enduring ideas with a few modern
innovations and adapt them for the changing circumstances.

This textbook explores both programming and programming language organiza-
tion with the following approach:

• emphasize important concepts and techniques that have emerged during
the decades since the 1940s

• teach functional and modular programming primarily using the language
Haskell, a language that embodies many of the important concepts

• explore the design and implementation of programming languages by
building interpreters for simple languages

Chapters 2 and 3 explore the concept of programming paradigms.

1.5 Exercises
1. Choose some programming language not discussed above and investigate

the following issues.

a. When was the language created?
b. Who created it?
c. What programming paradigm(s) does it support? (See Chapters 2

and 3 for more information about programming paradigms.)
d. What are its distinguishing characterists?
e. What is its primary target domain or group of users?
f. What are other interesting aspects of the language, its history, use,

etc?
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2. Repeat the previous exercise for some other language.

1.6 Acknowledgements
In Summer and Fall 2016, I adapted and revised much of this work in from my
previous materials:

• Evolving Computer Hardware Affects Programming Languages from my
notes Effect of Computing Hardware Evolution on Programming Languages,
which were based on a set of unscripted remarks I made in the Fall 2014
offering of CSci 450, Organization of Programming Languages

• History of Programming Languages from my notes History of Programming
Languages, which were based on a set of unscripted remarks I made in the
Fall 2014 offering of CSci 450, Organization of Programming Languages.
Those remarks drew on the following:

– O’Reilly History of Programming Languages poster [125]

– Wikipedia article on History of Programming Languages [180]

In 2017, I continued to develop this material as a part of Chapter 1, Fundamentals,
of my 2017 Haskell-based programming languages textbook.

In Spring and Summer 2018, I reorganized and expanded the previous Fundamen-
tals chapter into four chapters for the 2018 version of the textbook, now titled
Exploring Languages with Interpreters and Functional Programming. These are
Chapter 1, Evolution of Programming Languages (this chapter); Chapter 2,
Programming Paradigms); chapter 3, Object-Based Paradigms; and Chapter 80
(an appendix), Review of Relevant Mathematics.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

1.7 Terms and Concepts
The evolution of computer hardware since the 1940s; impacts upon programming
languages and their subsequent evolution.
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2 Programming Paradigms
2.1 Chapter Introduction
The goals of this chapter are to:

• introduce the concepts of procedural and data abstraction

• examine the characteristics and concepts the primary programming para-
digms, imperative and declarative (including functional and relational)

• survey other paradigms such as procedural and modular programming

2.2 Abstraction
Programming concerns the construction of appropriate abstractions in a pro-
gramming language. Before we examine programming paradigms, let’s examine
the concept of abstraction.

2.2.1 What is abstraction?

As computing scientists and computer programmers, we should remember the
maxim:

Simplicity is good; complexity is bad.

The most effective weapon that we have in the fight against complexity is
abstraction. What is abstraction?

Abstraction is concentrating on the essentials and ignoring the details.

Sometimes abstraction is described as remembering the “what” and ignoring the
“how”.

Large complex problems can only be made understandable by decomposing
them into subproblems. Ideally, we should be able to solve each subproblem
independently and then compose their solutions into a solution to the larger
problem.

In programming, the subproblem solution is often expressed with some kind
of abstraction represented in a programming notation. From the outside, each
abstraction should be simple and easy for programmers to use correctly. The
programmers should only need to know the abstraction’s interface (i.e., some
small number of assumptions necessary to use the abstraction correctly).‘

2.2.2 Kinds of abstraction

Two kinds of abstraction are of interest to computing scientists: procedural
abstraction and data abstraction.

Procedural abstraction: the separation of the logical properties of an action
from the details of how the action is implemented.
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Data abstraction: the separation of the logical properties of data from the
details of how the data are represented.

In procedural abstraction, programmers focus primarily on the actions to be
carried out and secondarily on the data to be processed.

For example, in the top-down design of a sequential algorithm, a programmer
first identifies a sequence of actions to solve the problem without being overly
concerned about how each action will be carried out.

If an action is simple, the programmer can code it directly using a sequence of
programming language statements.

If an action is complex, the programmer can abstract the action into a subprogram
(e.g., a procedure or function) in the programming language. The programmer
must define the subprogram’s name, parameters, return value, effects, and
assumptions—that is, define its interface. The programmer subsequently develops
the subprogram using the same top-down design approach.

In data abstraction, programmers primarily focus on the problem’s data and
secondarily on its actions. Programmers first identify the key data representations
and develop the programs around those and the operations needed to create and
update them.

We address procedural and data abstraction further in Chapters 6 and 7.

2.2.3 Procedures and functions

Generally we make the following distinctions among subprograms:

• A procedure is (in its pure form) a subprogram that takes zero or more
arguments but does not return a value. It is executed for its effects, such
as changing values in a data structure within the program, modifying its
reference or value-result arguments, or causing some effect outside the
program (e.g., displaying text on the screen or reading from a file).

• A function is (in its pure form) a subprogram that takes zero or more
arguments and returns a value but that does not have other effects.

• A method is a procedure or function often associated with an object or
class in an object-oriented program. Some object-oriented languages use
the metaphor of message-passing. A method is the feature of an object
that receives a message. In an implementation, a method is typically a
procedure or function associated with the (receiver) object; the object may
be an implicit parameter of the method.

Of course, the features of various programming languages and usual practices for
their use may not follow the above pure distinctions. For example, a language
may not distinguish between procedures and functions. One term or another
may be used for all subprograms. Procedures may return values. Functions may
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have side effects. Functions may return multiple values. The same subprogram
can sometimes be called either as a function or procedure.

Nevertheless, it is good practice to maintain the distinction between functions
and procedures for most cases in software design and programming.

2.3 What is a Programming Paradigm?
According to Timothy Budd, a programming paradigm is “a way of conceptualiz-
ing what it means to perform computation, of structuring and organizing how
tasks are to be carried out on a computer” [21:3].

Historically, computer scientists have classified programming languages into one
of two primary paradigms: imperative and declarative.

This imperative-declarative taxonomy categorizes programming styles and lan-
guage features on how they handle state and how they execute programs.

In recent years, many imperative languages have added more declarative features,
so the distinction between languages has become blurred. However, the concept
of programming paradigm is still meaningful.

2.4 Imperative Paradigm
A program in the imperative paradigm has an implicit state (i.e., values of
variables, program counters, etc.) that is modified (i.e., side-effected or mutated)
by constructs (i.e., commands) in the source language [101].

As a result, such languages generally have an explicit notion of sequencing (of
the commands) to permit precise and deterministic control of the state changes.

Imperative programs thus express how something is to be computed. They
emphasize procedural abstractions.

2.4.1 Java

Consider the following Java program fragment from file Counting.java:

int count = 0 ;
int maxc = 10 ;
while (count <= maxc) {

System.out.println(count) ;
count = count + 1 ;

}

In this fragment, the program’s state includes at least the values of the variables
count and maxc, the sequence of output lines that have been printed, and an
indicator of which statement to execute next (i.e., location or program counter).

The assignment statement changes the value of count and the println statement
adds a new line to the output sequence. These are side effects of the execution.
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Similarly, Java executes these commands in sequence, causing a change in which
statement will be executed next. The purpose of the while statement is to
cause the statements between the braces to be executed zero or more times. The
number of times depends upon the values of count and maxc and how the values
change within the while loop.

We call this state implicit because the aspects of the state used by a particular
statement are not explicitly specified; the state is assumed from the context of
the statement. Sometimes a statement can modify aspects of the state that are
not evident from examining the code fragment itself.

The Java variable count is mutable because its value can change. After the
declaration, count has the value 0. At the end of the first iteration of the while
loop, it has value 1. After the while loop exits, it has a value 10. So a reference
to count yields different values depending upon the state of the program at that
point.

The Java variable maxc is also mutable, but this code fragment does not change
its value. So maxc could be replaced by an immutable value.

Of course, the Java fragment above must be included within a main method to
be executed. A main method is the entry point of a Java program.

public class Counting {
public static void main(String[] args) {

/* Java code fragment above */
}

}

Imperative languages are the “conventional” or “von Neumann languages” dis-
cussed by John Backus in his 1977 Turing Award address [6]. (See Section 2.7.)
They are suited to traditional computer architectures.

Most of the languages in existence today are primarily imperative in nature.
These include Fortran, C, C++, Java, Scala, C#, Python, Lua, and JavaScript.

2.4.2 Other languages

The Scala [132,151] program CountingImp.scala is equivalent to the Java
program described above. The program CountingImp2.scala is also equivalent,
except that it makes the maxc variable immutable. That is, it can be bound to
an initial value, but its binding cannot be changed subsequently.

2.5 Declarative Paradigm
A program in the declarative paradigm has no implicit state. Any needed state
information must be handled explicitly [101].

A program is made up of expressions (or terms) that are evaluated rather than
commands that are executed.

44

Ch02/CountingImp.scala
Ch02/CountingImp2.scala


Repetitive execution is accomplished by recursion rather than by sequencing.

Declarative programs express what is to be computed (rather than how it is to
be computed).

The declarative paradigm is often divided into two types: functional (or applica-
tive) and relational (or logic).

2.5.1 Functional paradigm

In the functional paradigm the underlying model of computation is the mathe-
matical concept of a function [101].

In a computation, a function is applied to zero or more arguments to compute a
single result; that is, the result is deterministic (or predictable).

2.5.1.1 Haskell Consider the following Haskell code from file Counting.hs:

counter :: Int -> Int -> String
counter count maxc

| count <= maxc = show count ++ "\n"
++ counter (count+1) maxc

| otherwise = ""

This fragment is similar to the Java fragment above. This Haskell code defines a
function counter (i.e., a procedural abstraction) that takes two integer argu-
ments, count and maxc, and returns a string consisting of a sequence of lines
with the integers from count to maxc such that each would be printed on a
separate line. (It does not print the string, but it inserts a newline character at
the end of each line.)

In the evaluation (i.e., “execution”) of a function call, Programming for the
{Newton}: Software Development with {NewtonScript}counter references the
values of count and maxc corresponding to the explicit arguments of the function
call. These values are not changed during the evaluation of that function call.
However, the values of the arguments can be changed as needed for a subsequent
recursive call of counter.

We call the state of counter explicit because it is passed in arguments of the
function call. These parameters are immutable (i.e., their values cannot change)
within the body of the function. That is, any reference to count or maxc within
a call gets the same value.

In a pure functional language like Haskell, the names like count and maxc are
said to be referentially transparent. In the same context (such as the body of the
function), they always have the same value. A name must be defined before it is
used, but otherwise the order of evaluation of the expressions within a function
body does not matter; they can even be evaluated in parallel.
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There are no “loops”. The functional paradigm uses recursive calls to carry out
a task repeatedly.

As we see in later chapters, referential transparency is probably the most im-
portant property of functional programming languages. It underlies Haskell’s
evaluation model (Chapter 8). It also underlies the ability to state and prove
“laws” about Haskell programs (e.g., Chapters 25 and 26). Haskell programmers
and Haskell compilers can use the “mathematical” properties of the programs to
transform programs that are more efficient.

The above Haskell fragment does not really carry out any actions; it just defines
a mapping between the arguments and the return value. We can “execute” the
counter function above with the arguments 0 and 10 with the following IO
program.

main = do
putStrLn (counter 0 10)

By calling the main function from the ghci interpreter, we get the same displayed
output as the Java program.

Haskell separates pure computation (as illustrated by function counter) from
computation that has effects on the environment such as input/output (as
illustrated by IO function main).

In most programming languages that support functional programming, functions
are treated as first-class values. That is, like other data types, functions can
be stored in data structures, passed as arguments to functions, and returned
as the results of functions. (The implementation technique for first-order func-
tions usually involves creation of a lexical closure holding the function and its
environment.)

In some sense, functional languages such as Haskell merge the concepts of
procedural and functional abstraction. Functions are procedural abstractions,
but they are also data.

A function that can take functions as arguments or return functions in the
result is called a higher-order function. A function that does not take or return
functions is thus a first-order function. Most imperative languages do not fully
support higher-order functions.

The higher-order functions in functional programming languages enable regular
and powerful abstractions and operations to be constructed. By taking advan-
tage of a library of higher-order functions that capture common patterns of
computation, we can quickly construct concise, yet powerful, programs.

Purely functional languages include Haskell, Idris, Miranda, Hope, Elm, and
Backus’s FP.

Hybrid functional languages with significant functional subsets include Scala,
F#, OCaml, SML, Erlang, Elixir, Lisp, Clojure, and Scheme.
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Mainstream imperative languages such as Java (beginning with version 8), C#,
Python, Ruby, Groovy, Rust, and Swift have recent feature extensions that make
them hybrid languages as well.

2.5.1.2 Other languages The Scala [132,151] program CountingFun.scala
is equivalent to the above Haskell program.

2.5.2 Relational (or logic) paradigm

In the relational (logic) paradigm, the underlying model of computation is the
mathematical concept of a relation (or a predicate) [101].

A computation is the (nondeterministic) association of a group of values—with
backtracking to resolve additional values.

2.5.2.1 Prolog Consider the following Prolog [33] code from file
Counting.pl. In particular, this code runs on the SWI-Prolog interpreter [163].

counter(X,Y,S) :- count(X,Y,R), atomics_to_string(R,'\n',S).

count(X,X,[X]).
count(X,Y,[]) :- X > Y.
count(X,Y,[X|Rs]) :- X < Y, NX is X+1, count(NX,Y,Rs).

This fragment is somewhat similar to the Java and Haskell fragments above. It
can be used to generate a string with the integers from X to Y where each integer
would be printed on a separate line. (As with the Haskell fragment, it does not
print the string.)

This program fragment defines a database consisting of four clauses.

The clause

count(X,X,[X]).

defines a fact. For any variable value X and list [X] consisting of the single value
X, count(X,X,[X]) is asserted to be true.

The other three clauses are rules. The left-hand-side of :- is true if the right-
hand-side is also true. For example,

count(X,Y,[]) :- X > Y.

asserts that

count(X,Y,[])

is true when X > Y. The empty brackets denote an empty list of values.

As a logic or relational language, we can query the database for any missing
components. For example,

count(1,1,Z).
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yields the value Z = [1]. However,

count(X,1,[1]).

yields the value X = 1. If more than one answer is possible, the program can
generate all of them in some nondeterministic order.

So, in some sense, where imperative and functional languages only run a compu-
tation in one direction and give a single answer, Prolog can potentially run a
computation in multiple directions and give multiple answers.

As with Haskell, the above Prolog fragment does not really carry out any
computational actions; it just adds facts to the database and defines general
relationships among facts. We can “execute” the query counter(0,10,S) above
and print the value of S using the following rule.

main :- counter(0,10,S), write(S).

Example relational languages include Prolog, Parlog, and miniKanren.

Most Prolog implementations have imperative features such as the “cut” and
the ability to assert and retract clauses.

2.5.2.2 Other languages TODO: Perhaps add a new example using
miniKanren [26,27,80] in some reasonable base language–preferably Java,
Python, or Scala.

2.6 Other Programming Paradigms
As we noted, the imperative-declarative taxonomy described above divides
programming styles and language features on how they handle state and how
they are executed.

The computing community often speaks of other paradigms—procedural, modu-
lar, object-oriented, concurrent, parallel, language-oriented, scripting, reactive,
and so forth. The definitions of these “paradigms” may be quite fuzzy and vary
significantly from one writer to another.

Sometimes a term is chosen for “marketing” reasons—to associate a language
with some trend even though the language may be quite different from others in
that paradigm—or to make a language seem different and new even though it
may not be significantly different.

These paradigms tend to divide up programming styles and language features
along different dimensions than the primary taxonomy described in Sections 2.4
and 2.5. Often the languages we are speaking of are subsets of the imperative
paradigm.

This section briefly discusses some of these paradigms. We discuss the prominent
object-based paradigms in the next chapter.
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2.6.1 Procedural paradigm

The procedural paradigm is a subcategory of the imperative paradigm. It organizes
programs primarily using procedural abstractions. A procedural program consists
of a sequence of steps that access and modify the program’s state.

Some of the steps are abstracted out as subprograms—procedures or functions—
that can be reused. In some cases, subprograms may be nested inside other
subprograms, thus limiting the part of the program in which the nested subpro-
gram can be called.

The procedural programming approach arose in programming languages such as
Fortran, Algol, PL/I, Pascal, and C from the 1950’s to the 1970’s and beyond.
In this chapter, we use the Python programming language to illustrate of its
features.

2.6.1.1 Python Consider the following Python [144] code from file
CountingProc.py:

# File CountingProc.py
def counter(count,maxc):

def has_more(count,maxc): # new variables
return count <= maxc

def adv():
nonlocal count # from counter
count = count + 1

while has_more(count,maxc):
print(f'{count}') # Python 3.6+ string interpolation
adv()

When called as

counter(0,10)

this imperative Python “procedure” executes similarly to the Java program
fragment we examined in Section 2.4.

Python does not distinguish between procedures and functions as we have defined
them. It uses the term “function” for both. Both return values and can have
side-effects. The value returned may be the special default value None.

This Python code uses procedural abstraction more extensively than the earlier
Java fragment. The Python procedure encloses the while loop in procedure
counter and abstracts the loop test and incrementing operation into function
has_more and procedure adv, respectively.

Like many procedural languages, Python uses lexical scope for variable, procedure,
and function names. That is, the scope of a name (i.e., range of code in which it
can be accessed) begins at the point it is defined and ends at the end of that
block of code (e.g., function, class, or module).
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Function has_more and procedure adv are encapsulated within counter. They
can only be accessed inside the body of counter after their definitions.

Parameters count and maxc of procedure counter can be accessed throughout
the body of counter unless hidden by another variable or parameter with the
same name. They are hidden within the function has_more, which reuses the
names for its parameters, but are accessible within procedure adv.

But to allow assignment to count within the nested procedure adv, the variable
must declared as nonlocal in the inner procedure. Otherwise, the assignment
would have created a new variable with the name count within the body of
procedure adv.

Languages like Python, C, Fortran, Pascal, and Lua are primarily procedural
languages, although most have evolved to support other styles.

2.6.1.2 Other languages Scala [132,151] is a hybrid object-functional lan-
guage that enables function definitions to be nested inside other function defini-
tions. The procedural Scala program CountingProc.scala is equivalent to the
Python program above.

2.6.2 Modular paradigm

Modular programming refers more to a design method for programs and program
libraries than to languages.

Modular programming means to decompose a program into units of functionality
(i.e., modules) that can be developed separately and then recomposed. These
modules can hide (i.e., encapsulate) key design and implementation details within
the modu

The module’s public features can be accessed through its interface; its private
features cannot be accessed from outside the module. Thus a module supports
the principle of information hiding. This method also keeps the interactions
among modules at a minimum, maintaining a low degree of coupling.

We discuss modular programming in more depth in Chapters 6 and 7.

A language that provides constructs for defining modules, packages, namespaces,
or separate compilation units can assist in writing modular programs.

In this chapter, we examine some aspects of the modular paradigm using the
imperative language Python. We examine modular programming in the purely
functional programming language Haskell on Chapters 6 and 7 and later chapters.

2.6.2.1 Python

2.6.2.1.1 Using one module First, let’s consider the following Python [144]
code from file CountingMod.py to illustrate use of modules in Python programs.
This module is similar to the procedural program in the previous section.
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This modular program, however, has all the functions and procedures at the same
level of the Python module (file) instead of most being nested within procedure
counter. The modular program also uses module-level variables instead of local
variables of procedure counter.

# File CountingMod.py
count = 0
maxc = 10

def has_more():
return count <= maxc

def adv():
global count
count = count + 1

def counter():
while has_more():

print(f'{count}')
adv()

This module creates two module-level global variables count and maxc and
defines three module-level Python functions has_more, adv, and counter.

The module assigns initial values to the variables. Their values can be accessed
anywhere later in the module unless hidden by parameters or local variables
with the same name.

Function has_more() tests module-level variables count and maxc to determine
whether there are more items in the sequence.

Procedure adv() assigns a new value to the module-level variable count. It
must declare count as global so that a new local variable is not created.

Variable maxc is also mutable, but this module does not modify its value.

Each module is a separate file that can be imported by other Python code. It
introduces a separate name space for variables, functions, and other features.

For example, we can import the module above and execute counter with the
following Python code from file CountingModTest1.py:

from CountingMod import counter
counter()

The from-import statement imports feature counter (a Python function) from
the module in file CountingMod.py. The imported name counter can be used
without qualifying it. The other features of CountingMod (e.g., count and adv)
cannot be accessed.
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As an alternative, we can import the module from file CountingModTest2.py
as follows:

import CountingMod

CountingMod.count = 10
CountingMod.maxc = 20
CountingMod.counter()

This code imports all the features of the module. It requires the variables and
functions to be accessed with the name prefix CountingMod. (i.e., the module
name followed by a period). This approach enables the importing code to modify
the values of global variables in the imported module.

In this second example, the importing code can both access and modify the
global variables of the imported module.

Python does not enforce the encapsulation of module-level variable or function
names. All names are public (i.e., can be imported to other modules). However,
programmers can, by convention, designate module-level names as private by
beginning the name with a single underscore character _. The alternative import
above will not automatically import such names.

For example, good modular programming practice might suggest that the names
_count, _maxc, _has_more(), and _adv() be used in the CountingMod module
above. This naming convention would designate those as private and leave only
counter() as public.

Most modern languages support “modules” in some way. Other languages
(e.g., Standard ML) provide advanced support for modules with the ability to
encapsulate features and provide multiple implementations of common interfaces.

2.6.2.1.2 Using multiple modules To see the flexibility of modular pro-
grams, let’s consider a variant of the above that uses two modules.

The first module—CountingModA from file CountingModA.py—is shown below.

# File CountingModA.py
from Arith import reset, adv, get_count, has_more

def counter():
while has_more():

count = get_count()
print(f'{count}')
adv()

CountingModA has similar overall functionality to the CountingMod module in
the previous example. However, its counter procedure uses a has_more function,
an adv procedure, and a new get_counter function implemented in a separate
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module named Arith. The CountingModA module has no module-level variables
and its counter procedure has no local variables.

The second module—Arith from file Arith.py—is shown below.

# File Arith.py
_start = 0
_stop = 10
_change = 1
_count = _start

def reset(new_start, new_stop, new_change):
global _start, _stop, _change, _count
_start = new_start
_stop = new_stop
_count = _start
if new_change == 0:

print('Error: Attempt to reset increment to 0; not reset.')
else:

_change = new_change

def adv():
global _count
_count = _count + _change

def get_count():
return _count

def has_more():
if _change > 0:

return _count <= _stop
else:

return _count >= _stop

This module makes the module-level variables private to the module by conven-
tion.

By default, module Arith generates the same arithmetic sequence as
CountingMod in the previous modular programming example. However, it
generalizes CountingMod in the following ways:

• renaming variable count to be _count and variable maxc to be _stop

• replacing the constant 0 in the initialization of variable _count by a new
variable _start, which is itself initialized to 0

• replacing the constant 1 in the increment of variable _count by a new
variable _change, which is itself initialized to 1
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• adding a new function get_count that enables a user module (e.g.,
CountingModA) to get the current value of the _count variable

This is called an accessor or getter function.

• implementing the function has_more() and the procedure adv() used by
module CountingModA

These argumentless public functions operate on Arith’s private module-
level variables _start, _stop, _change, and _count.

• adding a new procedure reset() that enables the values of _start, _stop,
_change, and _count to be reinitialized to new values

Now let’s consider an alternative to Arith, the second module. Module Geom
from file Geom.py is shown below.

# File Geom.py
_start = 1
_stop = 100
_change = 2
_count = _start

def reset(new_start, new_stop, new_change):
global _start, _stop, _change, _count
_start = new_start
_stop = new_stop
_count = start
if abs(new_change) <= 1:

print('Error: Attempt to set abs(_change) <= 1; not reset.')
else:

_change = new_change

def adv():
global _count
_count = _count * _change

def get_count():
return _count

def has_more():
return _count <= _stop

Module Geom has essentially the same interface as Arith, but it generates a
geometric sequence instead of an arithmetic sequence.

To use this module, the only change needed to CountingModA.py is to import
the module Geom instead of Arith. This alternative is in module CountingModG
in file CountingModG.py.
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This two-level example illustrates the additional flexibility that modular pro-
gramming can enable.

2.6.2.2 Other languages The modular Scala [132,151] program
CountingMod.scala is equivalent to the first Python program above.
The similar Scala program CountingMod2.scala uses a Scala trait to define
the interface of the module. It is used in manner similar to the second Python
program above.

TODO: Probably should show a Java 8+ example for this. Also the Scala might
need more update to be similar to new modular Python examples.

2.6.3 Object-based paradigms

The dominant paradigm since the early 1990s has been the object-oriented
paradigm. Because this paradigm is likely familiar with most readers, we examine
it and related object-based paradigms in the next chapter.

2.6.4 Concurrent paradigms

TODO: Perhaps describe a paradigm like actors and give an example in Elixir
[68,168].

2.7 Motivating Functional Programming: John Backus
In this book we focus primarily on the functional paradigm—on the programming
language Haskell in particular. Although languages that enable or emphasize
the functional paradigm have been around since the early days of computing,
much of the later interest in functional programming grew from the 1977 Turing
Award lecture.

John W. Backus (December 3, 1924 – March 17, 2007) was a pioneer in research
and development of programming languages. He was the primary developer of
Fortran while a programmer at IBM in the mid-1950s. Fortran is the first widely
used high-level language. Backus was also a participant in the international
team that designed the influential languages Algol 58 and Algol 60 a few years
later. The notation used to describe the Algol 58 language syntax—Backus-Naur
Form (BNF)—bears his name. This notation continues to be used to this day.

In 1977, ACM bestowed its Turing Award on Backus in recognition of his career
of accomplishments. (This award is sometimes described as the “Nobel Prize for
computer science”.) The annual recipient of the award gives an address to a major
computer science conference. Backus’s address was titled “Can Programming
Be Liberated from the von Neumann Style? A Functional Style and Its Algebra
of Programs”.

Although functional languages like Lisp go back to the late 1950’s, Backus’s
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address did much to stimulate research community’s interest in functional pro-
gramming languages and functional programming over the past four decades.

The next subsection gives excerpts from Backus’s Turing Award address published
as the article “Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs” [6].

2.7.1 Excerpts from Backus’s Turing Award Address [6]

Programming languages appear to be in trouble. Each successive language
incorporates, with little cleaning up, all the features of its predecessors plus a
few more. Some languages have manuals exceeding 500 pages; others cram a
complex description into shorter manuals by using dense formalisms. . . . Each
new language claims new and fashionable features, such as strong typing or
structured control statements, but the plain fact is that few languages make
programming sufficiently cheaper or more reliable to justify the cost of producing
and learning to use them.

Since large increases in size bring only small increases in power, smaller, more
elegant languages such as Pascal continue to be popular. But there is a desperate
need for a powerful methodology to help us think about programs, and no
conventional language even begins to meet that need. In fact, conventional
languages create unnecessary confusion in the way we think about programs. . . .
In order to understand the problems of conventional programming languages,
we must first examine their intellectual parent, the von Neumann computer.
What is a von Neumann computer? When von Neumann and others conceived
of it . . . [in the 1940’s], it was an elegant, practical, and unifying idea that
simplified a number of engineering and programming problems that existed then.
Although the conditions that produced its architecture have changed radically,
we nevertheless still identify the notion of “computer” with this . . . concept.

In its simplest form a von Neumann computer has three parts: a central processing
unit (or CPU), a store, and a connecting tube that can transmit a single word
between the CPU and the store (and send an address to the store). I propose to
call this tube the von Neumann bottleneck. The task of a program is to change
the contents of the store in some major way; when one considers that this task
must be accomplished entirely by pumping single words back and forth through
the von Neumann bottleneck, the reason for its name becomes clear.

Ironically, a large part of the traffic in the bottleneck is not useful data but
merely names of data, as well as operations and data used only to compute
such names. Before a word can be sent through the tube its address must be in
the CPU; hence it must either be sent through the tube from the store or be
generated by some CPU operation. If the address is sent form the store, then
its address must either have been sent from the store or generated in the CPU,
and so on. If, on the other hand, the address is generated in the CPU, it must
either be generated by a fixed rule (e.g., “add 1 to the program counter”) or by
an instruction that was sent through the tube, in which case its address must
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have been sent, and so on.

Surely there must be a less primitive way of making big changes in the store than
by pushing vast numbers of words back and forth through the von Neumann
bottleneck. Not only is this tube a literal bottleneck for the data traffic of a
problem, but, more importantly, it is an intellectual bottleneck that has kept us
tied to word-at-a-time thinking instead of encouraging us to think in terms of
the larger conceptual units of the task at hand. . . .

Conventional programming languages are basically high level, complex versions
of the von Neumann computer. Our . . . old belief that there is only one kind of
computer is the basis our our belief that there is only one kind of programming
language, the conventional—von Neumann—language. The differences between
Fortran and Algol 68, although considerable, are less significant than the fact
that both are based on the programming style of the von Neumann computer.
Although I refer to conventional languages as “von Neumann languages” to take
note of their origin and style, I do not, of course, blame the great mathematician
for their complexity. In fact, some might say that I bear some responsibility for
that problem.

Von Neumann programming languages use variables to imitate the computer’s
storage cells; control statements elaborate its jump and test instructions; and
assignment statements imitate its fetching, storing, and arithmetic. The assign-
ment statement is the von Neumann bottleneck of programming languages and
keeps us thinking in word-at-at-time terms in much the same way the computer’s
bottleneck does.

Consider a typical program; at its center are a number of assignment statements
containing some subscripted variables. Each assignment statement produces
a one-word result. The program must cause these statements to be executed
many times, while altering subscript values, in order to make the desired overall
change in the store, since it must be done one word at a time. The programmer
is thus concerned with the flow of words through the assignment bottleneck as
he designs the nest of control statements to cause the necessary repetitions.

Moreover, the assignment statement splits programming into two worlds. The
first world comprises the right sides of assignment <statements. This is an
orderly world of expressions, a world that has useful algebraic properties (except
that those properties are often destroyed by side effects). It is the world in which
most useful computation takes place.

The second world of conventional programming languages is the world of state-
ments. The primary statement in that world is the assignment statement itself.
All the other statements in the language exist in order to make it possible to
perform a computation that must be based on this primitive construct: the
assignment statement.

This world of statements is a disorderly one, with few useful mathematical
properties. Structured programming can be seen as a modest effort to introduce
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some order into this chaotic world, but it accomplishes little in attacking the
fundamental problems created by the word-at-a-time von Neumann style of
programming, with its primitive use of loops, subscripts, and branching flow of
control.

Our fixation on von Neumann languages has continued the primacy of the von
Neumann computer, and our dependency on it has made non-von Neumann
languages uneconomical and has limited their development. The absence of full
scale, effective programming styles founded on non-von Neumann principles has
deprived designers of an intellectual foundation for new computer architectures.
. . .

2.7.2 Aside on the disorderly world of statements

Backus states that “the world of statements is a disorderly one, with few math-
ematical properties”. Even in 1977 this was a bit overstated since work by
Hoare on axiomatic semantics [96], by Dijkstra on the weakest precondition (wp)
calculus [63], and by others had already appeared.

However, because of the referential transparency property of purely functional
languages, reasoning can often be done in an equational manner within the
context of the language itself. We examine this convenient approach later in this
book.

In contrast, the wp-calculus and other axiomatic semantic approaches must
project the problem from the world of programming language statements into
the world of predicate calculus, which is much more orderly. We leave this study
to courses on program derivation and programming language semantics.

Note: For this author’s take on this formal methods topic, see my materials for
University of Mississippi course Program Semantics and Derivation (CSci 550)
[40,41].

2.7.3 Perspective from four decades later

In his Turing Award Address, Backus went on to describe FP, his proposal for
a functional programming language. He argued that languages like FP would
allow programmers to break out of the von Neumann bottleneck and find new
ways of thinking about programming.

FP itself did not catch on, but the widespread attention given to Backus’ address
and paper stimulated new interest in functional programming to develop by
researchers around the world. Modern languages like Haskell developed partly
from the interest generated.

In the 21st Century, the software industry has become more interested in
functional programming. Some functional programming features now appear in
most mainstream programming languages (e.g., in Java 8+). This interest seems
to driven primarily by two concerns:
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• managing the complexity of large software systems effectively

• exploiting multicore processors conveniently and safely

The functional programming paradigm is able to address these concerns because
of such properties such as referential transparency, immutable data structures,
and composability of components. We look at these aspects in later chapters.

2.8 What Next?
This chapter (2) introduced the concepts of abstraction and programming para-
digm and surveyed the imperative, declarative, functional, and other paradigms.

Chapter 3 continues the discussion of programming paradigms by examining the
object-oriented and related object-based paradigms.

The subsequent chapters use the functional programming language Haskell to
illustrate general programming concepts and explore programming language
design and implementation using interpreters.

2.9 Exercises
1. This chapter used Haskell (and Scala) to illustrate the functional paradigm.

Choose a language such as Java, Python, or C#. Describe how it can be
used to write programs in the functional paradigm. Consider how well the
language supports tail recursion.

TODO: Modify question if more examples are given in chapter.

2. This chapter used Python (and Scala) to illustrate the procedural paradigm.
Choose a different language such as Java, C, C++, or C#. Describe how
it can be used to write programs in the procedural paradigm.

TODO: Modify question if more examples are given in chapter.

3. This chapter used Python (and Scala) to illustrate the modular paradigm.
For the same language chosen for previous exercise, describe how it can be
used to write programs in the modular paradigm.

TODO: Modify question if more examples are given in chapter.

4. Repeat the previous two exercises with a different language.

2.10 Acknowledgements
In Summer and Fall 2016, I adapted and revised much of this work from my
previous materials:

• Abstraction (Section 2.2) from the “What is Abstraction?” section of my
Data Abstraction notes [46], which I wrote originally for the first C++
(CSci 490) and Java-based (CSci 211) classes at UM in 1996 but expanded
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and adapted for other courses in later years. In the mid-to-late 1990s, the
Data Abstraction notes drew on my study of a variety of sources (e.g.,
Bird and Wadler [13], Dale [61], Gries [85]; Horstmann [99,100], Liskov
[119], Meyer [128], Mossenbock [129], Parnas [134], and Thomas [170])

• Discussion of the primary programming paradigms (Sections 2.3-2.6) from
Chapter 1 of my Notes on Functional Programming with Haskell [42], which
drew on the taxonomy in Hudak’s survey paper [101]. In 2016, I expanded
the discussion of the paradigms and included examples. This drew in part
from my use and/or teaching of a variety of programming languages since
my first programming course in 1974 (e.g., Fortran, Cobol, Pl/I, C, Snobol,
Jovial, Ada, Pascal, Haskell, C++, Java, Ruby, Scala, Lua, Elixir, and
Python).

• Motivating Functional Programming (Section 2.7) from Chapter 1 of my
Notes on Functional Programming with Haskell [42]. This includes a long
excerpt from the influential Turing Award lecture by John Backus [6].

In 2017, I continued to develop this material as a part of Chapter 1, Fundamentals,
of my 2017 Haskell-based programming languages textbook.

In Spring and Summer 2018, I reorganized and expanded the previous Fundamen-
tals chapter into four chapters for the 2018 version of the textbook, now titled
Exploring Languages with Interpreters and Functional Programming. These are
Chapter 1, Evolution of Programming Languages; Chapter 2, Programming
Paradigms (this chapter); Chapter 3, Object-based Paradigms; and Chapter
80, Review of Relevant Mathematics. I added the examples on procedural and
modular programming.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), adding cross-references, and improving the build workflow and
use of Pandoc.

In 2022, I aslo revised and expanded the modular programming example

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

2.11 Terms and Concepts
TODO: Update

Abstraction, procedural abstraction, data abstraction, interface, procedures,
functions, methods; programming language paradigm, primary paradigms (im-
perative, declarative, functional, relational or logic language); other paradigms
(procedural, modular, object-oriented, concurrent); program state, implicit versus

60



explicit state, execution of commands versus evaluation of expressions, mutable
versus immutable data structures, side effects, sequencing, recursion, referential
transparency, first-class values, first-order and higher-order functions, lexical
scope, global versus local variables, public versus private features, information
hiding, encapsulation, lexical closure; von Neumann computer, von Neumann
language, worlds of expressions and statements, axiomatic semantics, weakest
precondition calculus.
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3 Object-Based Paradigms
3.1 Chapter Introduction
The imperative-declarative taxonomy described in the previous chapter divides
programming styles and language features on how they handle state and how
they are executed. The previous chapter also mentioned other paradigms such
as procedural, modular, object-based, and concurrent.

The dominant paradigm since the early 1990s has been the object-oriented
paradigm. Because this paradigm is likely familiar with most readers, it is useful
to examine it in more detail.

Thus the goals of this chapter are to examine the characteristics of:

• the object-oriented paradigm

• related paradigms such as the object-based, class-based, and prototype-
based paradigms

3.2 Motivation
In contemporary practice, most software engineers approach the design of pro-
grams from an object-oriented perspective.

The key idea (notion?) in object orientation is the following: The real world can
be accurately described as a collection of objects that interact.

This approach is based on the following assumptions:

1. Describing large, complex systems as interacting objects make them easier
to understand than otherwise.

2. The behaviors of real world objects tend to be stable over time.

3. The different kinds of real world objects tend to be stable. (That is, new
kinds appear slowly; old kinds disappear slowly.)

4. Changes tend to be localized to a few objects.

Assumption 1 simplifies requirements analysis, software design, and
implementation—makes them more reliable.

Assumptions 2 and 3 support reuse of code, prototyping, and incremental
development.

Assumption 4 supports design for change.

The object-oriented approach to software development:

• uses the same basic entities (i.e., objects) throughout the software develop-
ment lifecycle

• identifies the basic objects during analysis
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• identifies lower-level objects during design, reusing existing object descrip-
tions where appropriate

• implements the objects as software structures (e.g., Java classes)

• maintains the object behaviors

<a name=“ObjectModel>

3.3 Object Model
We discuss object orientation in terms of an object model. Our object model
includes four basic components:

1. objects (i.e., abstract data structures)

2. classes (i.e., abstract data types)

3. inheritance (hierarchical relationships among abstract data types)

4. subtype polymorphism

Some writers consider dynamic binding a basic component of object orientation.
Here we consider it an implementation technique for subtype polymorphism.

Now let’s consider each of four components of the object model.

3.3.1 Objects

For languages in the object-based paradigms, we require that objects exhibit three
essential characterics. Some writers consider one or two other other characteristics
as essential. Here we consider these as important but non-essential characteristics
of the object model.

3.3.1.1 Essential characteristics An object must exhibit three essential
characteristics:

a. state

b. operations

c. identity

An object is a separately identifiable entity that has a set of operations and
a state that records the effects of the operations. An object is typically a
first-class entity that can be stored in variables and passed to or returned from
subprograms.

The state is the collection of information held (i.e., stored) by the object.

• It can change over time.

• It can change as the result of an operation performed on the object.
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• It cannot change spontaneously.

The various components of the state are sometimes called the attributes of the
object.

An operation is a procedure that takes the state of the object and zero or more
arguments and changes the state and/or returns one or more values. Objects
permit certain operations and not others.

If an object is mutable, then an operation may change the stored state so that a
subsequent operation on that object acts upon the modified state; the language
is thus imperative.

If an object is immutable, then an operation cannot change the stored state;
instead the operation returns a new object with the modified state.

Identity means we can distinguish between two distinct objects (even if they
have the same state and operations).

As an example, consider an object for a student desk in a simulation of a
classroom.

• A student desk is distinct from the other student desks and, hence, has a
unique identity.

• The relevant state might be attributes such as location, orientation, person
using, items in the basket, items on top, etc.

• The relevant operations might be state-changing operations (called mutator,
setter, or command operations) such as “move the desk”, “seat student”,
or “remove from basket” or might be state-observing operations (called
accessor, getter, observer, or query operations) such as “is occupied” or
“report items on desktop”.

A language is object-based if it supports objects as a language feature.

Object-based languages include Ada, Modula, Clu, C++, Java, Scala, C#,
Smalltalk, and Python 3.

Pascal (without module extensions), Algol, Fortran, and C are not inherently
object-based.

3.3.1.2 Important but non-essential characteristics Some writers re-
quire that an object have additional characteristics, but this book considers
these as important but non-essential characteristics of objects:

d. encapsulation

e. independent lifecycle

The state may be encapsulated within the object—that is, not be directly visible
or accessible from outside the object.
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The object may also have an independent lifecycle—that is, the object may
exist independently from the program unit that created it. Its lifetime is not
determined by the program unit that created it.

We do not include these as essential characteristics because they do not seem
required by the object metaphor.

Also, some languages we wish to categorize as object-based do not exhibit one
or both of these characteristics. There are languages that use a modularization
feature to enforce encapsulation separately from the object (or class) feature.
Also, there are languages that may have local “objects” within a function or
procedure.

In languages like Python 3, Lua, and Oberon, objects exhibit an independent
lifecycle but do not themselves enforce encapsulation. Encapsulation may be
supported by the module mechanism (e.g., in Oberon and Lua) or partly by a
naming convention (e.g., in Python 3).

In C++, some objects may be local to a function and, hence, be allocated on the
runtime stack. These objects are deallocated upon exit from the function. These
objects may exhibit encapsulation, but do not exhibit independent lifecycles.

3.3.2 Classes

A class is a template or factory for creating objects.

• A class describes a collection of related objects (i.e., instances of the class).

• Objects of the same class have common operations and a common set of
possible states.

• The concept of class is closely related to the concept of type.

A class description includes definitions of:

• operations on objects of the class

• the set of possible states

As an example, again consider a simulation of a classroom. There might be a
class StudentDesk from which specific instances can be created as needed.

An object-based language is class-based if the concept of class occurs as a
language feature and every object has a class.

Class-based languages include Clu, C++, Java, Scala, C#, Smalltalk, Ruby, and
Ada 95. Ada 83 and Modula are not class-based.

At their core, JavaScript and Lua are object-based but not class-based.

In statically typed, class-based languages such as Java, Scala, C++, and C#
classes are treated as types. Instances of the same class have the same (nominal)
type.
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However, some dynamically typed languages may have a more general concept
of type: If two objects have the same set of operations, then they have the same
type regardless of how the object was created. Languages such as Smalltalk and
Ruby have this characteristic—sometimes informally called duck typing. (If it
walks like a duck and quacks like a duck, then it is a duck.)

See Chapter 5 for more discussion of types.

3.3.3 Inheritance

A class C inherits from class P if C’s objects form a subset of P’s objects.

• Class C’s objects must support all of the class P’s operations (but perhaps
are carried out in a special way).

• Class C may support additional operations and an extended state (i.e.,
more information fields).

• Class C is called a subclass or a child or derived class.

• Class P is called a superclass or a parent or base class.

• Class P is sometimes called a generalization of class C; class C is a special-
ization of class P.

The importance of inheritance is that it encourages sharing and reuse of both
design information and program code. The shared state and operations can be
described and implemented in base classes and shared among the subclasses.

As an example, again consider the student desks in a simulation of a classroom.
The StudentDesk class might be derived (i.e., inherit) from a class Desk, which in
turn might be derived from a class Furniture. In diagrams, there is a convention
to draw arrows (e.g., ←−) from the subclass to the superclass.

Furniture ←− Desk ←− StudentDesk

The simulation might also include a ComputerDesk class that also derives from
Desk.

Furniture ←− Desk ←− ComputerDesk

We can also picture the above relationships among these classes with a class
diagram as shown in Figure 3.1.

In Java and Scala, we can express the above inheritance relationships using the
extends keyword as follows.

class Furniture // extends cosmic root class for references
{ ... } // (java.lang.Object, scala.AnyRef)

class Desk extends Furniture
{ ... }
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Figure 3.1: Classroom simulation inheritance hierarchy.
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class StudentDesk extends Desk
{ ... }

class ComputerDesk extends Desk
{ ... }

Both StudentDesk and ComputerDesk objects will need operations to simulate a
move of the entity in physical space. The move operation can thus be implemented
in the Desk class and shared by objects of both classes.

Invocation of operations to move either a StudentDesk or a ComputerDesk will
be bound to the general move in the Desk class.

The StudentDesk class might inherit from a Chair class as well as the Desk
class.

Furniture ←− Chair ←− StudentDesk

Some languages support multiple inheritance as shown in Figure 3.2 for
StudentDesk (e.g., C++, Eiffel, Python 3). Other languages only support a
single inheritance hierarchy.

Figure 3.2: Classroom simulation with multiple inheritance.

Because multiple inheritance is both difficult to use correctly and to implement in
a compiler, the designers of Java and Scala did not include multiple inheritance

68



of classes as features. Java has a single inheritance hierarchy with a top-level
class named Object from which all other classes derive (directly or indirectly).
Scala is similar, with the corresponding top-level class named AnyRef.

class StudentDesk extends Desk, Chair // NOT VALID in Java
{ ... }

To see some of the problems in implementing multiple inheritance, consider
the above example. Class StudentDesk inherits from class Furniture through
two different paths. Do the data fields of the class Furniture occur once or
twice? What happens if the intermediate classes Desk and Chair have conflicting
definitions for a data field or operation with the same name?

The difficulties with multiple inheritance are greatly decreased if we restrict our-
selves to inheritance of class interfaces (i.e., the signatures of a set of operations)
rather than a supporting the inheritance of the class implementations (i.e., the
instance data fields and operation implementations). Since interface inheritance
can be very useful in design and programming, the Java designers introduced a
separate mechanism for that type of inheritance.

The Java interface construct can be used to define an interface for classes
separately from the classes themselves. A Java interface may inherit from (i.e.,
extend) zero or more other interface definitions.

interface Location3D
{ ... }

interface HumanHolder
{ ... }

interface Seat extends Location3D, HumanHolder
{ ... }

A Java class may inherit from (i.e., implement) zero or more interfaces as well
as inherit from (i.e., extend) exactly one other class.

interface BookHolder
{ ... }

interface BookBasket extends Location3D, BookHolder
{ ... }

class StudentDesk extends Desk implements Seat, BookBasket
{ ... }

Figure 3.3 shows this interface-based inheritance hierarchy for the classroom
simulation example. The dashed lines represent the implements relationship.

This definition requires the StudentDesk class to provide actual implementations
for all the operations from the Location3D, HumanHolder, BookHolder, Seat,
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Figure 3.3: Classroom simulation with interfaces.

and BookBasket interfaces. The Location3D operations will, of course, need
to be implemented in such a way that they make sense as part of both the
HumanHolder and BookHolder abstractions.

The Scala trait provides a more powerful, and more complex, mechanism
than Java’s original interface. In addition to signatures, a trait can define
method implementations and data fields. These traits can be added to a class
in a controlled, linearized manner to avoid the semantic and implementation
problems associated with multiple inheritance of classes. This is called mixin
inheritance.

Java 8+ generalizes interfaces to allow default implementations of methods.

Most statically typed languages treat subclasses as subtypes. That is, if C is a
subclass of P, then the objects of type C are also of type P. We can substitute a
C object for a P object in all cases.

However, the inheritance mechanism in languages in most class-based languages
(e.g., Java) does not automatically preserve substitutability. For example, a
subclass can change an operation in the subclass to do something totally different
from the corresponding operation in the parent class.

3.3.4 Subtype polymorphism

The concept of polymorphism (literally “many forms”) means the ability to hide
different implementations behind a common interface. Polymorphism appears in
several forms in programming languages. We will discuss these more later.

Subtype polymorphism (sometimes called polymorphism by inheritance, inclusion
polymorphism, or subtyping) means the association of an operation invocation
(i.e., procedure or function call) with the appropriate operation implementation
in an inheritance (subtype) hierarchy.
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This form of polymorphism is usually carried out at run time. That implementa-
tion is called dynamic binding. Given an object (i.e., class instance) to which an
operation is applied, the system will first search for an implementation of the
operation associated with the object’s class. If no implementation is found in
that class, the system will check the superclass, and so forth up the hierarchy
until an appropriate implementation is found. Implementations of the operation
may appear at several levels of the hierarchy.

The combination of dynamic binding with a well-chosen inheritance hierarchy
allows the possibility of an instance of one subclass being substituted for an
instance of a different subclass during execution. Of course, this can only be
done when none of the extended operations of the subclass are being used.

As an example, again consider the simulation of a classroom. As in our discussion
of inheritance, suppose that the StudentDesk and ComputerDesk classes are
derived from the Desk class and that a general move operation is implemented
as a part of the Desk class. This could be expressed in Java as follows:

class Desk extends Furniture
{ ...

public void move(...)
...

}

class StudentDesk extends Desk
{ ...

// no move(...) operation here
...

}

class ComputerDesk extends Desk
{ ...

// no move(...) operation here
...

}

As we noted before, invocation of operations to move either a StudentDesk or a
ComputerDesk instance will be bound to the general move in the Desk class.

Extending the example, suppose that we need a special version of the move
operation for ComputerDesk objects. For instance, we need to make sure that
the computer is shut down and the power is disconnected before the entity is
moved.

To do this, we can define this special version of the move operation and associate
it with the ComputerDesk class. Now a call to move{java} a ComputerDesk
a object will be bound to the special move operation, but a call to move a
StudentDesk object will still be bound to the general move operation in the
Desk class.

71



The definition of move in the ComputerDesk class is said to override the definition
in the Desk class.

In Java, this can be expressed as follows:

class Desk extends Furniture
{ ...

public void move(...)
...

}

class StudentDesk extends Desk
{ ...

// no move(...) operation here
...

}

class ComputerDesk extends Desk
{ ...

public void move(...)
...

}

A class-based language is object-oriented if class hierarchies can be incrementally
defined by an inheritance mechanism and the language supports polymorphism
by inheritance along these class hierarchies.

Object-oriented languages include C++, Java, Scala, C#, Smalltalk, and Ada 95.
The language Clu is class-based, but it does not include an inheritance facility.

Other object-oriented languages include Objective C, Object Pascal, Eiffel, and
Oberon 2.

3.4 Object-Oriented Paradigm
Now let’s consider the object-oriented paradigm more concretely. First, let’s
review what we mean by an object-oriented language. A language is:

• object-based if it supports objects that satisfy the three essential character-
istics (state, operations, and identity) as a language feature

• class-based if it is object-based, has the concept of class as a language
feature, and assigns every object to a class

• object-oriented if it is class-based, can define class hierarchies incrementally
using an inheritance mechanism, and supports polymorphism by inheritance
along these class hierarchies

A class-based language is object-oriented if class hierarchies can be incrementally
defined by an inheritance mechanism and the language supports polymorphism

72



by inheritance along these class hierarchies.

3.4.1 Object-oriented Python example

TODO: This example mostly illustates class-based Python. It needs to be
extended to show effective use of inheritance and subtyping. Possibly create
two differnet subclasses to override the hook methods or leave them abstract
and make concrete in subclass–as in Arith and Geom modules for the modular
examples.

Python 3 is a dynamically typed language with support for imperative, procedural,
modular, object-oriented, and (to a limited extent) functional programming styles
[144]. It’s object model supports state, operations, identity, and an independent
lifecycle. It provides some support for encapsulation. It has classes, single and
multiple inheritance, and subtype polymorphism.

Let’s again examine the counting problem from Chapter 2 from the standpoint
of object-oriented programming in Python 3. The following code defines a class
named CountingOO. It defines four instance methods and two instance variables.

Note: By instance variable and instance method we mean variables and instances
associated with an object, an instance of a class.

class CountingOO: # (1)

def __init__(self,c,m): # (2,3)
self.count = c # (4)
self.maxc = m

def has_more(self,c,m): # (5)
return c <= m

def adv(self): # (6)
self.count = self.count + 1

def counter(self): # (7)
while self.has_more(self.count,self.maxc):

print(f'{self.count}') # (8)
self.adv()

The following notes explain the numbered items in the above code.

1. By default, a Python 3 class inherits from the cosmic root class object.
If a class inherits from some other class, then we place the parent class’s
name in parenthesis after the class name, as with class Times2 below.
(Python 3 supports multiple inheritance, so there can be multiple class
names separated by commas.)

2. Python 3 classes do not normally have explicit constructors, but we often
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define an initialization method which has the special name __init__.

3. Unlike object-oriented languages such as Java, Python 3 requires that
the receiver object be passed explicitly as the first parameter of instance
methods. By convention, this is a parameter named self.

4. An instance of the class CountingOO has two instance variables, count and
maxc. Typically, we create these dynamically by explicitly assigning a value
to the name. We can access these values in expressions (e.g., self.count).

5. Method has_more() is a function that takes the receiver object and values
for the current count and maximum values and returns True if and only
there are additional values to generate. (Although an instance method, it
does not access the instance’s state.)

6. Method adv() is a procedure that accesses and modifies the state (i.e.,
the instance variables), setting self.count to a new value closer to the
maximum value self.maxc.

7. Method counter() is a procedure intended as the primary public interface
to an instance of the class. It uses function method has_more() to deter-
mine when to stop the iteration, procedure method adv() to advance the
variable count from one value to the next value, and the print function
to display the value on the standard output device.

8. Expression f'{self.count}' is a Python 3.7 interpolated string.

In terms of the Template Method design pattern [83], counter is intended as a
template method that encodes the primary algorithm and is not intended to be
overridden. Methods has_more() and adv() are intended as hook methods that
are often overriden to give different behaviors to the class.

Consider the following fragment of code.

ctr = CountingOO(0,10)
ctr.counter()

The first line above creates an instance of the CountingOO class, initializes its
instance variables count and maxc to 0 and 10, and stores the referene in variable
ctr. The call ctr.counter() thus prints the values 0 to 10, one per line, as do
the programs from Chapter 2.

However, we can create a subclass that overrides the definitions of the hook meth-
ods has_more() and adv() to give quite different behavior without modifying
class CountingOO.

class Times2(CountingOO): # inherits from CountingOO

def has_more(self,c,m): # overrides
return c != 0 and abs(c) <= abs(m)
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def adv(self): # overrides
self.count = self.count * 2

Now consider the following code fragment.

ctr2 = Times2(-1,10)
ctr2.counter()

This generates the sequence of values -1, -2, -4, and -8, printed one per line.

The call to any method on an instance of class Times2 is polymorphic. The
system dynamically searches up the class hierarchy from Times2 to find the
appropriate function. It finds has_more() and adv() in Times2 and counter()
in parent class CountingOO.

The code for this section is in source file CountingOO.py.

3.4.2 Object-oriented Scala example

The program CountingOO.scala is an object-oriented Scala [131,151] program
similar to the Python version given above.

3.5 Prototype-based Paradigm
Classes and inheritance are not the only way to support relationships among
objects in object-based languages. Another approach of growing importance is
the use of prototypes.

3.5.1 Prototype concepts

A prototype-based language does not have the concept of class as defined above.
It just has objects. Instead of using a class to instantiate a new object, a program
copies (or clones) an existing object—the prototype—and modifies the copy to
have the needed attributes and operations.

Each prototype consists of a collection of slots. Each slot is filled with either a
data attribute or an operation.

This cloning approach is more flexible than the class-based approach.

In a class-based language, we need to define a new class or subclass to create a
variation of an existing type. For example, we may have a Student class. If we
want to have students who play chess, then we would need to create a new class,
say ChessPlayingStudent, to add the needed data attributes and operations.

Aside: Should Student be the parent ChessPlayingStudent? or should
ChessPlayer be the parent? Or should we have fields of ChessPlayingStudent
that hold Student and ChessPlayer objects?

In a class-based language, the boundaries among categories of objects specified
by classes should be crisply defined. That is, an object is in a particular class or
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it is not. Sometimes this crispness may be unnatural.

In a prototype-based language, we simply clone a student object and add new
slots for the added data and operations. This new object can be a prototype for
further objects.

In a prototype-based language, the boundaries between categories of objects
created by cloning may be fuzzy. One category of objects may tend to blend
into others. Sometimes this fuzziness may be more natural.

Consider categories of people associated with a university. These categories
may include Faculty, Staff, Student, and Alumnus. Consider a student who
gets a BSCS degree, then accepts a staff position as a programmer and stays a
student by starting an MS program part-time, and then later teaches a course
as a graduate student. The same person who started as a student thus evolves
into someone who is in several categories later. And he or she may also be a
chess player.

Instead of static, class-based inheritance and polymorphism, some languages
exhibit prototype-based delegation. If the appropriate operation cannot be found
on the current object, the operation can be delegated to its prototype, or perhaps
to some other related, object. This allows dynamic relationships along several
dimensions. It also means that the “copying” or “cloning” may be partly logical
rather than physical.

Prototypes and delegation are more basic mechanisms than inheritance and
polymorphism. The latter can often be implemented (or perhaps “simulated”)
using the former.

Self [158,175], NewtonScript [123,130], JavaScript [4,231], Lua [105,116,165], and
Io [36,62,164] are prototype-based languages. (Package prototype.py can also
make Python behave in a prototype-based manner.)

Let’s look at Lua as a prototype-based language.

Note: The two most widely used prototype languages are JavaScript and Lua. I
choose Lua here because it is simpler and can also execute conveniently from
the command line. I have also used Lua extensively in the past and have not yet
used JavaScript extensively.

3.5.2 Lua as an object-based language

Lua is a dynamically typed, multiparadigm language [105,116]. The language
designers stress the following design principles [117]:

• portability
• embeddability
• efficiency
• simplicity

To realize these principles, the core language implementation:
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• can only use standard C and the standard C library

• must be efficient in use of memory and processor time (i.e., keep the
interpreter small and fast)

• must support interoperability with C programs in both directions (i.e., can
call or be called by C programs)

C is ubiquitous, likely being the first higher-level language implemented for any
new machine, whether a small microcontroller or a large multiprocessor. So this
implementation approach supports the portability, embeddability, and efficiency
design goals.

Because of Lua’s strict adherence to the above design principles, it has become
a popular language for extending other applications with user-written scripts or
templates. For example, it is used for this purpose in some computer games and
by Wikipedia. Also, Pandoc, the document conversion tool used in production
of this textbook, enables scripts to be written in Lua. (The Pandoc program
itself is written in Haskell.)

The desire for a simple but powerful language led the designers to adopt an
approach that separates mechanisms from policy. As noted on the Lua website
[117]:

A fundamental concept in the design of Lua is to provide meta-
mechanisms for implementing features, instead of providing a host of
features directly in the language. For example, although Lua is not a
pure object-oriented language, it does provide meta-mechanisms for
implementing classes and inheritance. Lua’s meta-mechanisms bring
an economy of concepts and keep the language small, while allowing
the semantics to be extended in unconventional ways.

Lua provides a small set of quite powerful primitives. For example, it includes only
one data structure—the table (dictionary, map, or object in other languages)—but
ensures that it is efficient and flexible for a wide range of uses.

Lua’s tables are objects as described in Section 3.3. Each object has its own:

• state (i.e., values associated with keys)
• identity independent of state
• lifecycle independent of the code that created it

In addition, a table can have its own operations by associating function closures
with keys.

Note: By function closure, we mean the function’s definition plus aspects of its
environment necessary (e.g., variables variables outside the function) necessary
for the function to be executed.

So a key in the table represents a slot in the object. The slot can be occupied
by either a data attribute’s value or the function closure associated with an
operation.
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Lua tables do not directly support encapsulation, but there are ways to build
structures that encapsulate key data or operations.

Lua’s metatable mechanism, particularly the __index metamethod, enables an
access to an undefined key to be delegated to another table (or to result in a
call of a specified function).

Thus tables and metatables enable the prototype-based paradigm as illustrated
in the next section.

As in Python 3, Lua requires that the receiver object be passed as an argument
to object-based function and procedure calls. By convention, it is passed as the
first argument, as shown below.

obj.method(obj, other_arguments)

Lua has a bit of syntactic sugar—the : operator—to make this more convenient.
The following Lua expression is equivalent to the above.

obj:method(other_arguments)

The Lua interpreter evaluates the expression obj to get the receiver object (i.e.,
table), then retrieves the function closure associated with the key named method
from the receiver object, then calls the function, passing the receiver object as
its first parameter. In the body of the function definition, the receiver object
can be referenced by parameter name self.

We can use a similar notation to define functions to be methods associated with
objects (tables).

3.5.3 Prototype-based Lua example

The Lua code below, from file CountingPB.lua, implements a Lua module
similar to the Python 3 CountingOO class given in Section 3.4.1. It illustrates
how to define Lua modules as well as prototypes.

-- File CountingPB.lua
local CountingPB = {count = 1, maxc = 0} -- (1)

function CountingPB:new(mixin) -- (2)
mixin = mixin or {} -- (5)
local obj = { __index = self } -- (4)
for k, v in pairs(mixin) do -- (5)

if k ~= "__index" then
obj[k] = v

end
end
return setmetatable(obj,obj) -- (6,7)

end
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function CountingPB:has_more(c,m) -- (2)
return c <= m

end

function CountingPB:adv() -- (2)
self.count = self.count + 1

end

function CountingPB:counter() -- (2)
while self:has_more(self.count,self.maxc) do

print(self.count)
self:adv()

end
end

return CountingPB -- (3)

The following notes explain the numbered steps in the above code.

1. Create module object CountingPB as a Lua table with default values for
data attributes count and maxc. This object is also the top-level prototype
object.

2. Define methods (i.e., functions) new(), has_more(), adv(), and
counter() and add them to the CountingPB table. The key is the
function’s name and the value is the function’s closure.

Method new() is the constructor for clones.

3. Return CountingPB when the module file CountingPB.lua is imported
with a require call in another Lua module or script file.

Method new is what constructs the clones. This method:

4. Creates the clone initially as a table with only the __index set to the
object that called new (i.e., the receiver object self).

5. Copies the method new’s parameter mixin’s table entries into the clone.
This enables existing data and method attributes of the receiver object
self to be redefined and new data and method attributes to be added to
the clone.

If parameter mixin is undefined or an empty table, then no changes are
made to the clone.

6. Sets the clone’s metatable to be the clone’s table itself. In step 4, we had
set its metamethod __index to be the receiver object self.

7. Returns the clone object (a table) as is the convention for Lua modules.

If a Lua program accesses an undefined key of a table (or object), then the
interpreter checks to see whether the table has a metatable defined.
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• If no metatable is set, then the result of the access is a nil (meaning
undefined).

• If a metatable is set, then the interpreter uses the __index metamethod to
determine what to do. If __index is a table, then the access is delegated
to that table. If __index is set a function closure, then the interpreter
calls that function. If there is no __index, then it returns a nil.

We can load the CountingPB.lua module as follows:

local CountingPB = require "CountingPB"

Now consider the Lua assignment below:

x = CountingPB:new({count = 0, maxc = 10})

This creates a clone of object CountingPB and stores it in variable x. This clone
has its own data attributes count and maxc, but it delegates method calls back
to object CountingPB.

If we execute the call x:counter(), we get the following output:

0
1
2
3
4
5
6
7
8
9
10

Now consider the Lua assignment:

y = x:new({count = 10, maxc = 15})

This creates a clone of object in x and stores the clone in variable y. The y
object has different values for count and maxc, but it delegates the method calls
to x, which, in turn, delegates them on to CountingPB.

If we execute the call y:counter(), we get the following output:

10
11
12
13
14
15

Now, consider the following Lua assignment:
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z = y:new( { maxc = 400,
has_more = function (self,c,m)

return c ~= 0 and math.abs(c) <= math.abs(m)
end,
adv = function(self)

self.count = self.count * 2
end,
bye = function(self) print(self.msg) end
msg = "Good-Bye!" } )

This creates a clone of object y that keeps x’s current value of count (which is 16
after executing y:counter()), sets a new value of maxc, overrides the definitions
of methods has_more() and adv(), and defines new method bye() and new
data attribute msg.

If we execute the call z:counter() followed by z:bye(), we get the following
output:

16
32
64
128
256
Good-Bye!

The Lua source code for this example is in file CountingPB.lua. The example
calls are in file CountingPB_Test.lua.

3.5.4 Observations

How does the prototype-based (PB) paradigm compare with the object-oriented
(OO) paradigm?

• The OO paradigm as implemented in a language usually enforces a partic-
ular discipline or policy and provides syntactic and semantic support for
that policy. However, it makes programming outside the policy difficult.

• The PB paradigm is more flexible. It provides lower-level mechanisms
and little or no direct support for a particular discipline or policy. It
allows programmers to define their own policies, simple or complex policies
depending on the needs. These policies can be implemented in libraries
and reused. However, PB can result in different programmers or different
software development shops using incompatible approaches.

Whatever paradigm we use (OO, PB, procedural, functional, etc.), we should be
careful and be consistent in how we design and implement programs.

3.6 What Next?
In Chapters 2 and 3 (this chapter), we explored various programming paradigms.
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In Chapter 4, we begin examining Haskell, looking at our first simple programs
and how to execute those programs with the interactive interpreter.

In subsequent chapters, we look more closely at the concepts of type introduced
in this chapter and abstraction introduced in the previous chapter.

3.7 Exercises
1. This chapter used Python 3 to illustrate the object-oriented paradigm.

Choose a language such as Java, C++, or C#. Describe how it can be used
to write programs in the object-oriented paradigm. Show the CountingOO
example in the chosen language.

2. C is a primarily procedural language. Describe how C can be used to
implement object-based programs. Show the CountingOO example in the
chosen language.
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4 First Haskell Programs
4.1 Chapter Introduction
The goals of this chapter are to

• introduce the definition of Haskell functions using examples

• illustrate the use of the ghci interactive REPL (Read-Evaluate-Print Loop)
interpreter

4.2 Defining Our First Haskell Functions
Let’s look at our first function definition in the Haskell language, a program to
implement the factorial function for natural numbers.

The Haskell source file Factorial.hs holds the Haskell function definitions for
this chapter. The test script is in source file TestFactorial.hs; it is discussed
further in Chapter 12 on testing of Haskell programs.

4.2.1 Factorial function specification

We can give two mathematical definitions of factorial, fact and fact’, that are
equivalent for all natural number arguments. We can define fact using the
product operator as follows:

fact(n) =
∏i=n

i=1 i

For example,

fact(4) = 1× 2× 3× 4.

By definition

fact(0) = 1

which is the identity element of the multiplication operation.

We can also define the factorial function fact’ with a recursive definition (or
recurrence relation) as follows:

fact’(n) = 1, if n = 0
fact’(n) = n× fact’(n− 1), if n ≥ 1

Since the domain of fact’ is the set of natural numbers, a set over which induction
is defined, we can easily see that this recursive definition is well defined.

• For n = 0, the base case, the value is simply 1.

• For n ≥ 1, the value of fact’(n) is recursively defined in terms of fact’(n−1).
The argument of the recursive application decreases toward the base case.

In the Review of Relevant Mathematics appendix, we prove that fact(n) =
fact’(n) by mathematical induction.
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The Haskell functions defined in the following subsections must compute fact(n)
when applied to argument value n ≥ 0.

4.2.2 Factorial function using if-then-else: fact1

One way to translate the recursive definition fact’ into Haskell is the following:

fact1 :: Int -> Int
fact1 n = if n == 0 then

1
else

n * fact1 (n-1)

• The first line above is the type signature for function fact1. In general,
type signatures have the syntax object :: type.

Haskell type names begin with an uppercase letter.

The above defines object fact1 as a function (denoted by the -> symbol)
that takes one argument of type integer (denoted by the first Int) and
returns a value of type integer (denoted by the last Int).

Haskell does not have a built-in natural number type. Thus we choose
type Int for the argument and result of fact1.

The Int data type is a bounded integer type, usually the integer data
type supported directly by the host processor (e.g., 32- or 64-bits on most
current processors), but it is guaranteed to have the range of at least a
30-bit, two’s complement integer (−229 to 229).

• The declaration for the function fact1 begins on the second line. Note
that it is an equation of the form

fname parms = body

where fname is the function’s name, parms are the function’s parameters,
and body is an expression defining the function’s result.

Function and variable names begin with lowercase letters optionally followed
by a sequence of characters each of which is a letter, a digit, an apostrophe
(') (sometimes pronounced “prime”), or an underscore (_).

A function may have zero or more parameters. The parameters are listed
after the function name without being enclosed in parentheses and without
commas separating them.

The parameter names may appear in the body of the function. In the eval-
uation of a function application the actual argument values are substituted
for parameters in the body.

• Above we define the body function fact1 to be an if-then-else expression.
This kind of expression has the form
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if condition then expression1 else expression2

where

condition is a Boolean expression, that is, an expression of Haskell
type Bool, which has either True or False as its value

expression1 is the expression that is returned when the condition
is True

expression2 is the expression (with the same type as expression1 )
that is returned when the condition is False

Evaluation of the if-then-else expression in fact1 yields the value
1 if argument n has the value 0 (i.e., n == 0) and yields the value
n * fact1 (n-1) otherwise.

• The else clause includes a recursive application of fact1. The whole
expression (n-1) is the argument for the recursive application, so we
enclose it in parenthesis.

The value of the argument for the recursive application is less than the
value of the original argument. For each recursive application of fact to a
natural number, the argument’s value thus moves closer to the termination
value 0.

• Unlike most conventional languages, the indentation is significant in Haskell.
The indentation indicates the nesting of expressions.

For example, in fact1 the n * fact1 (n-1) expression is nested inside
the else clause of the if-then-else expression.

• This Haskell function does not match the mathematical definition given
above. What is the difference?

Notice the domains of the functions. The evaluation of fact1 will go into
an “infinite loop” and eventually abort when it is applied to a negative
value.

In Haskell there is only one way to form more complex expressions from simpler
ones: apply a function.

Neither parentheses nor special operator symbols are used to denote function
application; it is denoted by simply listing the argument expressions following
the function name. For example, a function f applied to argument expressions x
and y is written in the following prefix form:

f x y

However, the usual prefix form for a function application is not a convenient
or natural way to write many common expressions. Haskell provides a helpful
bit of syntactic sugar, the infix expression. Thus instead of having to write the
addition of x and y as
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add x y

we can write it as

x + y

as we have since elementary school. Here the symbol + represents the addition
function.

Function application (i.e., juxtaposition of function names and argument expres-
sions) has higher precedence than other operators. Thus the expression f x + y
is the same as (f x) + y.

4.2.3 Factorial function using guards: fact2

An alternative way to differentiate the two cases in the recursive definition is to
use a different equation for each case. If the Boolean guard (e.g., n == 0) for an
equation evaluates to true, then that equation is used in the evaluation of the
function. A guard is written following the | symbol as follows:

fact2 :: Int -> Int
fact2 n

| n == 0 = 1
| otherwise = n * fact2 (n-1)

Function fact2 is equivalent to the fact1. Haskell evaluates the guards in a
top-to-bottom order. The otherwise guard always succeeds; thus it’s use above
is similar to the trailing else clause on the if-then-else expression used in
fact1.

4.2.4 Factorial function using pattern matching: fact3 and fact4

Another equivalent way to differentiate the two cases in the recursive definition
is to use pattern matching as follows:

fact3 :: Int -> Int
fact3 0 = 1
fact3 n = n * fact3 (n-1)

The parameter pattern 0 in the first leg of the definition only matches arguments
with value 0. Since Haskell checks patterns and guards in a top-to-bottom order,
the n pattern matches all nonzero values. Thus fact1, fact2, and fact3 are
equivalent.

To stop evaluation from going into an “infinite loop” for negative arguments, we
can remove the negative integers from the function’s domain. One way to do
this is by using guards to narrow the domain to the natural numbers as in the
definition of fact4 below:

fact4 :: Int -> Int
fact4 n
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| n == 0 = 1
| n >= 1 = n * fact4 (n-1)

Function fact4 is undefined for negative arguments. If fact4 is applied to a
negative argument, the evaluation of the program encounters an error quickly
and returns without going into an infinite loop. It prints an error and halts
further evaluation.

We can define our own error message for the negative case using an error call
as in fact4' below.

fact4' :: Int -> Int
fact4' n

| n == 0 = 1
| n >= 1 = n * fact4' (n-1)
| otherwise = error "fact4' called with negative argument"

In addition to displaying the custom error message, this also displays a stack
trace of the active function calls.

4.2.5 Factorial function using built-in library function: fact5

The four definitions we have looked at so far use recursive patterns similar to
the recurrence relation fact’. Another alternative is to use the library function
product and the list-generating expression [1..n] to define a solution that is
like the function fact:

fact5 :: Int -> Int
fact5 n = product [1..n]

The list expression [1..n] generates a list of consecutive integers beginning
with 1 and ending with n. We study lists beginning with Chapter 13.

The library function product computes the product of the elements of a finite
list.

If we apply fact5 to a negative argument, the expression [1..n] generates an
empty list. Applying product to this empty list yields 1, which is the identity
element for multiplication. Defining fact5 to return 1 is consistent with the
function fact upon which it is based.

Which of the above definitions for the factorial function is better?

Most people in the functional programming community would consider fact4 (or
fact4') and fact5 as being better than the others. The choice between them
depends upon whether we want to trap the application to negative numbers as
an error or to return the value 1.
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4.2.6 Testing

Chapter 12 discusses testing of the Factorial module designed in this chapter.
The test script is TestFactorial.hs.

4.3 Using the Glasgow Haskell Compiler (GHC)
See the Glasgow Haskell Compiler Users Guide [92] for information on the
Glasgow Haskell Compiler (GHC) and its use.

GHCi is an environment for using GHC interactively. That is, it is a REPL
(Read-Evaluate-Print-Loop) command line interface using Haskell. The “Using
GHCi” chapter [93] of the GHC User Guide [92] describes its usage.

Below, we show a GHCi session where we load source code file (module)
Factorial.hs and apply the factorial functions to various inputs. The in-
structor ran this in a Terminal session on an iMac running macOS 10.13.4 (High
Sierra) with ghc 8.4.3 installed.

1. Start the REPL.

bash-3.2$ ghci
GHCi, version 8.4.3: http://www.haskell.org/ghc/ :? for help

2. Load module Fact that holds the factorial function definitions. This
assumes the Factorial.hs file is in the current directory. The load
command can be abbreviated as just :l.

Prelude> :load Factorial
[1 of 1] Compiling Factorial ( Factorial.hs, interpreted )
Ok, one module loaded.

3. Inquire about the type of fact1.

*Factorial> :type fact1
fact1 :: Int -> Int

4. Apply function fact1 to 7, 0, 20, and 21. Note that the factorial of 21
exceeds the Int range.

*Factorial> fact1 7
5040
*Factorial> fact1 0
1
*Factorial> fact1 20
2432902008176640000
*Factorial> fact1 21
-4249290049419214848

5. Apply functions fact2, fact3, fact4, and fact5 to 7.

90

Ch04/TestFactorial.hs
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html
Ch04/Factorial.hs


*Factorial> fact2 7
5040
*Factorial> fact3 7
5040
*Factorial> fact4 7
5040
*Factorial> fact5 7
5040

6. Apply functions fact1, fact2, and fact3 to -1. All go into an infinite
recursion, eventually terminating with an error when the runtime stack
overflows its allocated space.

*Factorial> fact1 (-1)
*** Exception: stack overflow
*Factorial> fact2 (-1)
*Factorial> fact3 (-1)
*** Exception: stack overflow

7. Apply functions fact4 and fact4' to -1. They quickly return with an
error.

*Factorial> fact4 (-1)
*** Exception: Factorial.hs:(54,1)-(56,29):

Non-exhaustive patterns in function fact4
*Factorial> fact4' (-1)
*** Exception: fact4' called with negative argument
CallStack (from HasCallStack):

error, called at Factorial.hs:64:17 in main:Factorial

8. Apply function fact5 to -1. It returns a 1 because it is defined for negative
integers.

*Factorial> fact5 (-1)
1

9. Set the +s option to get information about the time and space required
and the +t option to get the type of the returned value.

*Factorial> :set +s
*Factorial> fact1 20
2432902008176640000
(0.00 secs, 80,712 bytes)
*Factorial> :set +t
*Factorial> fact1 20
2432902008176640000
it :: Int
(0.05 secs, 80,792 bytes)
*Factorial> :unset +s +t
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*Factorial> fact1 20
2432902008176640000

10. Exit GHCi.

:quit
Leaving GHCi.

Suppose we had set the environment variable EDITOR to our favorite text editor
in the Terminal window. For example, on a MacOS system, your instructor
might give the following command in shell (or in a startup script such as
.bash_profile):

export EDITOR=Aquamacs

Then the :edit command within GHCi allows us to edit the source code. We
can give a filename or default to the last file loaded.

:edit

Or we could also use a :set command to set the editor within GHCi.

:set editor Aquamacs
...
:edit

See the Glasgow Haskell Compiler (GHC) User’s Guide [92] for more information
about use of GHC and GHCi.

4.4 What Next?
In this chapter (4), we looked at our first Haskell functions and how to execute
them using the Haskell interpreter.

In Chapter 5, we continue our exploration of Haskell by examining its built-in
types.

4.5 Chapter Source Code
The Haskell source module Factorial.hs gives the factorial functions used in
this chapter. The test script in source file TestFactorial.hs is discussed further
in Chapter 12 on testing of Haskell programs.

4.6 Exercises
1. Reimplement functions fact4 and fact5 with type Integer instead of

Int. Integer is an unbounded precision integer type (discussed in the
next chapter). Using ghci, execute these functions for values -1, 7, 20, 21,
and 50 using ghci.

2. Develop both recursive and iterative (looping) versions of a factorial fu-
unction in an imperative language (e.g., Java, C++, Python 3, etc.)
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5 Types
5.1 Chapter Introduction
The goals of this chapter are to:

• examine the general concepts of type systems

• explore Haskell’s builtin types

5.2 Type System Concepts
The term type tends to be used in many different ways in programming languages.
What is a type?

The chapter on object-based paradigms discusses the concept of type in the
context of object-oriented languages. This chapter first examines the concept
more generally and then examines Haskell’s builtin types.

5.2.1 Types and subtypes

Conceptually, a type is a set of values (i.e., possible states or objects) and a set
of operations defined on the values in that set.

Similarly, a type S is (a behavioral) subtype of type T if the set of values of
type S is a “subset” of the values in set T an set of operations of type S is a
“superset” of the operations of type T. That is, we can safely substitute elements
of subtype S for elements of type T because S’s operations behave the “same” as
T’s operations.

This is known as the Liskov Substitution Principle [119,205].

Consider a type representing all furniture and a type representing all chairs. In
general, we consider the set of chairs to be a subset of the set of furniture. A
chair should have all the general characteristics of furniture, but it may have
additional characteristics specific to chairs.

If we can perform an operation on furniture in general, we should be able to
perform the same operation on a chair under the same circumstances and get
the same result. Of course, there may be additional operations we can perform
on chairs that are not applicable to furniture in general.

Thus the type of all chairs is a subtype of the type of all furniture according to
the Liskov Substitution Principle.

5.2.2 Constants, variables, and expressions

Now consider the types of the basic program elements.

A constant has whatever types it is defined to have in the context in which it
is used. For example, the constant symbol 1 might represent an integer, a real
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number, a complex number, a single bit, etc., depending upon the context.

A variable has whatever types its value has in a particular context and at a
particular time during execution. The type may be constrained by a declaration
of the variable.

An expression has whatever types its evaluation yields based on the types of the
variables, constants, and operations from which it is constructed.

5.2.3 Static and dynamic

In a statically typed language, the types of a variable or expression can be
determined from the program source code and checked at “compile time” (i.e.,
during the syntactic and semantic processing in the front-end of a language
processor). Such languages may require at least some of the types of variables
or expressions to be declared explicitly, while others may be inferred implicitly
from the context.

Java, Scala, and Haskell are examples of statically typed languages.

In a dynamically typed language, the specific types of a variable or expression
cannot be determined at “compile time” but can be checked at runtime.

Lisp, Python, JavaScript, and Lua are examples of dynamically typed languages.

Of course, most languages use a mixture of static and dynamic typing. For
example, Java objects defined within an inheritance hierarchy must be bound
dynamically to the appropriate operations at runtime. Also Java objects declared
of type Object (the root class of all user-defined classes) often require explicit
runtime checks or coercions.

5.2.4 Nominal and structural

In a language with nominal typing, the type of value is based on the type name
assigned when the value is created. Two values have the same type if they have
the same type name. A type S is a subtype of type T only if S is explicitly
declared to be a subtype of T.

For example, Java is primarily a nominally typed language. It assigns types to
an object based on the name of the class from which the object is instantiated
and the superclasses extended and interfaces implemented by that class.

However, Java does not guarantee that subtypes satisfy the Liskov Substitution
Principle. For example, a subclass might not implement an operation in a
manner that is compatible with the superclass. (The behavior of subclass objects
are this different from the behavior of superclass objects.) Ensuring that Java
subclasses preserve the Substitution Principle is considered good programming
practice in most circumstances.

In a language with structural typing, the type of a value is based on the structure
of the value. Two values have the same type if they have the “same” structure;
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that is, they have the same public data attributes and operations and these are
themselves of compatible types.

In structurally typed languages, a type S is a subtype of type T only if S has
all the public data values and operations of type T and the data values and
operations are themselves of compatible types. Subtype S may have additional
data values and operations not in T.

Haskell is primarily a structurally typed language.

5.2.5 Polymorphic operations

Polymorphism refers to the property of having “many shapes”. In programming
languages, we are primarily interested in how polymorphic function names (or
operator symbols) are associated with implementations of the functions (or
operations).

In general, two primary kinds of polymorphism exist in programming languages:

1. Ad hoc polymorphism, in which the same function name (or operator
symbol) can denote different implementations depending upon how it is
used in an expression. That is, the implementation invoked depends upon
the types of function’s arguments and return value.

There are two subkinds of ad hoc polymorphism.

a. Overloading refers to ad hoc polymorphism in which the language’s
compiler or interpreter determines the appropriate implementation
to invoke using information from the context. In statically typed
languages, overloaded names and symbols can usually be bound to
the intended implementation at compile time based on the declared
types of the entities. They exhibit early binding.

Consider the language Java. It overloads a few operator symbols, such
as using the + symbol for both addition of numbers and concatenation
of strings. Java also overloads calls of functions defined with the same
name but different signatures (patterns of parameter types and return
value). Java does not support user-defined operator overloading; C++
does.

Haskell’s type class mechanism, which we examine in a later chapter,
implements overloading polymorphism in Haskell. There are similar
mechanisms in other languages such as Scala and Rust.

b. Subtyping (also known as subtype polymorphism or inclusion poly-
morphism) refers to ad hoc polymorphism in which the appropriate
implementation is determined by searching a hierarchy of types. The
function may be defined in a supertype and redefined (overridden)
in subtypes. Beginning with the actual types of the data involved,
the program searches up the type hierarchy to find the appropriate
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implementation to invoke. This usually occurs at runtime, so this
exhibits late binding.

The object-oriented programming community often refers to
inheritance-based subtype polymorphism as simply polymorphism.
This the polymorphism associated with the class structure in Java.

Haskell does not support subtyping. Its type classes do support class
extension, which enables one class to inherit the properties of another.
However, Haskell’s classes are not types.

2. Parametric polymorphism, in which the same implementation can be
used for many different types. In most cases, the function (or class)
implementation is stated in terms of one or more type parameters. In
statically typed languages, this binding can usually be done at compile
time (i.e., exhibiting early binding).

The object-oriented programming (e.g., Java) community often calls this
type of polymorphism generics or generic programming.

The functional programming (e.g., Haskell) community often calls this
simply polymorphism.

5.2.6 Polymorphic variables

A polymorphic variable is a variable that can “hold” values of different types
during program execution.

For example, a variable in a dynamically typed language (e.g., Python) is
polymorphic. It can potentially “hold” any value. The variable takes on the
type of whatever value it “holds” at a particular point during execution.

Also, a variable in a nominally and statically typed, object-oriented language
(e.g., Java) is polymorphic. It can “hold” a value its declared type or of any of
the subtypes of that type. The variable is declared with a static type; its value
has a dynamic type.

A variable that is a parameter of a (parametrically) polymorphic function is
polymorphic. It may be bound to different types on different calls of the function.

5.3 Basic Haskell Types
The type system is an important part of Haskell; the compiler or interpreter uses
the type information to detect errors in expressions and function definitions. To
each expression Haskell assigns a type that describes the kind of value represented
by the expression.

Haskell has both built-in types (defined in the language or its standard libraries)
and facilities for defining new types. In the following we discuss the primary
built-in types. As we have seen, a Haskell type name begins with a capital letter.
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In this textbook, we sometimes refer to the types Int, Float, Double, Bool,
and Char as being primitive because they likely have direct support in the host
processor’s hardware.

5.3.1 Integers: Int and Integer

The Int data type is usually an integer data type supported directly by the host
processor (e.g., 32- or 64-bits on most current processors), but it is guaranteed
to have the range of at least a 30-bit, two’s complement integer.

The type Integer is an unbounded precision integer type. Unlike Int, host
processors usually do not support this type directly. The Haskell library or
runtime system typically supports this type in software.

Haskell integers support the usual literal formats (i.e., constants) and typical
operations:

• Infix binary operators such as + (addition), - (subtraction), * (multiplica-
tion), and ˆ (exponentiation)

• Infix binary comparison operators such as == (equality of values), /=
(inequality of values), <, <=, >, and >=

• Unary operator - (negation)

For integer division, Haskell provides two-argument functions:

• div such that div m n returns the integral quotient truncated toward
negative infinity from dividing m by n

• quot such that quot m n returns the integral quotient truncated toward 0
from dividing m bem n

• mod (i.e., modulo) and rem (i.e., remainder) such that

(div m n) * n + mod m n == m
(quot m n)* n + rem m n == m

To make these definitions more concrete, consider the following examples. Note
that the result of mod has the same sign as the divisor and rem has the same
sign as the dividend.

div 7 3 == 2
quot 7 3 == 2
mod 7 3 == 1 -- same sign as divisor
rem 7 3 == 1 -- same sign as dividend

div (-7) (-3) == 2
quot (-7) (-3) == 2
mod (-7) (-3) == (-1) -- same sign as divisor
rem (-7) (-3) == (-1) -- same sign as dividend

98



div (-7) 3 == (-3)
quot (-7) 3 == (-2)
mod (-7) 3 == 2 -- same sign as divisor
rem (-7) 3 == (-1) -- same sign as dividend

div 7 (-3) == (-3)
quot 7 (-3) == (-2)
mod 7 (-3) == (-2) -- same sign as divisor
rem 7 (-3) == 1 -- same sign as dividend

Haskell also provides the useful two-argument functions min and max, which
return the minimum and maximum of the two arguments, respectively.

Two-arguments functions such as div, rem, min, and max can be applied in infix
form by including the function name between backticks as shown below:

5 `div` 3 -- yields 1
5 `rem` 3 -- yields 2
5 `min` 3 -- yields 3
5 `max` 3 -- yields 5

5.3.2 Floating point numbers: Float and Double

The Float and Double data types are usually the single and double precision
floating point numbers supported directly by the host processor.

Haskell floating point literals must include a decimal point; they may be signed
or in scientific notation: 3.14159, 2.0, -2.0, 1.0e4, 5.0e-2, -5.0e-2.

Haskell supports the usual operations on floating point numbers. Division is
denoted by / as usual.

In addition, Haskell supports the following for converting floating point numbers
to and from integers:

• floor returns the largest integer less than its floating point argument.

• ceiling returns the smallest integer greater than its floating point argu-
ment

• truncate returns its argumentas an integer truncated toward 0.

• round returns it argument as an integer rounded away from 0.

• fromIntegral returns its integer argument as a floating point number in a
context where Double or Float is required. It can also return its Integer
argument as an Int or vice versa.

5.3.3 Booleans: Bool

The Bool (i.e., Boolean) data type is usually supported directly by the host
processor as one or more contiguous bits.
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The Bool literals are True and False. Note that these begin with capital letters.

Haskell supports Boolean operations such as && (and), || (or), and not (logical
negation).

Functions can match against patterns using the Boolean constants. For example,
we could define a function myAnd as follows:

myAnd :: Bool -> Bool -> Bool
myAnd True b = b
myAnd False _ = False

Above the pattern _ is a wildcard that matches any value but does not bind a
value that can be used on the right-hand-side of the definition.

The expressions in Haskell if conditions and guards on function definitions must
be Bool-valued expressions. They can include calls to functions that return Bool
values.

5.3.4 Characters: Char

The Char data type is usually supported directly by the host processor by one
or more contiguous bytes.

Haskell uses Unicode for its character data type. Haskell supports character
literals enclosed in single quotes—including both the graphic characters (e.g., ’a’,
’0’, and ’Z’) and special codes entered following the escape character backslash
\ (e.g., '\n' for newline, '\t' for horizontal tab, and '\\' for backslash itself).

In addition, a backslash character \ followed by a number generates the corre-
sponding Unicode character code. If the first character following the backslash is
o, then the number is in octal representation; if followed by x, then in hexadecimal
notation; and otherwise in decimal notation.

For example, the exclamation point character can be represented in any of the
following ways: ’!’, '\33', '\o41', '\x21'

5.3.5 Functions: t1 -> t2

If t1 and t2 are types then t1 -> t2 is the type of a function that takes an
argument of type t1 and returns a result of type t2.

Function and variable names begin with lowercase letters optionally followed by
a sequences of characters each of which is a letter, a digit, an apostrophe (')
(sometimes pronounced “prime”), or an underscore (_).

Haskell functions are first-class objects. They can be arguments or results of
other functions or be components of data structures. Multi-argument functions
are curried-–that is, treated as if they take their arguments one at a time.

For example, consider the integer addition operation (+). (Surrounding the
binary operator symbol with parentheses refers to the corresponding function.)
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In mathematics, we normally consider addition as an operation that takes a pair
of integers and yields an integer result, which would have the type signature

(+) :: (Int,Int) -> Int

In Haskell, we give the addition operation the type

(+) :: Int -> (Int -> Int)

or just

(+) :: Int -> Int -> Int

since Haskell binds -> from the right.

Thus (+) is a one argument function that takes some Int argument and returns a
function of type Int -> Int. Hence, the expression ((+) 5) denotes a function
that takes one argument and returns that argument plus 5.

We sometimes speak of this (+) operation as being partially applied (i.e., to one
argument instead of two).

This process of replacing a structured argument by a sequence of simpler ones
is called currying, named after American logician Haskell B. Curry who first
described it.

The Haskell library, called the standard prelude (or just Prelude), contains a
wide range of predefined functions including the usual arithmetic, relational, and
Boolean operations. Some of these operations are predefined as infix operations.

5.3.6 Tuples: (t1,t2,...,tn)

If t1, t2, · · ·, tn are types, where n is finite and n >= 2, then is a type consisting
of n-tuples where the various components have the type given for that position.

Each element in a tuple may have different types. The number of elements in a
tuple is fixed.

Examples of tuple values with their types include the following:

('a',1) :: (Char,Int)
(0.0,0.0,0.0) :: (Double,Double,Double)
(('a',False),(3,4)) :: ((Char, Bool), (Int, Int))

We can also define a type synonym using the type declaration and the use the
synonym in further declarations as follows:

type Complex = (Float,Float)
makeComplex :: Float -> Float -> Complex
makeComplex r i = (r,i)`

A type synonym does not define a new type, but it introduces an alias for an
existing type. We can use Complex in declarations, but it has the same effect
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as using (Float,Float) expect that Complex provides better documentation of
the intent.

5.3.7 Lists: [t]

The primary built-in data structure in Haskell is the list, a sequence of values.
All the elements in a list must have the same type. Thus we declare lists with
notation such as [t] to denote a list of zero or more elements of type t.

A list literal is a comma-separated sequence of values enclosed between [ and ].
For example, [] is an empty list and [1,2,3] is a list of the first three positive
integers in increasing order.

We will look at programming with lists in a later chapter.

5.3.8 Strings: String

In Haskell, a string is just a list of characters. Thus Haskell defines the data
type String as a type synonym :

type String = [Char]

We examine lists and strings in a later chapter, but, because we use strings in a
few examples in this subsection, let’s consider them briefly.

A String literal is a sequence of zero or more characters enclosed in double
quotes, for example, "Haskell programming".

Strings can contain any graphic character or any special character given as
escape code sequence (using backslash). The special escape code \& is used to
separate any character sequences that are otherwise ambiguous.

For example, the string literal "Hotty\nToddy!\n" is a string that has two
newline characters embedded.

Also the string literal "\12\&3" represents the two-element list ['\12','3'].

The function show returns its argument converted to a String.

Because strings are represented as lists, all of the Prelude functions for manipu-
lating lists also apply to strings. We look at manipulating lists and strings in
later chapters of this textbook.

5.3.9 Advanced Types

In later chapters, we examine other important Haskell type concepts such as
user-defined algebraic data types and type classes.

5.4 What Next?
In this chapter (5), we examined general type systems concepts and explored
Haskell’s builtin types.
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For a similar presentation of the types in the Python 3 language, see reference
[45].

In Chapters 6 and 7, we examine methods for developing Haskell programs using
abstraction. We explore use of top-down stepwise refinement, modular design,
and other methods in the context of Haskell.

5.5 Exercises
For each of the following exercises, develop and test a Haskell function or set of
functions.

1. Develop a Haskell function sumSqBig that takes three Double arguments
and yields the sum of the squares of the two larger numbers.

For example, (sumSqBig 2.0 1.0 3.0) yields 13.0.

2. Develop a Haskell function prodSqSmall that takes three Double argu-
ments and yields the product of the squares of the two smaller numbers.

For example, (prodSqSmall 2.0 4.0 3.0) yields 36.0.

3. Develop a Haskell function xor that takes two Booleans and yields the
“exclusive-or” of the two values. An exclusive-or operation yields True
when exactly one of its arguments is True and yields False otherwise.

4. Develop a Haskell Boolean function implies that takes two Booleans p
and q and yields the Boolean result p ⇒ q (i.e., logical implication). That
is, if p is True and q is False, then the result is False; otherwise, the
result is True.

Note: This function is sometimes called nand.

5. Develop a Haskell Boolean function div23n5 that takes an Int and yields
True if and only if the integer is divisible by 2 or divisible by 3, but is not
divisible by 5.

For example, (div23n5 4), (div23n5 6), and (div23n5 9) all yield
True and (div23n5 5), (div23n5 7), (div23n5 10), (div23n5 15),
(div23n5 30) all yield False.

6. Develop a Haskell function notDiv such that notDiv n d yields True if
and only if integer n is not divisible by d.

For example, (notDiv 10 5) yields False and (notDiv 11 5) yields
True.

7. Develop a Haskell function ccArea that takes the diameters of two concen-
tric circles (i.e., with the same center point) as Double values and yields
the area of the space between the circles. That is, compute the area of
the larger circle minus the area of the smaller circle. (Hint: Haskell has a
builtin constant pi.)
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For example, (ccArea 2.0 4.0) yields approximately 9.42477796.

8. Develop a Haskell function mult that takes two natural numbers (i.e., non-
negative integers in Int) and yields their product. The function must not
use the multiplication (*) or division (div) operators. (Hint: Multiplication
can be done by repeated addition.)

9. Develop a Haskell function addTax that takes two Double values such that
addTax c p yield c with a sales tax of p percent added.

For example, (addTax 2.0 9.0) yields 2.18.

Also develop a function subTax that is the inverse of addTax. That is,
(subTax (addTax c p) p) yields c.

For example, (subTax 2.18 9.0) = 2.0.

10. The time of day can be represented by a tuple (hours,minutes,m)
where hours and minutes are Int values with 1 <= hours <= 12 and
0 <= minutes <= 59, and where m is either the string value "AM" or "PM".

Develop a Boolean Haskell function comesBefore that takes two time-of-
day tuples and determines whether the first is an earlier time than the
second.

11. A day on the calendar (usual Gregorian calendar [217] used in the USA)
can be represented as a tuple with three Int values (month,day,year)
where the year is a positive integer, 1 <= month <= 12, and
1 <= day <= days_in_month. Here days_in_month is the number
of days in the the given month (i.e., 28, 29, 30, or 31) for the given year.

Develop a Boolean Haskell function validDate d that takes a date tuple
d and yields True if and only if d represents a valid date.

For example, validDate (8,20,2018) and validDate (2,29,2016)
yield True and validDate (2,29,2017) and validDate (0,0,0) yield
False.

Note: The Gregorian calendar [217] was introduced by Pope Gregory of the
Roman Catholic Church in October 1582. It replaced the Julian calendar
system, which had been instituted in the Roman Empire by Julius Caesar
in 46 BC. The goal of the change was to align the calendar year with the
astronomical year.

Some countries adopted the Gregorian calendar at that time. Other
countries adopted it later. Some countries may never have adopted it
officially.

However, the Gregorian calendar system became the common calendar
used worldwide for most civil matters. The proleptic Gregorian calendar
[218] extends the calendar backward in time from 1582. The year 1 BC
becomes year 0, 2 BC becomes year -1, etc. The proleptic Gregorian
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calendar underlies the ISO 8601 standard used for dates and times in
software systems [219].

12. Develop a Haskell function roman that takes an Int) in the range from 0
to 3999 (inclusive) and yields the corresponding Roman numeral [220] as a
string (using capital letters). The function should halt with an appropriate
error messages if the argument is below or above the range. Roman
numerals use the symbols shown in Table 5.1 and are combined by addition
or subtraction of symbols.

Table 5.1: Decimal equivalents of Roman numerals.

Roman = Decimal
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

For the purposes of this exercise, we represent the Roman numeral for 0
as the empty string. The Roman numerals for integers 1-20 are I, II, III,
IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVII, XIX,
and XX. Integers 40, 90, 400, and 900 are XL, XC, CD, and CM.

13. Develop a Haskell function

minf :: (Int -> Int) -> Int

that takes a function g and yields the smallest integer m such that
0 <= m <= 10000000 and g m == 0. It should throw an error if there is
no such integer.
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6 Procedural Abstraction
6.1 Chapter Introduction
Chapter 2 introduced the concepts of procedural and data abstraction. This
chapter (6) focuses on procedural abstraction. Chapter 7focuses on data abstrac-
tion.

The goals of this chapter are to:

• illustrate use of procedural abstraction, in particular of the top-down,
stepwise refinement approach to design

• introduce modular programming using Haskell modules

6.2 Procedural Abstraction Review
As defined in Chapter 2, procedural abstraction is the separation of the logical
properties of an action from the details of how the action is implemented.

In general, we abstract an action into a Haskell function that takes zero or more
arguments and returns a value but does not have other effects. In later chapters,
we discuss how input, output, and other effects are handled in a purely functional
manner. (For example, in Chapter 10 we examine simple input and output.)

We also collect one or more functions into a Haskell module with appropriate
type definitions, data structures, and local functions. We can explicitly expose
some of the features and hide others.

To illustrate the development of a group of related Haskell procedural abstractions
in this chapter, we use top-down stepwise refinement.

6.3 Top-Down Stepwise Refinement
A useful and intuitive design process for a small program is to begin with a
high-level solution and incrementally fill in the details. We call this process
top-down stepwise refinement. Here we introduce it with an example.

6.3.1 Developing a square root package

Consider the problem of computing the nonnegative square root of a nonnegative
number x. Mathematically, we want to find the number y such that

y ≥ 0 and y2 = x.

A common algorithm in mathematics for computing the above y is to use
Newton’s method of successive approximations, which has the following steps
for square root:

1. Guess at the value of y.
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2. If the current approximation (guess) is sufficiently close (i.e., good enough),
return it and stop; otherwise, continue.

3. Compute an improved guess by averaging the value of the guess y and x/y,
then go back to step 2.

To encode this algorithm in Haskell, we work top down to decompose the problem
into smaller parts until each part can be solved easily. We begin this top-down
stepwise refinement by defining a function with the type signature:

sqrtIter :: Double -> Double -> Double

We choose type Double (double precision floating point) to approximate the real
numbers. Thus we can encode step 2 of the above algorithm as the following
Haskell function definition:

sqrtIter guess x -- step 2
| goodEnough guess x = guess
| otherwise = sqrtIter (improve guess x) x

We define function sqrtIter to take two arguments—the current approximation
guess and nonnegative number x for which we need the square root. We have
two cases:

• When the current approximation guess is sufficiently close to x, we return
guess.

We abstract this decision into a separate function goodEnough with type
signature:

goodEnough :: Double -> Double -> Bool

• When the approximation is not yet close enough, we continue by reduc-
ing the problem to the application of sqrtIter itself to an improved
approximation.

We abstract the improvement process into a separate function improve
with type signature:

improve :: Double -> Double -> Double

To ensure termination of sqrtIter, the argument (improve guess x)
on the recursive call must get closer to termination (i.e., to a value that
satisfies its base case).

The function improve takes the current guess and x and carries out step 3 of
the algorithm, thus averaging guess and x/guess, as follows:

improve :: Double -> Double -> Double -- step 3
improve guess x = average guess (x/guess)

Function application improve y x assumes x >= 0 && y > 0. We call this a
precondition of the improve y x function.
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Because of the precondition of improve, we need to strengthen the precondition
of sqrtIter guess x to x >= 0 && guess > 0.

In improve, we abstract average into a separate function as follows:

average :: Double -> Double -> Double
average x y = (x + y) / 2

The new guess is closer to the square root than the previous guess. Thus the
algorithm will terminate assuming a good choice for function goodEnough, which
guards the base case of the sqrtIter recursion.

How should we define goodEnough? Given that we are working with the limited
precision of computer floating point arithmetic, it is not easy to choose an
appropriate test for all situations. Here we simplify this and use a tolerance of
0.001.

We thus postulate the following definition for goodEnough:

goodEnough :: Double -> Double -> Bool
goodEnough guess x = abs (square guess - x) < 0.001

In the above, abs is the built-in absolute value function defined in the standard
Prelude library. We define square as the following simple function (but could
replace it by just guess * guess):

square :: Double -> Double
square x = x * x

What is a good initial guess? It is sufficient to just use 1. So we can define an
overall square root function sqrt' as follows:

sqrt' :: Double -> Double
sqrt' x | x >= 0 = sqrtIter 1 x

(A square root function sqrt is defined in the Prelude library, so a different
name is needed to avoid the name clash.)

Function sqrt' x has precondition x >= 0. This and the choice of 1 for the
initial guess ensure that functions sqrtIter and improve are applied with
arguments that satisfy their preconditions.

6.3.2 Making the package a Haskell module

We can make this package into a Haskell module by putting the definitions in a
file (e.g., named Sqrt) and adding a module header at the beginning as follows:

module Sqrt
( sqrt' )

where
-- give the definitions above for functions sqrt',
-- sqrtIter, improve, average, and goodEnough
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The header gives the module the name Sqrt and lists the names of the features
being exported in the parenthesis that follows the name. In this case, only
function sqrt' is exported.

Other Haskell modules that import the Sqrt module can access the features
named in its export list. In the case of Sqrt, the other functions—sqrtIter,
goodEnough, and improve)— are local to (i.e., hidden inside) the module.

In this book, we often call the exported features (e.g., functions and types) the
module’s public features and the ones not exported the private features.

We can import module Sqrt into a module such as module TestSqrt shown below.
By default, the import makes all the definitions exported by Sqrt available
within module TestSqrt. The importing module may select the features it
wishes to export and may assign local names to the features it does import.

module TestSqrt
where

import Sqrt -- file Sqrt.hs, import all public names

main = do
putStrLn (show (sqrt' 16))
putStrLn (show (sqrt' 2))

In the above Haskell code, the symbol “-- ” denotes the beginning of an end-
of-line comment. All text after that symbol is text ignored by the Haskell
compiler.

The Haskell module for the Square root case study is in file Sqrt.hs. Limited,
smoke-testing code is in file SqrtTest.hs.

6.3.3 Reviewing top-down stepwise refinement

The program design strategy known as top-down stepwise refinement is a rel-
atively intuitive design process that has long been applied in the design of
structured programs in imperative procedural languages. It is also useful in the
functional setting.

In Haskell, we can apply top-down stepwise refinement as follows.

1. Start with a high-level solution to the problem consisting of one or more
functions. For each function, identify its type signature and functional
requirements (i.e., its inputs, outputs, and termination condition).

Some parts of each function may be incomplete—expressed as “pseudocode”
expressions or as-yet-undefined functions.

2. Choose one of the incomplete parts. Consider the specified type signature
and functional requirements. Refine the incomplete part by breaking
it into subparts or, if simple, defining it directly in terms of Haskell
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expressions (including calls to the Prelude, other available library functions,
or previously defined parts of the algorithm).

When refining an incomplete part, consider the various options according to
the relevant design criteria (e.g., time, space, generality, understandability,
and elegance).

The refinement of the function may require a refinement of the data being
passed.

If it not possible to design an appropriate function or data refinement,
back up in the refinement process and readdress previous design decisions.

3. Continue step 2 until all parts are fully defined in terms of Haskell code
and data and the resulting set of functions meets all required criteria.

For as long as possible, we should stay with terminology and notation that is
close to the problem being solved. We can do this by choosing appropriate
function names and signatures and data types. (In other chapters, we examine
Haskell’s rich set of builtin and user-defined types.)

For stepwise refinement to work well, we must be willing to back up to earlier
design decisions when appropriate. We should keep good documentation of the
intermediate design steps.

The stepwise refinement method can work well for small programs , but it may
not scale well to large, long-lived, general purpose programs. In particular,
stepwise refinement may lead to a module structure in which modules are tightly
coupled and not robust with respect to changes in requirements.

A combination of techniques may be needed to develop larger software systems.
In the next section (6.4), we consider the use of modular design techniques.

6.4 Modular Design and Programming
In the previous section, we developed a Haskell module. In this section, let’s
consider what a module is more generally.

Software engineering pioneer David Parnas defines a module as “a work assign-
ment given to a programmer or group of programmers” [138]. This is a software
engineering view of a module.

In a programming language like Haskell, a module is also a program unit defined
with a construct or convention. This is a programming language view of a module.

In a programming language, each module may be stored in a separate file in the
computer’s file system. It may also be the smallest external unit processed by
the language’s compiler or interpreter.

Ideally, a language’s module features should support the software engineering
module methods.
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6.4.1 Information-hiding modules and secrets

According to Parnas, the goals of modular design are to [134]:

1. enable programmers to understand the system by focusing on one module
at a time (i.e., comprehensibility).

2. shorten development time by minimizing required communication among
groups (i.e., independent development).

3. make the software system flexible by limiting the number of modules
affected by significant changes (i.e., changeability).

Parnas advocates the use of a principle he called information hiding to guide
decomposition of a system into appropriate modules (i.e., work assignments).
He points out that the connections among the modules should have as few
information requirements as possible [134].

In the Parnas approach, an information-hiding module:

• forms a cohesive unit of functionality separate from other modules

• hides a design decision—its secret—from other modules

• encapsulates an aspect of system likely to change (its secret)

Aspects likely to change independently of each other should become secrets of sep-
arate modules. Aspects unlikely to change can become interactions (connections)
among modules.

This approach supports the goal of changeability (goal 2). When care is taken
to design the modules as clean abstractions with well-defined and documented
interfaces, the approach also supports the goals of independent development
(goal 1) and comprehensibility (goal 3).

Information hiding has been absorbed into the dogma of contemporary object-
oriented programming. However, information hiding is often oversimplified as
merely hiding the data and their representations [177].

The secret of a well-designed module may be much more than that. It may include
such knowledge as a specific functional requirement stated in the requirements
document, the processing algorithm used, the nature of external devices accessed,
or even the presence or absence of other modules or programs in the system
[134,136,137]. These are important aspects that may change as the system
evolves.

Secret of square root module The secret of the Sqrt module in the previous
section is the algorithm for computing the square root.

6.4.2 Contracts: Preconditions and postconditions

Now let’s consider the semantics (meaning) of functions.
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The precondition of a function is what the caller (i.e., the client of the function)
must ensure holds when calling the function. A precondition may specify the
valid combinations of values of the arguments. It may also record any constraints
on any “global” state that the function accesses or modifies.

If the precondition holds, the supplier (i.e., developer) of the function must
ensure that the function terminates with the postcondition satisfied. That is,
the function returns the required values and/or alters the “global” state in the
required manner.

We sometimes call the set of preconditions and postconditions for a function the
contract for that function.

Contracts of square root module In the Sqrt module defined in the
previous section, the exported function sqrt' x has the precondition:

x >= 0

Function sqrt' x is undefined for x < 0.

The postcondition of the function sqrt' x function is that the result returned is
the correct mathematical value of the square root within the allowed tolerance.
That is, for a tolerance of 0.001:

(sqrt x - 0.001)ˆ2 < (sqrt x)ˆ2 < (sqrt x + 0.001)ˆ2

We can state preconditions and postconditions for the local functions sqrtIter,
improve, average, and goodEnough in the Sqrt module. These are left as
exercises.

The preconditions for functions average and goodEnough are just the assertion
True (i.e., always satisfied).

Contracts of Factorial module Consider the factorial functions defined in
Chapter 4. (These are in the source file Factorial.hs.)

What are the preconditions and postconditions?

Functions fact1, fact2, and fact3 require that argument n be a natural number
(i.e., nonnegative integer) value. If they are applied to a negative value for n,
then the evaluation does not terminate. Operationally, they go into an “infinite
loop” and likely will abort when the runtime stack overflows.

If function fact4 is called with a negative argument, then all guards and pattern
matches fail. Thus the function aborts with a standard error message.

Similarly, function fact4' terminates with a custom error message for negative
arguments.

Thus to ensure normal termination, we impose the precondition

n >= 0
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on all these factorial functions.

The postcondition of all six factorial functions is that the result returned is the
correct mathematical value of n factorial. For fact4, that is:

fact4 n = fact’(n)

None of the six factorial functions access or modify any global data structures,
so we do not include other items in the precondition or postcondition.

Function fact5 is defined to be 1 for all arguments less than zero. So, if this is
the desired result, we can weaken the precondition to allow all integer values,
for example,

True

and strengthen the postcondition to give the results for negative arguments, for
example:

fact5 n = if n >= 0 then fact’(n) else 1

Caveat: In this chapter, we ignore the limitations on the value of the factorial
functions’ argument n imposed by the finite precision of the computer’s integer
arithmetic. We readdress this issue somewhat in Chapter 12.

6.4.3 Interfaces for modules

It is important for an information-hiding module to have a well-defined and
stable interface. What do we mean by interface?

According to Britton et al [20], an interface is a “set of assumptions . . . each
programmer needs to make about the other program . . . to demonstrate the
correctness of his own program”.

A module interface includes the type signatures (i.e., names, arguments, and
return values), preconditions, and postconditions of all public operations (e.g.,
functions).

As we see in Chapter 7, the interface also includes the invariant properties of
the data values and structures manipulated by the module and the definitions of
any new data types exported by the module. An invariant must be part of the
precondition of public operations except operations that construct elements of
the data type (i.e., constructors). It must also be part of the postcondition of
public operations except operations that destroy elements of the data type (i.e.,
destructors).

As we have seen, in Haskell the module not provide direct syntactic or semantic
support for preconditions, postconditions, or invariant assertions.

Interface of square root module The interface to the Sqrt module in the
previous section consists of the function signature:
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sqrt' :: Double -> Double

where sqrt' x has the precondition and postcondition defined above. None of
the other functions are accessible outside the module Sqrt and, hence, are not
part of the interface.

6.4.4 Abstract interfaces for modules

An abstract interface is an interface that does not change when one module
implementation is substituted for another [20,138]. It concentrates on module’s
essential aspects and obscures incidental aspects that vary among implementa-
tions.

Information-hiding modules and abstract interfaces enable us to design and
build software systems with multiple versions. The information-hiding approach
seeks to identify aspects of a software design that might change from one version
to another and to hide them within independent modules behind well-defined
abstract interfaces.

We can reuse the software design across several similar systems. We can reuse
an existing module implementation when appropriate. When we need a new
implementation, we can create one by following the specification of the module’s
abstract interface.

Abstract interface of square root module For the Sqrt example, if we
implemented a different module with the same interface (signatures, precondi-
tions, postconditions, etc.), then we could substitute the new module for Sqrt
and get the same result.

In this case, the interface is an abstract interface for the set of module imple-
mentations.

Caveats: Of course, the time and space performance of the alternative modules
might differ. Also, because of the nature of floating point arithmetic, it may be
difficult to ensure both algorithms have precisely the same termination conditions.

6.4.5 Client-supplier relationship

The design and implementation of information-hiding modules should be ap-
proached from two points of view simultaneously:

supplier: the developers of the module—the providers of the services
client: the users of the module—the users of the services (e.g., the designers of

other modules)

The client-supplier relationship is as represented in the following diagram:

________________ ________________
| | | |
| Client |===USES===>| Supplier |
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|________________| |________________|

(module user) (module)

The supplier’s concerns include:

• efficient and reliable algorithms and data structures

• convenient implementation

• easy maintenance

The clients’ concerns include:

• accomplishing their own tasks

• using the supplier module without effort to understand its internal details

• having a sufficient, but not overwhelming, set of operations.

As we have noted previously, the interface of a module is the set of features (i.e.,
public operations) provided by a supplier to clients.

A precise description of a supplier’s interface forms a contract between clients
and supplier.

The client-supplier contract:

1. gives the responsibilities of the client

These are the conditions under which the supplier must deliver results—
when the preconditions of the operations are satisfied (i.e., the operations
are called correctly).

2. gives the responsibilities of the supplier

These are the benefits the supplier must deliver—make the postconditions
hold at the end of the operation (i.e., the operations deliver the correct
results).

The contract

• protects the client by specifying how much must be done by the supplier

• protects the supplier by specifying how little is acceptable to the client

If we are both the clients and suppliers in a design situation, we should consciously
attempt to separate the two different areas of concern, switching back and forth
between our supplier and client “hats”.

6.4.6 Design criteria for interfaces

What else should we consider in designing a good interface for an information-
hiding module?
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In designing an interface for a module, we should also consider the following
criteria. Of course, some of these criteria conflict with one another; a designer
must carefully balance the criteria to achieve a good interface design.

Note: These are general principles; they are not limited to Haskell or func-
tional programming. In object-oriented languages, these criteria apply to class
interfaces.

• Cohesion: All operations must logically fit together to support a single,
coherent purpose. The module should describe a single abstraction.

• Simplicity: Avoid needless features. The smaller the interface the easier
it is to use the module.

• No redundancy: Avoid offering the same service in more than one way;
eliminate redundant features.

• Atomicity: Do not combine several operations if they are needed indi-
vidually. Keep independent features separate. All operations should be
primitive, that is, not be decomposable into other operations also in the
public interface.

• Completeness: All primitive operations that make sense for the abstrac-
tion should be supported by the module.

• Consistency: Provide a set of operations that are internally consistent in

– naming convention (e.g.„ in use of prefixes like “set” or “get”, in
capitalization, in use of verbs/nouns/adjectives),

– use of arguments and return values (e.g.„ order and type of argu-
ments),

– behavior (i.e., make operations work similarly).

Avoid surprises and misunderstandings. Consistent interfaces make it easier
to understand the rest of a system if part of it is already known.

The operations should be consistent with good practices for the specific
language being used.

• Reusability: Do not customize modules to specific clients, but make them
general enough to be reusable in other contexts.

• Robustness with respect to modifications: Design the interface of an
module so that it remains stable even if the implementation of the module
changes. (That is, it should be an abstract interface for an information-
hiding module as we discussed above.)

• Convenience: Where appropriate, provide additional operations (e.g.„
beyond the complete primitive set) for the convenience of users of the
module. Add convenience operations only for frequently used combinations
after careful study.
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We must trade off conflicts among the criteria. For example, we must balance:

• completeness versus simplicity

• reusability versus simplicity

• convenience versus consistency, simplicity, no redundancy, and atomicity

We must also balance these design criteria against efficiency and functionality.

6.5 What Next?
In this chapter (6), we considered procedural abstraction and modularity in that
context.

In Chapter 7, we consider data abstraction and modularity in that context.

6.6 Chapter Source Code
The Haskell source code for this chapter are in files:

• Sqrt.hs for the Square Root case study

• SqrtTest.hs for (limited) “smoke testing” of the Sqrt module

• Factorial.hs for the factorial source code from Chapter 4

• TestFactorial.hs is an extensive testing module developed in Chapter
12 for the factorial module

6.7 Exercises
1. State preconditions and postconditions for the following internal functions

in the Sqrt module:

a. sqrtIter
b. improve
c. average
d. goodEnough
e. square

2. Develop recursive and iterative (looping) versions of the square root func-
tion from this chapter in one or more primarily imperative languages (e.g.,
Java, C++, C#, Python 3, or Lua)

6.8 Acknowledgements
In Summer and Fall 2016, I adapted and revised much of this work from my
previous materials:

• Using Top-Down Stepwise Refinement (square root module), which is based
on Section 1.1.7 of Abelson and Sussman’s Structure and Interpretation of
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Computer Programs [1] and my example implementations of this algorithm
in Scala, Elixir, and Lua as well as Haskell.

• Modular Design and Programming from my Data Abstraction [46] and
Modular Design [47] notes, which drew ideas over the past 25 years from a
variety of sources [20,22,56,58,59,61,99,100,128,129,134,136,137,170,177].

In 2017, I continued to develop this work as sections 2.5-2.7 in Chapter 2,
Basic Haskell Functional Programming), of my 2017 Haskell-based programming
languages textbook.

In Spring and Summer 2018, I divided the previous Basic Haskell Functional
Programming chapter into four chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Previous sections 2.1-2.3 became the basis for new Chapter 4, First Haskell
Programs; previous Section 2.4 became Section 5.3 in the new Chapter 5, Types;
and previous sections 2.5-2.7 were reorganized into new Chapter 6, Procedural
Abstraction (this chapter), and Chapter 7, Data Abstraction. The discussion of
contracts for the factorial functions was moved from the 2017 Evaluation and
Efficiency chapter to this chapter.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), adding cross-references, and improving the build workflow and
use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

6.9 Terms and Concepts
TODO: Update

Procedural abstraction, top-down stepwise refinement, abstract code, termination
condition for recursion, Newton’s method, Haskell module, module exports
and imports, information hiding, module secret, encapsulation, precondition,
postcondtion, contract, invariant, interface, abstract interface, design criteria
for interfaces, software reuse, use of Haskell modules to implement information-
hiding modules, client-supplier contract.
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7 Data Abstraction
7.1 Chapter Introduction
Chapter 2 introduced the concepts of procedural and data abstraction. Chapter
6 focuses on procedural abstraction and modular design and programming. This
chapter focuses on data abstraction. 4 The goals of this chapter are to:

• illustrate use of data abstraction

• reinforce and extend the concepts of modular design and programming
using Haskell modules

The chapter uses the development of a rational arithmetic package to illustrate
data abstraction.

7.2 Data Abstraction Review
As defined in Chapter 2, data abstraction is the separation of the logical properties
of data from the details of how the data are represented.

In data abstraction, programmers primarily focus on the problem’s data and
secondarily on its actions. Programmers first identify the key data entities and
develop the programs around those and the operations needed to create and
update them.

Data abstraction seeks to make a program robust with respect to change in the
data.

7.3 Using Data Abstraction
As in Chapter 6, let’s begin the study of this design technique with an example.

7.3.1 Rational number arithmetic

For this example, let’s implement a group of Haskell functions to perform rational
number arithmetic, assuming that the Haskell library does not contain such a
data type. We focus first on the operations we want to perform on the data.

In mathematics we usually write rational numbers in the form x
y where x and y

are integers and y ̸= 0.

For now, let us assume we have a special type Rat to represent rational numbers
and a constructor function

makeRat :: Int -> Int -> Rat

to create a Haskell rational number instance from a numerator x and a de-
nominator y. That is, makeRat x y constructs a Haskell rational number with
mathematical value x

y , where y ̸= 0.
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Let us also assume we have selector functions numer and denom with the signa-
tures:

numer, denom :: Rat -> Int

Functions numer and denom take a valid Haskell rational number and return its
numerator and denominator, respectively.

Requirement: For any Int values x and y where y ̸= 0, there exists a Haskell
rational number r such that makeRat x y == r and rational number values
numer r
denom r = x

y .

Note: In this example, we use fraction notation like x
y to denote the mathematical

value of the rational number. In constrast, r above denotes a Haskell value
representing a rational number.

We consider how to implement rational numbers in Haskell later, but for now
let’s look at rational arithmetic implemented using the constructor and selector
functions specified above.

Given our knowledge of rational arithmetic from mathematics, we can define the
operations for unary negation, addition, subtraction, multiplication, division,
and equality as follows. We assume that the operands x and y are values created
by the constructor makeRat.

negRat :: Rat -> Rat
negRat x = makeRat (- numer x) (denom x)

addRat, subRat, mulRat, divRat :: Rat -> Rat -> Rat -- (1)
addRat x y = makeRat (numer x * denom y + numer y * denom x)

(denom x * denom y)
subRat x y = makeRat (numer x * denom y - numer y * denom x)

(denom x * denom y)
mulRat x y = makeRat (numer x * numer y) (denom x * denom y)
divRat x y -- (2) (3)

| eqRat y zeroRat = error "Attempt to divide by 0"
| otherwise = makeRat (numer x * denom y)

(denom x * numer y)

eqRat :: Rat -> Rat -> Bool
eqRat x y = (numer x) * (denom y) == (numer y) * (denom x)

The above code:

1. combines the type signatures for all four arithmetic operations into a single
declaration by listing the names separated by commas

2. introduces the parameterless function zeroRat to abstract the constant
rational number value 0
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Note: We could represent zero as makeRat 0 1 but choose to introduce a
separate abstraction.

3. calls the error function for an attempt to divide by zero

These arithmetic functions do not depend upon any specific representation for
rational numbers. Instead, they use rational numbers as a data abstraction
defined by the type Rat, constant zeroRat, constructor function makeRat, and
selector functions numer and denom.

The goal of a data abstraction is to separate the logical properties of data from
the details of how the data are represented.

7.3.2 Rational number data representation

Now, how can we represent rational numbers?

For this package, we define type synonym Rat to denote this type:

type Rat = (Int, Int)

For example, (1,7), (-1,-7), (3,21), and (168,1176) all represent the value
1
7 .

As with any value that can be expressed in many different ways, it is useful to
define a single canonical (or normal) form for representing values in the rational
number type Rat.

It is convenient for us to choose a Haskell rational number representation (x,y)
that satisfies all parts of the following Rational Representation Property:

• (x,y) ∈ (Int,Int)

• y > 0

• if x == 0, then y == 1

• x and y are relatively prime

• rational number value is x
y

By relatively prime, we mean that the two integers have no common divisors
except 1.

This representation keeps the magnitudes of the numerator x and denominator y
small, thus reducing problems with overflow arising during arithmetic operations.

This representation also gives a unique representation for zero. For convenience,
we define the name zeroRat to represent this constant:

zeroRat :: (Int,Int)
zeroRat = (0,1)
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We can now define constructor function makeRat x y that takes two Int values
(for the numerator and the denominator) and returns the corresponding Haskell
rational number in this canonical form.

makeRat :: Int -> Int -> Rat
makeRat x 0 = error ( "Cannot construct a rational number "

++ show x ++ "/0" ) -- (1)
makeRat 0 _ = zeroRat
makeRat x y = (x' `div` d, y' `div` d) -- (2)

where x' = (signum' y) * x -- (3,4)
y' = abs' y
d = gcd' x' y'

In the definition of makeRat, we use features of Haskell we have not used in the
previous examples. the above code:

1. uses the infix ++ (read “append”) operator to concatenate two strings

We discuss ++ in the chapter on infix operations.

2. puts backticks (`) around an alphanumeric function name to use that
function as an infix operator

The function div denotes integer division. Above the div operator denotes
the integer division function used in an infix manner.

3. uses a where clause to introduce x', y', and d as local definitions within
the body of makeRat

These local definition can be accessed from within makeRat but not from
outside the function. In contrast, sqrtIter in the Square Root example is
at the same level as sqrt', so it can be called by other functions (in the
same Haskell module at least).

The where feature allows us to introduce new definitions in a top-down
manner—first using a symbol and then defining it.

4. uses type inference for local variables x', y', and d instead of giving explicit
type definitions

These parameterless functions could be declared

x', y', d :: Int

but it was not necessary because Haskell can infer the types from the types
involved in their defining expressions.

Type inference can be used more broadly in Haskell, but explicit type
declarations should be used for any function called from outside.

We require that makeRat x y satisfy the precondition:

y /= 0
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The function generates an explicit error exception if it does not.

As a postcondition, we require makeRat x y to return a result (x',y') such
that:

• (x',y') satisfies the Rational Representation Property

• rational number value is x
y

Note: Together the two postcondition requirements imply that x’
y’ = x

y .

The function signum' (similar to the more general function signum in the
Prelude) takes an integer and returns the integer -1, 0, or 1 when the number is
negative, zero, or positive, respectively.

signum' :: Int -> Int
signum' n | n == 0 = 0

| n > 0 = 1
| otherwise = -1

The function abs' (similar to the more general function abs in the Prelude)
takes an integer and returns its absolute value.

abs' :: Int -> Int
abs' n | n >= 0 = n

| otherwise = -n

The function gcd' (similar to the more general function gcd in the Prelude)
takes two integers and returns their greatest common divisor.

gcd' :: Int -> Int -> Int
gcd' x y = gcd'' (abs' x) (abs' y)

where gcd'' x 0 = x
gcd'' x y = gcd'' y (x `rem` y)

Prelude operation rem returns the remainder from dividing its first operand by
its second.

Given a tuple (x,y) constructed by makeRat as defined above, we can define
numer (x,y) and denom (x,y) as follows:

numer, denom :: Rat -> Int
numer (x,_) = x
denom (_,y) = y

The preconditions of both numer (x,y) and denom (x,y) are that their argu-
ments (x,y) satisfy the Rational Representation Property.

The postcondition of numer (x,y) = x is that the rational number values
x

numer (x,y) = x
y .

Similarly, the postcondition of denom (x,y) = y is that the rational number
values denom (x,y)

y = x
y .
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Finally, to allow rational numbers to be displayed in the normal fractional
representation, we include function showRat in the package. We use function
show, found in the Prelude, here to convert an integer to the usual string format
and use the list operator ++ to concatenate the two strings into one.

showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)

Unlike Rat, zeroRat, makeRat, numer, and denom, function showRat (as imple-
mented) does not use knowledge of the data representation. We could optimize
it slightly by allowing it to access the structure of the tuple directly.

7.3.3 Rational number modularization

There are three groups of functions in this package:

1. the six public rational arithmetic functions negRat, addRat, subRat,
mulRat, divRat, and eqRat

2. the public type Rat, constant zeroRat, public constructor function
makeRat, public selector functions numer and denom, and string conversion
function showRat

3. the private utility functions called only by the second group, but just
reimplementations of Prelude functions anyway

7.3.3.1 Module RationalCore As we have seen, data type Rat; constant
zeroRat; functions makeRat, numer, denom, and showRat; and the functions’
preconditions and postconditions form the interface to the data abstraction.

The data abstraction hides the information about the representation of the data.
We can encapsulate this group of functions in a Haskell module as follows. This
source code must also be in a file named RationalCore.hs.

module RationalCore
(Rat, makeRat, zeroRat, numer, denom, showRat)

where
-- Rat,makeRat,zeroRat,numer,denom,showRat definitions

In terms of the information-hiding approach, the secret of the RationalCore
module is the rational number data representation used.

We can encapsulate the utility functions in a separate module, which would
enable them to be used by several other modules.

However, given that the only use of the utility functions is within the data
representation module, we choose not to separate them at this time. We leave
them as local functions in the data abstraction module. Of course, we could also
eliminate them and use the corresponding Prelude functions directly.
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7.3.3.2 Module Rational Similarly, functions negRat, addRat, subRat,
mulRat, divRat, and eqRat use the core data abstraction and, in turn, extend
the interface to include rational number arithmetic operations.

We can encapsulate these in another Haskell module that imports the module giv-
ing the data representation. This module must be in a file named Rational1.hs.

module Rational1
( Rat, zeroRat, makeRat, numer, denom, showRat,

negRat, addRat, subRat, mulRat, divRat, eqRat )
where

import RationalCore
-- negRat,addRat,subRat,mulRat,divRat,eqRat definitions

Other modules that use the rational number package can import module
Rational1.

7.3.3.3 Modularization critique The modularization described above:

• enables a module to be reused in several different programs

• offers robustness with respect to change

The data representation and arithmetic algorithms can change indepen-
dently.

• allows multiple implementations of each module as long as the public
(abstract) interface is kept stable

• enables understanding of one module without understanding the internal
details of modules it uses

• costs some in terms of extra code and execution efficiency

But that probably does not matter given the benefits above and the code
optimizations carried out by the compiler.

However, the modularization does not hide the representation fully because
it uses a concrete data structure—a pair of integers—to represent a rational
number. In chapter 21, we see how to use a user-defined data type to hide the
representation fully.

7.3.4 Alternative data representation

In the rational number data representation above, constructor makeRat creates
pairs in which the two integers are relatively prime and the sign is on the
numerator. Selector functions numer and denom just return these stored values.

An alternative representation is to reverse this approach, as shown in the following
module (in file RationalDeferGCD.hs.)
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module RationalDeferGCD
(Rat, zeroRat, makeRat, numer, denom, showRat)

where

type Rat = (Int,Int)

zeroRat :: (Int,Int)
zeroRat = (0,1)

makeRat :: Int -> Int -> Rat
makeRat x 0 = error ( "Cannot construct a rational number "

++ show x ++ "/0" )
makeRat 0 y = zeroRat
makeRat x y = (x,y)

numer :: Rat -> Int
numer (x,y) = x' `div` d

where x' = (signum' y) * x
y' = abs' y
d = gcd' x' y'

denom :: Rat -> Int
denom (x,y) = y' `div` d

where x' = (signum' y) * x
y' = abs' y
d = gcd' x' y'

showRat :: Rat -> String
showRat x = show (numer x) ++ "/" ++ show (denom x)

This approach defers the calculation of the greatest common divisor until a
selector is called.

In this alternative representation, a rational number (x,y) must satisfy all parts
of the following Deferred Representation Property:

• (x,y) ∈ (Int,Int)

• y /= 0

• if x == 0 , then y == 1

• rational number value is x
y

Furthermore, we require that makeRat x y satisfies the precondition:

y /= 0

The function generates an explicit error condition if it does not.
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As a postcondition, we require makeRat x y to return a result (x',y') such
that:

• (x',y') satisfies the Deferred Representation Property

• rational number value is x
y

The preconditions of both numer (x,y) and denom (x,y) are that (x,y) satis-
fies the Deferred Representation Property.

The postcondition of numer (x,y) = x' is that the rational number values
x’

numer (x,y) = x
y .

Similarly, the postcondition of denom (x,y) = y is that the rational number
values denom (x,y)

y′ = x
y .

Question:

What are the advantages and disadvantages of the two data repre-
sentations?

Like module RationalCore, the design secret for this module, RationalDeferGCD,
is the rational number data representation.

Regardless of which approach is used, the definitions of the arithmetic and
comparison functions do not change. Thus the Rational module can import
data representation module RationalCore or RationalDeferGCD.

Figure 7.1 shows the dependencies among the modules we have examined in the
rational arithmetic example.

We can consider the RationalCore and RationalDeferGCD modules as two con-
crete instances (Haskell modules) of a more abstract module we call RationalRep
in the diagram.

The module Rational relies on the abstract module RationalRep for an imple-
mentation of rational numbers. In the Haskell code above, there are really two
versions of the Haskell module Rational that differ only in whether they import
RationalCore or RationalDeferGCD.

Chapter 21 introduces user-defined (algebraic) data types. Instead of concrete
data types (e.g., the Int pairs used by the type alias Rat), we can totally hide
the details of the data representation using modules.

7.3.5 Haskell information-hiding modules

In the Rational Arithmetic example, we defined two information-hiding modules:

1. “RationalRep”, whose secret is how to represent the rational number data
and whose interface consists of the data type Rat, constant zeroRat,
operations (functions) makeRat, numer, denom, and showRat, and the
constraints on these types and functions
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Figure 7.1: Rational package module dependencies.
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2. “Rational”, whose secret is how to implement the rational number
arithmetic and whose interface consists of operations (functions) negRat,
addRat, subRat, mulRat, divRat, and eqRat, the other module’s interface,
and the constraints on these types and functions

We developed two distinct Haskell modules, RationalCore and RationalDeferGCD,
to implement the “RationalRep” information-hiding module.

We developed one distinct Haskell module, Rational, to implement the “Ratio-
nal” information-hiding module. This module can be paired (i.e., by changing
the import statement) with either of the other two variants of “RationalRep”
module. (Source file Rational1.hs imports module RationalCore; source file
Rational2.hs imports module RationalDeferGCD.)

Unfortunately, Haskell 2010 has a relatively weak module system that does not
support multiple implementations as well as we might like. There is no way to
declare that multiple Haskell modules have the same interface other than copying
the common code into each module and documenting the interface carefully. We
must also have multiple versions of Rational that differ only in which other
module is imported.

Together the Glasgow Haskell Compiler (GHC) release 8.2 (July 2017) and
the Cabal-Install package manager release 2.0 (August 2017) support a new
extension, the Backpack mixin package system. This new system remedies
the above shortcoming. In this new approach, we would define the abstract
module “RationalRep” as a signature file and require that RationalCore and
RationalDeferGCD conform to it.

Further discussion of this new module system is beyond the scope of this chapter.

7.3.6 Rational number testing

Chapter 12 discusses testing of the Rational modules designed in this chapter.
The test scripts for the following modules are in the files shown:

• Module RationalRep

– TestRatRepCore.hs for module instance RationalCore

– TestRatRepDefer.hs for module instance RationalDeferGCD

• Module Rational

– TestRational1.hs for Rational using RationalCore.

– TestRational2.hs for Rational using RationalDeferGCD.

7.4 Module invariants
As we see in the rational arithmetic example, a module that provides a data
abstraction must ensure that the objects it creates and manipulates maintain
their integrity—always have a valid structure and state.
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• The RationalCore rational number representation satisfies the Rational
Representation Property.

• The RationalDeferGCD rational number representation satisfies the De-
ferred Representation Property.

These properties are invariants for those modules. An invariant for the data
abstraction can help us design and implement such objects.

Invariant: A logical assertion that must always be true for every “object”
created by the public constructors and manipulated only by the public
operations of the data abstraction.

Often, we separate an invariant into two parts.

Interface invariant: An invariant stated in terms of the public features and
abstract properties of the “object”.

Implementation (representation) invariant: A detailed invariant giving
the required relationships among the internal features of the implementa-
tion of an “object”

An interface invariant is a key aspect of the abstract interface of a module. It is
useful to the users of the module, as well to the developers.

7.4.1 RationalRep modules

In the Rational Arithmetic example, the interface invariant for the “RationalRep”
abstract module is the following.

RationalRep Interface Invariant: For any valid Haskell rational number r,
all the following hold:

• r ∈ Rat

• denom r > 0

• if numer r == 0, then denom r == 1

• numer r and denom r are relatively prime

• the (mathematical) rational number value is numer r
denom r

We note that the precondition for makeRat x y is defined above without any
dependence upon the concrete representation.

y /= 0

We can restate the postcondition for makeRat x y = r generically to require
both of the following to hold:

• r satisfies the RationaRep Interface Invariant

• rational number r ’s value is x
y
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The preconditions of both numer r and denom r are that their argument r
satisfies the RationalRep Interface Invariant.

The postcondition of numer r = x' is that the rational number value x’
denom r is

equal to the rational number value of r.

Similarly, the postcondition of denom r = y' is that the rational number value
numer r

y′ is equal to the rational number value of r.{.haskell}

An implementation invariant guides the developers in the design and implemen-
tation of the internal details of a module. It relates the internal details to the
interface invariant.

7.4.1.1 RationalCore We can state an implementation invariant for the
RationalCore module.

RationalCore Implementation Invariant: For any valid Haskell rational
number r, all the following hold:

• r == (x,y) for some (x,y) ∈ Rat

• y > 0

• if x == 0, then y == 1

• x and y are relatively prime

• rational number value is x
y

The implementation invariant implies the interface invariant given the definitions
of data type Rat and selector functions numer and denom. Constructor function
makeRat does the work to establish the invariant initially.

7.4.1.2 RationalDeferGCD We can state an implementation invariant for
the RationalDeferGCD module.

RationalDeferGCD Implementation Invariant: For any valid Haskell ra-
tional number r, all the following hold:

• r == (x,y) for some (x,y) ∈ Rat

• y /= 0

• if x == 0, then y == 1

• rational number value is x
y

The implementation invariant implies the interface invariant given the definitions
of Rat and of the selector functions numer and denom. Constructor function
makeRat is simple, but the selector functions numer and denom do quite a bit of
work to establish the interface invariant.
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7.4.2 Rational modules

The Rational abstract module extends the RationalRep abstract module with
new functionality.

• It imports the public interface of the RationalRep abstract module and
exports those features in its own public interface. Thus it must maintain
the interface invariant for the RationalRep module it uses.

• It does not add any new data types or constructor (or destructor) functions.
So it does not need any new invariant components for new data abstractions.

• It adds one unary and four binary arithmetic functions that take rational
numbers and return a rational number. It does so by using the data
abstraction provided by the RationalRep module. These must preserve
the RationalRep interface invariant.

• It adds an equality comparison function that takes two rational numbers
and returns a Bool.

7.5 What Next?
Chapter 6 examined procedural abstraction and stepwise refinement and used
the method to develop a square root package.

This chapter (7) examined data abstraction and used the method to develop a
rational number arithmetic package. The chapters explored concepts and meth-
ods for modular design and programming using Haskell, including preconditions,
postconditions, and invariants.

We continue to use these concepts, techniques, and examples in the rest of the
book. In particular:

• Chapter 12 examines how to test the modules developed in this chapter.

• Chapter 22 explores the data abstraction concepts and techniques in more
depth. In particular, it examines a detailed case study of an abstract data
type.

The next chapter, Chapter 8, examines the substitution model for evaluation of
Haskell programs and explores efficiency and termination in the context of that
model.

7.6 Chapter Source Code
The Haskell source code for this chapter includes the following:

• Two versions of a lower-level “RationalnRep” module that gives implemen-
tations of rational number given in the following files.

– RationalCore.hs.
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– RationalDeferGCD.hs.)

• An upper-level rational arithmetic module given in the following files.

– Rational1.hs, a variant that imports the RationalCore module

– Rational2.hs, a variant that imports the RationalDeferGCD module

7.7 Exercises
For each of the following exercises, develop and test a Haskell function or set of
functions.

1. Develop a Haskell module (or modules) for line segments on the two-
dimensional coordinate plane using the rectangular coordinate system.

We can represent a line segment with two points—the starting point and
the ending point. Develop the following Haskell functions:

• constructor newSeg that takes two points and returns a new line
segment

• selectors startPt and endPt that each take a segment and return its
starting and ending points, respectively

We normally represent the plane with a rectangular coordinate system.
That is, we use two axes—an x axis and a y axis—intersecting at a right
angle. We call the intersection point the origin and label it with 0 on both
axes. We normally draw the x axis horizontally and label it with increasing
numbers to the right and decreasing numbers to the left. We also draw the
y axis vertically with increasing numbers upward and decreasing numbers
downward. Any point in the plane is uniquely identified by its x-coordinate
and y-coordinate.

Define a data representation for points in the rectangular coordinate system
and develop the following Haskell functions:

• constructor newPtFromRect that takes the x and y coordinates of a
point and returns a new point

• selectors getx and gety that takes a point and returns the x and y
coordinates, respectively

• display function showPt that takes a point and returns an appropriate
String representation for the point

Now, using the various constructors and selectors, also develop the Haskell
functions for line segments:

• midPt that takes a line segment and returns the point at the middle
of the segment
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• display function showSeg that takes a line segment and returns an
appropriate String representation

Note that newSeg, startPt, endPt, midPt, and showSeg can be imple-
mented independently from how the points are represented.

2. Develop a Haskell module (or modules) for line segments that represents
points using the polar coordinate system instead of the rectangular coordi-
nate system used in the previous exercise.

A polar coordinate system represents a point in the plane by its radial
coordinate r (i.e., the distance from the pole) and its angular coordinate t
(i.e., the angle from the polar axis in the reference direction). We sometimes
call r the magnitude and t the angle.

By convention, we align the rectangular and polar coordinate systems by
making the origin the pole, the positive portion of the x axis the polar
axis, and let the first quadrant (where both x and y are positive) be
the smallest positive angles in the reference direction. That is, with a
traditional drawing of the coordinate systems, we measure and the radial
coordinate r as the distance from the origin measure the angular coordinate
t counterclockwise from the positive x axis.

Using knowledge of trigonometry, we can convert among rectangular coor-
dinates (x,y) and polar coordinates (r,t) using the equations:

x = r * cos(t)
y = r * sin(t)
r = sqrt(xˆ2 + yˆ2)
t = arctan2(y,x)

Define a data representation for points in the polar coordinate system and
develop the following Haskell functions:

• constructor newPtFromPolar that takes the magnitude r and angle t
as the polar coordinates of a point and returns a new point

• selectors getMag and getAng that each take a point and return the
magnitude r and angle t coordinates, respectively

• selectors getx and gety that return the x and y components of the
points (represented here in polar coordinates)

• display functions showPtAsRect and showPtAsPolar to convert the
points to strings using rectangular and polar coordinates, respectively,

Functions newSeg, startPt, endPt, midPt, and showSeg should work as
in the previous exercise.

3. Modify the solutions to the previous two line-segment module exercises to
enable the line segment functions to be in one module that works properly
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if composed with either of the two data representation modules. (The
solutions may have already done this.)

4. Modify the solution to the previous line-segment exercise to use the Back-
pack module system.

5. Modify the modules in the previous exercise to enable the line segment
module to work with both data representations in the same program.

6. Modify the solution to the Rational Arithmetic example to use the Backpack
module system.

7. State preconditions and postconditions for the functions in abstract module
Rational.
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7.9 Terms and Concepts
TODO: Update

Haskell module, module exports and imports, module dependencies, rational
number arithmetic, data abstraction, properties of data, data representation,
precondition, postcondition, invariant, interface invariant, implementation or
representation invariant, canonical or normal forms, relatively prime, information
hiding, module secret, encapsulation, interface, abstract interface, type inference.
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8 Evaluation Model
8.1 Chapter Introduction
This chapter (8) introduces an evaluation model applicable to Haskell programs.
As in the previous chapters, this chapter focuses on use of first-order functions
and primitive data types.

The goals of this chapter (8) are to:

• describe an evaluation model appropriate for Haskell programs

• enable students to analyze Haskell functions to determine under what
conditions they terminate normally and how efficient they are

Building on this model, Chapter 9 informally analyzes simple functions in terms
of time and space efficiency and termination. Chapter 29 examines these issues
in more depth.

How can we evaluate (i.e., execute) an expression that “calls” a function like the
fact1 function from Chapter 4?

We do this by rewriting expressions using a substitution model, as we see in this
chapter. This process depends upon a property of functional languages called
referential transparency.

8.2 Referential Transparency Revisited
Referential transparency is probably the most important property of modern
functional programming languages.

As defined in Chapter 2, referential transparency means that, within some
well-defined context (e.g., a function or module definition), a variable (or other
symbol) always represents the same value.

Because a variable always has the same value, we can replace the variable in an
expression by its value or vice versa. Similarly, if two subexpressions have equal
values, we can replace one subexpression by the other. That is, “equals can be
replaced by equals”.

Pure functional programming languages thus use the same concept of a variable
that mathematics uses.

However, in most imperative programming languages, a variable represents an
address or “container” in which values may be stored. A program may change
the value stored in a variable by executing an assignment statement. Thus these
mutable variables break the property of referential transparency.

Because of referential transparency, we can construct, reason about, and manip-
ulate functional programs in much the same way we can any other mathematical
expressions. Many of the familiar “laws” from high school algebra still hold;
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new laws can be defined and proved for less familiar primitives and even user-
defined operators. This enables a relatively natural equational style of reasoning
using the actual expressions of the language. We explore these ideas further in
Chapters 25, 26, and 27.

In contrast, to reason about imperative programs, we usually need to go outside
the language itself and use notation that represents the semantics of the language
{[41]; [85]].

For our purposes here, referential transparency underlies the substitution model
for evaluation of expressions in Haskell programs.

8.3 Substitution Model
The substitution model (or reduction model) involves rewriting (or reducing) an
expression to a “simpler” equivalent form. It involves two kinds of replacements:

• replacing a subexpression that satisfies the left-hand side of an equation
by the right-hand side with appropriate substitution of arguments for
parameters

• replacing a primitive application (e.g., + or *) by its value

The term redex refers to a subexpression that can be reduced.

Redexes can be selected for reduction in several ways. For instance, the redex
can be selected based on its position within the expression:

• leftmost redex first, where the leftmost reducible subexpression in the
expression text is reduced before any other subexpressions are reduced

• rightmost redex first, where the rightmost reducible subexpression in the
expression text is reduced before any other subexpressions are reduced

The redex can also be selected based on whether or not it is contained within
another redex:

• outermost redex first, where a reducible subexpression that is not contained
within any other reducible subexpression is reduced before one that is
contained within another

• innermost redex first, where a reducible subexpression that contains no
other reducible subexpression is reduced before one that contains others

We will explore these more fully in a Chapter 29. In most circumstances, Haskell
uses a leftmost outermost redex first approach.

In Chapter 4, we defined factorial function fact1 as shown below. (The source
code is in file Factorial.hs){type=“text/plain”}.)

fact1 :: Int -> Int
fact1 n = if n == 0 then

1
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else
n * fact1 (n-1)

Consider the expression from else clause in fact1 with n having the value 2:

2 * fact1 (2-1)

This has two redexes: subexpressions 2-1 and fact1 (2-1).

The multiplication cannot be reduced because it requires both of its arguments
to be evaluated.

A function parameter is said to be strict if the value of that argument is always
required. Thus, multiplication is strict in both its arguments. If the value of an
argument is not always required, then it is nonstrict.

The first redex 2-1 is an innermost redex. Since it is the only innermost redex,
it is both leftmost and rightmost.

The second redex fact1 (2-1) is an outermost redex. Since it is the only
outermost redex, it is both leftmost and rightmost.

Now consider the complete evaluation of the expression fact1 2 using leftmost
outermost reduction steps. Below we denote the steps with =⇒ and give the
substitution performed between braces.

fact1 2

=⇒ { replace fact1 2 using definition }

if 2 == 0 then 1 else 2 * fact1 (2-1)

=⇒ { evaluate 2 == 0 in condition }

if False then 1 else 2 * fact1 (2-1)

=⇒ { evaluate if }

2 * fact1 (2-1)

=⇒ { replace fact1 (2-1) using definition, add implicit parentheses }

2 * (if (2-1) == 0 then 1 else (2-1) * fact1 ((2-1)-1))

=⇒ { evaluate 2-1 in condition }

2 * (if 1 == 0 then 1 else (2-1) * fact1 ((2-1)-1))

=⇒ { evaluate 1 == 0 in condition }

2 * (if False then 1 else (2-1) * fact1 ((2-1)-1))

=⇒ { evaluate if }

2 * ((2-1) * fact1 ((2-1)-1))

=⇒ { evaluate leftmost 2-1 }
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2 * (1 * fact1 ((2-1)-1))

=⇒ { replace fact1 ((2-1)-1) using definition, add implicit parentheses }

2 * (1 * (if ((2-1)-1) == 0 then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate 2-1 in condition }

2 * (1 * (if (1-1) == 0 then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate 1-1 in condition }

2 * (1 * (if 0 == 0 then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate 0 == 0 }

2 * (1 * (if True then 1
else ((2-1)-1) * fact1 ((2-1)-1)-1))

=⇒ { evaluate if }

2 * (1 * 1)

=⇒ { evaluate 1 * 1 }

2 * 1

=⇒ { evaluate 2 * 1 }

2

The rewriting model we have been using so far can be called string reduction
because our model involves the textual replacement of one string by an equivalent
string.

A more efficient alternative is graph reduction. In this technique, the expressions
are represented as (directed acyclic) expression graphs rather than text strings.
The repeated subexpressions of an expression are represented as shared compo-
nents of the expression graph. Once a shared component has been evaluated
once, it need not be evaluated again.

In the example above, subexpression 2-1 is reduced three times. However, all
of those subexpressions come from the initial replacement of fact1 2. Using
graph reduction, only the first of those reductions is necessary.

fact1 2

=⇒ { replace fact1 2 using definition }

if 2 == 0 then 1 else 2 * fact1 (2-1)

=⇒ { evaluate 2 == 0 in condition }

if False then 1 else 2 * fact1 (2-1) }
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=⇒ { evaluate if }

2 * fact1 (2-1)

=⇒ { replace fact1 (2-1) using definition, add implicit parentheses }

2 * (if (2-1) == 0 then 1 else (2-1) * fact1 ((2-1)-1))

=⇒ { evaluate 2-1 because of condition (3 occurrences in graph) }

2 * (if 1 == 0 then 1 else 1 * fact1 (1-1))

=⇒ { evaluate 1 == 0 }

2 * (if False then 1 else 1 * fact1 (1-1))

=⇒ { evaluate if }

2 * (1 * fact1 (1-1))

=⇒ { replace fact1 ((1-1) using definition, add implicit parentheses }

2 * (1 * (if (1-1) == 0 then 1 else (1-1) * fact1 ((1-1)-1))

=⇒ { evaluate 1-1 because of condition (3 occurrences in graph) }

2 * (1 * (if 0 == 0 then 1 else 0 * fact1 (0-1))

=⇒ { evaluate 0 == 0 }

2 * (1 * (if True then 1 else 0 * fact1 (0-1))

=⇒ { evaluate if }

2 * (1 * 1)

=⇒ { evaluate 1 * 1 }

2 * 1

=⇒ { evaluate 2 * 1 }

2

In general, the Haskell compiler or interpreter uses a leftmost outermost graph
reduction technique. However, if the value of a function’s argument is always
needed for a computation, then an innermost reduction can be triggered for that
argument. Either the programmer can explicitly require this or the compiler can
detect the situation and automatically trigger the innermost reduction order.

Haskell exhibits lazy evaluation. That is, an expression is not evaluated until its
value is needed, if ever. An outermost reduction corresponds to this evaluation
strategy.

Other functional languages such as Scala and F# exhibit eager evaluation. That
is, an expression is evaluated as soon as possible. An innermost reduction
corresponds to this evaluation strategy.
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8.4 Time and Space Complexity
We state efficiency (i.e., time complexity or space complexity) of programs in
terms of the “Big-O” notation and asymptotic analysis.

For example, consider the leftmost outermost graph reduction of function fact1
above. The number of reduction steps required to evaluate fact1 n is 5*n + 3.

We let the number of steps in a graph reduction be our measure of time. Thus,
the time complexity of fact1 n is O(n), which means that the time to evaluate
fact1 n is bounded above by some (mathematical) function that is proportional
to the value of n.

Of course, this result is easy to see in this case. The algorithm is dominated by
the n multiplications it must carry out. Alternatively, we see that evaluation
requires on the order of n recursive calls.

We let the number of arguments in an expression graph be our measure of the
size of an expression. Then the space complexity is the maximum size needed for
the evaluation in terms of the input.

This size measure is an indication of the maximum size of the unevaluated
expression that is held at a particular point in the evaluation process. This is a
bit different from the way we normally think of space complexity in imperative
algorithms, that is, the number of “words” required to store the program’s data.

However, this is not as strange as it may at first appear. As we in later chapters,
the data structures in functional languages like Haskell are themselves expressions
built by applying constructors to simpler data.

In the case of the graph reduction of fact1 n, the size of the largest expression
is 2*n + 16. This is a multiplication for each integer in the range from 1 to n
plus 16 for the full if statement. Thus the space complexity is O(n).

The Big-O analysis is an asymptotic analysis. That is, it estimates the order of
magnitude of the evaluation time or space as the size of the input approaches
infinity (gets large). We often do worst case analyses of time and space. Such
analyses are usually easier to do than average-case analyses.

The time complexity of fact1 n is similar to that of a loop in an imperative
program. However, the space complexity of the imperative loop algorithm is
O(1). So fact1 is not space efficient compared to the imperative loop.

We examine techniques for improving the efficiency of functions below. In
Chapter 29, we examine reduction techniques more fully.

8.5 Termination
A recursive function has one or more recursive cases and one or more base
(nonrecursive) cases. It may also be undefined for some cases.
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To show that evaluation of a recursive function terminates, we must show
that each recursive application always gets closer to a termination condition
represented by a base case.

Again consider fact1 defined above.

If fact1 is called with argument n greater than 0, the argument of the recursive
application in the else clause always decreases to n - 1. Because the argument
always decreases in integer steps, it must eventually reach 0 and, hence, terminate
in the first leg of the definition.

If we call fact1 with argument 0, the function terminates immediately.

What if we call fact1 with its argument less than 0? We consider this issue
below.

8.6 What Next?
This chapter (8) introduced an evaluation model applicable to Haskell programs.
It provides a framework for analyzing Haskell functions to determine under what
conditions they terminate normally and how efficient they are.

Chapter 9 informally analyzes simple functions in terms of time and space
efficiency and termination.

Chapter 29 examines these issues in more depth.

8.7 Exercises
1. Given the following definition of Fibonacci function fib, show the reduction

of fib 4.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n | n >= 2 = fib (n-1) + fib (n-2)

2. What are the time and space complexities of fact6 as defined in the
previous exercise?

3. Given the following definition of fact6, show the reduction of fact6 2.

fact6 :: Int -> Int
fact6 n = factIter n 1

factIter :: Int -> Int -> Int
factIter 0 r = r
factIter n r | n > 0 = factIter (n-1) (n*r)

4. What are the time and space complexities of fact6 as defined in the
previous exercise?
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9 Recursion Styles and Efficiency
9.1 Chapter Introduction
This chapter () introduces basic recursive programming styles and examines
issues of efficiency, termination, and correctness. It builds on the substitution
model from Chapter 8, but uses the model informally.

As in the previous chapters, this chapter focuses on use of first-order functions
and primitive data types.

The goals of the chapter are to:

• explre several recursive programming styles—linear and nonlinear, back-
ward and forward, tail, and logarithmic—and their implementation using
Haskell

• analyze Haskell functions to determine under what conditions they termi-
nate with the correct result and how efficient they are

• explore methods for developing recursive Haskell programs that terminate
with the correct result and are efficient in both time and space usage

• compare the basic functional programming syntax of Haskell with that in
other languages

9.2 Linear and Nonlinear Recursion
Given the substitution model described in Chapter 8, we can now consider
efficiency and termination in the design of recursive Haskell functions.

In this section, we examine the concepts of linear and nonlinear recursion. The
following two sections examine other styles.

9.2.1 Linear recursion

A function definition is linear recursive if at most one recursive application of
the function occurs in any leg of the definition (i.e., along any path from an
entry to a return). The various argument patterns and guards and the branches
of the conditional expression if introduce paths.

The definition of the function fact4 repeated below is linear recursive because
the expression in the second leg of the definition (i.e., n * fact4 (n-1)) involves
a single recursive application. The other leg is nonrecursive; it is the base case
of the recursive definition.

fact4 :: Int -> Int
fact4 n

| n == 0 = 1
| n >= 1 = n * fact4 (n-1)
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What are the precondition and postcondition for fact4 n?

As discussed in Chapter 6, we must require a precondition of n >= 0 to avoid
abnormal termination. When the precondition holds, the postcondition is:

fact4 n = fact’(n)

What are the time and space complexities of fact4 n?

Function fact4 recurses to a depth of n. As we in for fact1 in Chapter 8, it has
time complexity O(n), if we count either the recursive calls or the multiplication
at each level. The space complexity is also O(n) because a new runtime stack
frame is needed for each recursive call.

How do we know that function fact4 n terminates?

For a call fact4 n with n > 0, the argument of the recursive application always
decreases to n - 1. Because the argument always decreases in integer steps, it
must eventually reach 0 and, hence, terminate in the first leg of the definition.

9.2.2 Nonlinear recursion

A nonlinear recursion is a recursive function in which the evaluation of some leg
requires more than one recursive application. For example, the naive Fibonacci
number function fib shown below has two recursive applications in its third leg.
When we apply this function to a nonnegative integer argument greater than 1,
we generate a pattern of recursive applications that has the “shape” of a binary
tree. Some call this a tree recursion.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n | n >= 2 = fib (n-1) + fib (n-2)

What are the precondition and postcondition for fib n?

For fib n, the precondition n >= 0 to ensure that the function is defined. When
called with the precondition satisfied, the postcondition is:

fib n = Fibonacci(n)

How do we know that fib n terminates?

For the recursive case n >= 2. the two recursive calls have arguments that are 1
or 2 less than n. Thus every call gets closer to one of the two base cases.

What are the time and space complexities of fib n?

Function fib is combinatorially explosive, having a time complexity O(fib n).
The space complexity is O(n) because a new runtime stack frame is needed for
each recursive call and the calls recurse to a depth of n.
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An advantage of a linear recursion over a nonlinear one is that a linear recursion
can be compiled into a loop in a straightforward manner. Converting a nonlinear
recursion to a loop is, in general, difficult.

9.3 Backward and Forward Recursion
In this section, we examine the concepts of backward and forward recursion.

9.3.1 Backward recursion

A function definition is backward recursive if the recursive application is embedded
within another expression. During execution, the program must complete the
evaluation of the expression after the recursive call returns. Thus, the program
must preserve sufficient information from the outer call’s environment to complete
the evaluation.

The definition for the function fact4 above is backward recursive because
the recursive application fact4 (n-1) in the second leg is embedded within the
expression n * fact4 (n-1). During execution, the multiplication must be done
after return. The program must “remember” (at least) the value of parameter n
for that call.

A compiler can translate a backward linear recursion into a loop, but the
translation may require the use of a stack to store the program’s state (i.e., the
values of the variables and execution location) needed to complete the evaluation
of the expression.

Often when we design an algorithm, the first functions we come up with are
backward recursive. They often correspond directly to a convenient recurrence
relation. It is often useful to convert the function into an equivalent one that
evaluates more efficiently.

9.3.2 Forward recursion

A function definition is forward recursive if the recursive application is not
embedded within another expression. That is, the outermost expression is the
recursive application and any other subexpressions appear in the argument lists.
During execution, significant work is done as the recursive calls are made (e.g.,
in the argument list of the recursive call).

The definition for the auxiliary function factIter below has two integer argu-
ments. The first argument is the number whose factorial is to be computed. The
second argument accumulates the product incrementally as recursive calls are
made.

The recursive application factIter (n-1) (n*r) in the second leg is on the
outside of the expression evaluated for return. The other leg of factIter and
fact6 itself are nonrecursive.
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fact6 :: Int -> Int
fact6 n = factIter n 1

factIter :: Int -> Int -> Int
factIter 0 r = r
factIter n r | n > 0 = factIter (n-1) (n*r)

What are the precondition and postcondition for factIter n r?

To avoid termination, factIter n r requires n >= 0. Its postcondition is that:

factIter n r = r * fact(n)

How do we know that factIter n r terminates?

Argument n of the recursive leg is at least 1 and decreases by 1 on each recursive
call.

What is the time and space complexity of factIter n r?

Function factIter n r has a time complexity O(n). But, if the compiler
converts the factIter recursion to a loop, the time complexity’s constant factor
should be smaller than that of fact4.

As shown, factIter n r has space complexity of O(n). But, if the compiler
does an innermost reduction on the second argument (because its value will
always be needed), then the space complexity of factIter becomes O(1).

9.3.3 Tail recursion

A function definition is tail recursive if it is both forward recursive and linear
recursive. In a tail recursion, the last action performed before the return is a
recursive call.

The definition of the function factIter above is thus tail recursive.

Tail recursive definitions are relatively straightforward to compile into efficient
loops. There is no need to save the states of unevaluated expressions for higher
level calls; the result of a recursive call can be returned directly as the caller’s
result. This is sometimes called tail call optimization (or “tail call elimination”
or “proper tail calls”) [202].

In converting the backward recursive function fact4 to a tail recursive auxiliary
function, we added the parameter r to factIter. This parameter is sometimes
called an accumulating parameter (or just an accumulator).

We typically use an accumulating parameter to “accumulate” the result of
the computation incrementally for return when the recursion terminates. In
factIter, this “state” passed from one “iteration” to the next enables us to
convert a backward recursive function to an “equivalent” tail recursive one.
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Function factIter defines a more general function than fact4. It computes
a factorial when we initialize the accumulator to 1, but it can compute some
multiple of the factorial if we initialize the accumulator to another value. However,
the application of factIter in fact6 gives the initial value of 1 needed for
factorial.

Consider auxiliary function fibIter used by function fib2 below. This function
adds two “accumulating parameters” to the backward nonlinear recursive function
fib to convert the nonlinear (tree) recursion into a tail recursion. This technique
works for Fibonacci numbers, but the same technique will not work in all cases.

fib2 :: Int -> Int
fib2 n | n >= 0 = fibIter n 0 1

where
fibIter 0 p q = p
fibIter m p q | m > 0 = fibIter (m-1) q (p+q)

Here we use type inference for fibIter. Function fibIter could be declared

fibIter :: Int -> Int -> Int -> Int

but it was not necessary because Haskell can infer the type from the types
involved in its defining expressions.

What are the precondition and postcondition for fibIter n p q?

To avoid abnormal termination, fibIter n p q requires n >= 0. When the
precondition holds, its postcondition is:

fibIter n p q = Fibonacci(n) + (p + q - 1)

If called with p and q set to 0 and 1, respectively, then fibIter returns:

Fibonacci(n)

How do we know that fibIter n p q terminates for n ≥ 0?

The recursive leg of fibIter n p q is only evaluated when n > 0. On the
recursive call, that argument decreases by 1. So eventually the computation
reaches the base case.

What are the time and space complexities of fibIter?

Function fibIter has a time complexity of O(n) in contrast to O(fib n) for
fib. This algorithmic speedup results from the replacement of the very expen-
sive operation fib(n-1) + fib(n-2) at each level in fib by the inexpensive
operation p + q (i.e., addition of two numbers) in fibIter.

Without tail call optimization, fibIter n p q has space complexity of O(n).
However, tail call optimization (including an innermost reduction on the q
argument) can convert the recursion to a loop, giving O(1) space complexity.

When combined with tail-call optimization and innermost reduction of strict
arguments, a tail recursive function may be more efficient than the equivalent
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backward recursive function. However, the backward recursive function is often
easier to understand and, as we see in Chapter 25, to reason about.

9.4 Logarithmic Recursion
We can define the exponentiation operation ˆ in terms of multiplication as follows
for integers b and n >= 0:

bˆn =
∏i=n

i=1 b

A backward recursive exponentiation function expt, shown below in Haskell,
raises a number to a nonnegative integer power.

expt :: Integer -> Integer -> Integer
expt b 0 = 1
expt b n

| n > 0 = b * expt b (n-1) -- backward rec
| otherwise = error (

"expt undefined for negative exponent "
++ show n )

Here we use the unbounded integer type Integer for the parameters and return
value.

Note that the recursive call of expt does not change the value of the parameter
b.

Consider the following questions relative to expt.

• What are the precondition and postcondition for expt b n?

• How do we know that expt b n terminates?

• What are the time and space complexities of expt b n (ignoring any
additional costs of processing the unbounded integer type)?

We can define a tail recursive auxiliary function exptIter by adding a new
parameter to accumulate the value of the exponentiation incrementally. We can
define exptIter within a function expt2, taking advantage of the fact that the
base b does not change. This is shown below.

expt2 :: Integer -> Integer -> Integer
expt2 b n | n < 0 = error (

"expt2 undefined for negative exponent "
++ show n )

expt2 b n = exptIter n 1
where exptIter 0 p = p

exptIter m p = exptIter (m-1) (b*p) -- tail rec

Consider the following questions relative to expt2.

• What are the precondition and postcondition for exptIter n p?
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• How do we know that exptIter n p terminates?

• What are the time and space complexities of exptIter n p?

The exponentiation function can be made computationally more efficient by
squaring the intermediate values instead of iteratively multiplying. We observe
that:

bˆn = bˆ(n/2)ˆ2 if n is even
bˆn = b * bˆ(n-1) if n is odd

Function expt3 below incorporates this observation into an improved algorithm.
Its time complexity is O(log2 n) and space complexity is O(log2 n). (Here we
assume that log2 computes the logarithm base 2.)

expt3 :: Integer -> Integer -> Integer
expt3 _ n | n < 0 = error (

"expt3 undefined for negative exponent "
++ show n )

expt3 b n = exptAux n
where exptAux 0 = 1

exptAux n
| even n = let exp = exptAux (n `div` 2) in

exp * exp -- backward rec
| otherwise = b * exptAux (n-1) -- backward rec

Here we are use two features of Haskell we have not used in the previous examples.

• Boolean function even returns True if and only if its integer argument is
an even number. Similarly, odd returns True when its argument is an odd
number.

• The let clause introduces exp as a local definition within the expression
following in keyword, that is, within exp * exp.

The let feature allows us to introduce new definitions in a bottom-up
manner—first defining a symbol and then using it.

Consider the following questions relative to expt3.

• What are the precondition and postcondition expt3 b n?

• How do we know that exptAux n terminates?

• What are the time and space complexities of exptAux n?

9.5 Local Definitions
We have used two different language features to add local definitions to Haskell
functions: let and where.

The let expression is useful whenever a nested set of definitions is required. It
has the following syntax:
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let local_definitions in expression

A let may be used anywhere that an expression my appear in a Haskell program.

For example, consider a function f that takes a list of integers and returns a list
of their squares incremented by one:

f :: [Int] -> [Int]
f [] = []
f xs = let square a = a * a

one = 1
(y:ys) = xs

in (square y + one) : f ys

• square represents a function of one variable.

• one represents a constant, that is, a function of zero variables.

• (y:ys) represents a pattern match binding against argument xs of f.

• Reference to y or ys when argument xs of f is nil results in an error.

• Local definitions square, one, y, and ys all come into scope simultaneously;
their scope is the expression following the in keyword.

• Local definitions may access identifiers in outer scopes (e.g., xs in definition
of (y:ys)) and have definitions nested within themselves.

• Local definitions may be recursive and call each other.

The let clause introduces symbols in a bottom-up manner: it introduces symbols
before they are used.

The where clause is similar semantically, but it introduces symbols in a top-down
manner: the symbols are used and then defined in a where that follows.

The where clause is more versatile than the let. It allows the scope of local
definitions to span over several guarded equations while a let’s scope is restricted
to the right-hand side of one equation.

For example, consider the definition:

g :: Int -> Int
g n | check3 == x = x

| check3 == y = y
| check3 == z = z * z

where check3 = n `mod` 3
x = 0
y = 1
z = 2

• The scope of this where clause is over all three guards and their respective
right-hand sides. (Note that the where begins in the same column as the
= rather than to the right as in rev’.)

153



• Note the use of the modulo function mod as an infix operator. The back-
quotes (‘) around a function name denotes the infix use of the function.

In addition to making definitions easier to understand, local definitions can
increase execution efficiency in some cases. A local definition may introduce a
component into the expression graph that is shared among multiple branches.
Haskell uses graph reduction, so any shared component is evaluated once and
then replaced by its value for subsequent accesses.

The local variable check3 introduces a component shared among all three legs.
It is evaluated once for each call of g.

9.6 Using Other Languages
In this chapter, we have expressed the functions in Haskell, but they are adapted
from the classic textbook Structure and Interpretation of Computer Programs
(SICP) [1], which uses Scheme.

To compare languages, let’s examine the expt3 function in Scheme and other
languages.

9.6.1 Scheme

Below is the Scheme language program for exponentiation similar to to expt3
(called fast-expt in SICP [1]). Scheme, a dialect of Lisp, is an impure, eagerly
evaluated functional language with dynamic typing.

(define (expt3 b n)
(cond

((< n 0) (error `expt3 "Called with negative exponent"))
(else (expt_aux b n))))

(define (expt_aux b n)
(cond
((= n 0) 1)
((even? n) (square (expt3 b (/ n 2))))
(else (* b (expt3 b (- n 1))))))

(define (square x) (* x x))

(define (even? n) (= (remainder n 2) 0))

Scheme (and Lisp) represents both data and programs as s-expressions (nested
list structures) enclosed in balanced parentheses; that is, Scheme is homoiconic.
In the case of executable expressions, the first element of the list may be operator.
For example, consider:

(define (square x) (* x x))

The define operator takes two arguments:
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• a symbol being defined, in this case a function signature (square x) for a
function named square with one formal parameter named x

• an expression defining the value of the symbol, in this case the expression
(* x x) that multiplies formal parameter x by itself and returns the result

The define operator has the side effect of adding the definition of the symbol
to the environment. That is, square is introduced as a one argument function
with the value denoted by the expression (* x x).

The conditional expression cond gives an if-then-elseif expression that evaluates
a sequence of predicates until one evaluates to “true” value and then returns the
paired expression. The else at the end always evaluates to “true”.

The above Scheme code defines the functions square, the exponentiation function
expt3, and the logical predicate even? {.scheme}. It uses the primitive Scheme
functions -, *, /, remainder, and = (equality).

We can evaluate the Scheme expression (expt 2 10) using a Scheme interpreter
(as I did using DrRacket [71,72,140]) and get the value 1024.

Although Haskell and Scheme are different in many ways—algebraic versus s-
expression syntax, static versus dynamic typing, lazy versus eager evaluation (by
default), always pure versus sometimes impure functions, etc.—the fundamental
techniques we have examined in Haskell still apply to Scheme and other languages.
We can use a substitution model, consider preconditions and termination, use
tail recursion, and take advantage of first-class and higher-order functions.

Of course, each language offers a unique combination of features that can be
exploited in our programs. For example, Scheme programmers can leverage
its runtime flexibility and powerful macro system; Haskell programmers can
build on its safe type system, algebraic data types, pattern matching, and other
features.

The Racket Scheme [140] code for this subsection is in file expt3.rkt.

Let’s now consider other languages.

9.6.2 Elixir

The language Elixir [68,168] is a relatively new language that executes on the
Erlang platform (called the Erlang Virtual Machine or BEAM). Elixir is an
eagerly evaluated functional language with strong support for message-passing
concurrent programming. It is dynamically typed and is mostly pure except for
input/output. It has pattern-matching features similar to Haskell.

We can render the expt3 program into a sequential Elixir program as follows.

def expt3(b,n) when is_number(b) and is_integer(n)
and n >= 0 do

exptAux(b,n)

155

Ch09/expt3.rkt


end

defp exptAux(_,0) do 1 end

defp exptAux(b,n) do
if rem(n,2) == 0 do # i.e. even

exp = exptAux(b,div(n,2))
exp * exp # backward rec

else # i.e. odd
b * exptAux(b,n-1) # backward rec

end
end

This code occurs within an Elixir module. The def statement defines a function
that is exported from the module while defp defines a function that is private
to the module (i.e., not exported).

A definition allows the addition of guard clauses following when (although
they cannot include user-defined function calls because of restrictions of the
Erlang VM). In function expt3, we use guards to do some type checking in this
dynamically typed language and to ensure that the exponent is nonnegative.

Private function exptAux has two functions bodies. As in Haskell, the body is
selected using pattern matching proceeding from top to bottom in the module.
The first function body with the header exptAux(_,0) matches all cases in
which the second argument is 0. All other situations match the second header
exptAux(b,n) binding parameters b and n to the argument values.

The functions div and rem denote integer division and remainder, respectively.

The Elixir = operator is not an assignment as in imperative languages. It is a
pattern-match statement with an effect similar to let in the Haskell function.

Above the expression

exp = exptAux(b,div(n,2))

evaluates the recursive call and then binds the result to new local variable named
exp. This value is used in the next statement to compute the return value
exp * exp.

Again, although there are significant differences between Haskell and Elixir, the
basic thinking and programming styles learned for Haskell are also useful in Elixir
(or Erlang). These styles are also key to use of their concurrent programming
features.

The Elixir [68] code for this subsection is in file expt.ex.
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9.6.3 Scala

The language Scala [132,151] is a hybrid functional/object-oriented language
that executes on the Java platform (i.e., on the Java Virtual Machine or JVM).
Scala is an eagerly evaluated language. It allows functions to be written in a
mostly pure manner, but it allows intermixing of functional, imperative, and
object-oriented features. It has a relatively complex static type system similar
to Java, but it supports type inference (although weaker than that of Haskell).
It interoperates with Java and other languages on the JVM.

We can render the exponentiation function expt3 into a functional Scala program
as shown below. This uses the Java/Scala extended integer type BigInt for the
base and return values.

def expt3(b: BigInt, n: Int): BigInt = {

def exptAux(n1: Int): BigInt = // b known from outer
n1 match {

case 0 => 1
case m if (m % 2 == 0) => // i.e. even

val exp = exptAux(m/2)
exp * exp // backward rec

case m => // i.e. odd
b * exptAux(m-1) // backward rec

}

if (n >= 0)
exptAux(n)

else
sys.error ("Cannot raise to negative power " + n )

}

The body of function expt3 uses an if-else expression to ensure that the
exponent is non-negative and then calls exptAux to do the work.

Function expt3 encloses auxiliary function exptAux. For the latter, the para-
meters of expt3 are in scope. For example, exptAux uses b from expt3 as a
constant.

Scala supports pattern matching using an explicit match operator in the form:

selector match { alternatives }

It evaluates the selector expression and then choses the first alternative pattern
that matches this value, proceedings top to botton, left to right. We write the
alternative as

case pattern => expression

or with a guard as:
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case pattern if boolean_expression => expression

The expression may be a sequence of expressions. The value returned is the
value of the last expression evaluated.

In this example, the match in exptAux could easily be replaced by an if–else if–
else expression because it does not depend upon complex pattern matching.

In Haskell, functions are automatically curried. In Scala, we could alternatively
define expt3 in curried form using two argument lists as follows:

def expt3(b: BigInt)(n: Int): BigInt = ...

Again, we can use most of the functional programming methods we learn for
Haskell in Scala. Scala has a few advantages over Haskell such as the ability to
program in a multiparadigm style and interoperate with Java. However, Scala
tends to be more complex and verbose than Haskell. Some features such as type
inference and tail recursion are limited by Scala’s need to operate on the JVM.

The Scala [151] code for this subsection is in file exptBigInt2.scala.

9.6.4 Lua

Lua [104,116] is a minimalistic, dynamically typed, imperative language designed
to be embedded as a scripting language within other programs, such as computer
games. It interoperates well with standard C and C++ programs.

We can render the exponentiation function expt3 into a functional Lua program
as shown below.

local function expt3(b,n)

local function expt_aux(n) -- b known from outer
if n == 0 then

return 1
elseif n % 2 == 0 then -- i.e. even

local exp = expt_aux(n/2)
return exp * exp -- backward recursion

else -- i.e. odd
return b * expt_aux(n-1) -- backward recursion

end
end

if type(b) == "number" and type(n) == "number" and n >= 0
and n == math.floor(n) then

return expt_aux(n,1)
else

error("Invalid arguments to expt: " ..
tostring(b) .. "ˆ" .. tostring(n))
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end
end

Like the Scala version, we define the auxiliary function expt_aux inside of
function expt3, limiting its scope to the outer function.

This function uses with Lua version 5.2. In this and earlier versions, the only
numbers are IEEE standard floating point. As in the Elixir version, we make
sure the arguments are numbers with the exponent argument being nonnegative.
Given that the numbers are floating point, the function also ensures that the
exponent is an integer.

Auxiliary function expt_aux does the computational work. It differentiates
among the three cases using an if–elseif–else structure. Lua does not have a
switch statement or pattern matching capability.

Lua is not normally considered a functional language, but it has a number of
features that support functional programming—in particular, first-class and
higher order functions and tail call optimization.

In many ways, Lua is semantically similar to Scheme, but instead of having the
Lisp-like hierarchical list as its central data structure, Lua provides an efficient,
mutable, associative data structure called a table (somewhat like a hash table
or map in other languages). Lua does not support Scheme-style macros in the
standard language.

Unlike Haskell, Elixir, and Scala, Lua does not have builtin immutable data
structures or pattern matching. Lua programs tend to be relatively verbose. So
some of the usual programming idioms from functional languages do not fit Lua
well.

The Lua [116] code for this subsection is in file expt.lua.

9.6.5 Elm

Elm [60,70] is a new functional language intended primarily for client-side Web
programming. It is currently compiled into JavaScript, so some aspects are
limited by the target execution environment. For example, Elm’s basic types
are those of JavaScript. So integers are actually implemented as floating point
numbers.

Elm has a syntax and semantics that is similar to, but simpler than, Haskell. It
has a Haskell-like let construct for local definitions but not a where construct.
It also limits pattern matching to structured types.

Below is an Elm implementation of an exponentiation function similar to the
Haskell expt3 function, except it is limited to the standard integers Int. Operator
// denotes the integer division operation and % is remainder operator.

expt3 : Int -> Int -> Int
expt3 b n =
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let
exptAux m =

if m == 0 then
1

else if m % 2 == 0 then
let

exp = exptAux (m // 2)
in

exp * exp -- backward rec
else

b * exptAux (m-1) -- backward rec
in

if n < 0 then
0 -- error?

else
exptAux n

One semantic difference between Elm and Haskell is that Elm functions must
be total—that is, return a result for every possible input. Thus, this simple
function extends the definition of expt3 to return 0 for a negative power. An
alternative would be to have expt3 return a Maybe Int type instead of Int. We
will examine this feature in Haskell later.

The Elm [60] code for this subsection is in file expt.elm.

9.7 What Next?
As we have seen in this chapter, we can develop efficient programs using functional
programming and the Haskell language. These may require use to think about
problems and programming a bit differently than we might in an imperative
or object-oriented language. However, the techniques we learn for Haskell are
usually applicable whenever we use the functional paradigm in any language.
The functional way of thinking can also improve our programming in more
traditional imperative and object-oriented languages.

In Chapter 10, we examine simple input/output concepts in Haskell. In Chapters
11 and 12, we examine software testing concepts.

In subsequent chapters, we explore the list data structure and additional pro-
gramming techniques.

9.8 Chapter Source Code
The Haskell modules for the functions in this chapter are defined in the following
source files:

• the factorial functions in Factorial.hs (from Chapter 4)
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• the other Haskell functions in RecursionStyles.hs (with a simple test
script in file TestRecursionStyles.hs){type=“text/plain”}).

9.9 Exercises
1. Show the reduction of the expression fib 4 substitution model. (This is

repeated from the previous chapter.)

2. Show the reduction of the expression expt 4 3 using the substitution
model.

3. Answer the questions (precondition, postcondition, termination, time com-
plexity, space complexity) in the subsection about expt.

4. Answer the questions in the subsection about expt.

5. Answer the questions in the subsection about expt2.

6. Answer the questions in the subsection about expt3.

7. Develop a recursive function in Java, C#, Python 3, JavaScript, or C++
that has the same functionality as expt3.

8. Develop an iterative, imperative program in Java, C#, Python 3,
JavaScript, or C++ that has the same functionality as expt3.

For each of the following exercises, develop a Haskell program. For each function,
informally argue that it terminates and give Big-O time and space complexities.
Also identify any preconditions necessary to guarantee correct operation. Take
care that special cases and error conditions are handled in a reasonable way.

7. Develop a backward recursive function sumTo such that sumTo n computes
the sum of the integers from 1 to n for n >= 0.

8. Develop a tail recursive function sumTo' such that sumTo' n computes the
sum of the integers from 1 to n for n >= 0.

9. Develop a backward recursive function sumFromTo such that sumFromTo m n
computes the sum of the integers from m to n for m <= n.

10. Develop a tail recursive function sumFromTo' such that sumFromTo' m n
computes the sum of the integers from m to n for m <= n.

11. Suppose we have functions succ (successor) and pred (predecessor) defined
as follows:

succ, pred :: Int -> Int
succ n = n + 1
pred n = n - 1

Develop a function add such that add m n computes m + n. Function add
cannot use the integer addition or subtraction operations but can use the
succ ad pred functions above.
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12. Develop a function acker to compute Ackermann’s function, which is
function A defined in Table 9.1.

Table 9.1: Ackermann’s function.

A(m, n) = n + 1, if m = 0
A(m, n) = A(m− 1, 1), if m > 0 and n = 0
A(m, n) = A(m− 1, A(m, m− 1)), if m > 0 and n > 0

13. Develop a function hailstone to implement the function shown in Table
9.2.

Table 9.2: Hailstone function.

hailstone(n) = 1, if n = 1
hailstone(n) = hailstone(n/2), if n > 1, even n
hailstone(n) = hailstone(3 ∗ n + 1), if n > 1, odd n

Note that an application of the hailstone function to the argument 3
would result in the following “sequence” of “calls” and would ultimately
return the result 1.

hailstone 3
hailstone 10

hailstone 5
hailstone 16

hailstone 8
hailstone 4

hailstone 2
hailstone 1

For further thought: What is the domain of the hailstone function?

14. Develop the exponentiation function expt4 that is similar to expt3 but is
tail recursive.

15. Develop the following group of functions.

• test such that test a b c is True if and only if a <= b and no
integer is the range from a to b inclusive is divisible by c.

• prime such that prime n is True if and only if n is a prime integer.

• nextPrime such that nextPrime n returns the next prime integer
greater than n

16. Develop function binom to compute binomial coefficients. That is,
binom n k returns

(
n
k

)
for integers n >= 0 and 0 <= k <= n.
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10 Simple Input and Output (FUTURE)
10.1 Chapter Introduction
This is a stub for a possible future chapter. The Haskell Wikibook [179] Simple
input and output page discusses the concepts sufficient for the purposes of this
point in the textbook.

10.2 What Next?
TODO

10.3 Exercises
TODO

10.4 Acknowledgements
TODO

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

10.5 Terms and Concepts
TODO
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11 Software Testing Concepts
11.1 Chapter Introduction
The goal of this chapter (11) is to survey the important concepts, terminology,
and techniques of software testing in general.

Chapter 12 illustrates these techniques by manually constructing test scripts for
Haskell functions and modules.

11.2 Software Requirements Specification
The purpose of a software development project is to meet particular needs and
expectations of the project’s stakeholders.

By stakeholder, we mean any person or organization with some interest in the
project’s outcome. Stakeholders include entities that:

• have a “business” problem needing a solution—the project’s sponsors,
customers, and users

• care about the broad impacts of the project and its solution—that laws,
regulations, standards, best practices, codes of conduct, etc., are followed

• are responsible for the development, deployment, operation, support, and
maintenance of the software

A project’s stakeholders should create a software requirements specification to
state the particular needs and expectations to be addressed.

A software requirements specification seeks to comprehensively describe the
intended behaviors and environment of the software to be developed. It should
address the “what” but not the “how”. For example, the software requirements
specification should describe the desired mapping from inputs to outputs but
not unnecessarily restrict the software architecture, software design, algorithms,
data structures, programming languages, and software libraries that can be used
to implement the mapping.

Once the requirements are sufficiently understood, the project’s developers
then design and implement the software system: its software architecture, its
subsystems, its modules, and its functions and procedures.

Software testing helps ensure that the software implementation satisfies the
design and that the design satisfies the stakeholder’s requirements.

Of course, the requirements analysis, design, and implementation may be an
incremental. Software testing can also play a role in identifying requirements
and defining appropriate designs and implementations.
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11.3 What is Software Testing?
According to the Collins English Dictionary [35]:

A test is a deliberate action or experiment to find out how well
something works.

The purpose of testing a program is to determine “how well” the program
“works”—to what extent the program satisfies its software requirements specifi-
cation.

Software testing is a “deliberate” process. The tests must be chosen effectively
and conducted systematically. In most cases, the test plan should be documented
carefully so that the tests can be repeated precisely. The results of the tests
should be examined rigorously.

In general, the tests should be automated. Testers can use manually written
test scripts (as we do in the Chapter 12) or appropriate testing frameworks
[126] (e.g., JUnit [166,174] in Java, Pytest [113,133] in Python, and HUnit [90],
QuickCheck [89], or Tasty [91] in Haskell).

Testers try to uncover as many defects as possible, but it is impossible to identify
and correct all defects by testing. Testing is just one aspect of software quality
assurance.

11.4 Goals of Testing
Meszaros [126, Ch. 3] identifies several goals of test automation. These apply
more generally to all software testing. Tests should:

• help improve software quality

• help software developers understand the system being tested

• reduce risk

• be easy to develop

• be easy to conduct repeatedly

• be easy to maintain as the system being tested continues to evolve

11.5 Dimensions of Testing
We can organize software testing along three dimensions [161]:

• testing levels
• testing methods
• testing types

We explore these in the following subsections.
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11.5.1 Testing levels

Software testing levels categorize tests by the applicable stages of software
development.

Note: The use of the term “stages” does not mean that this approach is only
applicable to the traditional waterfall software development process. These
stages describe general analysis and design activities that must be carried out
however the process is organized and documented.

Ammann and Offutt [2] identify five levels of testing, as shown in Figure 11.1.
Each level assumes that the relevant aspects of the level below have been
completed successfully.

From the highest to the lowest, the testing levels are as follows.

1. Acceptance testing focuses on testing a completed system to determine
whether it satisfies the software requirements specification and to assess
whether the system is acceptable for delivery.

The acceptance test team must include individuals who are strongly familiar
with the business requirements of the stakeholders.

2. System testing focuses on testing an integrated system to determine whether
it satisfies its overall specification (i.e., the requirements as reflected in the
chosen software architecture).

The system test team is usually separate from the development team.

3. Integration testing focuses on testing each subsystem to determine whether
its constituent modules communicate as required. For example, do the
modules have consistent interfaces (e.g., compatible assumptions and
contracts)?

A subsystem is often constructed by using existing libraries, adapting
previously existing modules, and combining these with a few new modules.
It is easy to miss subtle incompatibilities among the modules. Integration
testing seeks to find any incompatibilities among the various modules.

Integration testing is often conducted by the development team.

4. Module testing focuses on the structure and behavior of each module
separately from the other modules with which it communicates.

A module is usually composed of several related units and their associ-
ated data types and data structures. Module testing assesses whether
the units and other features interact as required and assess whether the
module satisfies its specification (e.g., its preconditions, postconditions,
and invariants).

Note: Here we use the term “module” generically. For example, a module
in Java might be a class, package, or module (in Java 9) construct. A
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Figure 11.1: Software testing levels.
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module in Python 3 might be a code file (i.e., module) or a directory
structure of code files (i.e., package). In Haskell, a generic module might
be represented as a closely related group of Haskell module files.

Module testing is typically done by the developer(s) of a module.

5. Unit testing focuses on testing the implementation of each program unit
to determine whether it performs according to the unit’s specification.

The term “unit” typically refers to a procedural abstraction such as a
function, procedure, subroutine, or method.

A unit’s specification is its “contract”, whether represented in terms of
preconditions and postconditions or more informally.

Unit testing is typically the responsibility of the developer(s) of the unit.

In object-based systems, the units (e.g., methods) and the modules (e.g., objects
or classes) are often tightly coupled. In this and similar situations, developers
often combine unit testing and module testing into one stage called unit testing
[2,161].

In this book, we are primarily concerned with the levels usually conducted by
the developers: unit, module, and integration testing.

11.5.2 Testing methods

Software testing methods categorize tests by how they are conducted. The
Software Testing Fundamentals website [161] identifies several methods for
testing. Here we consider four:

• black-box testing
• white-box testing
• gray-box testing
• ad hoc testing

In this book, we are primarily concerned with black-box and gray-box testing.
Our tests are guided by the contracts and other specifications for the unit,
module, or subsystem being tested.

11.5.2.1 Black-box testing In black-box testing, the tester knows the ex-
ternal requirements specification (e.g., the contract) for the item being tested
but does not know the item’s internal structure, design, or implementation.

Note: This method is sometimes called closed-box or behavioral testing.

This method approaches the system much as a user does, as a black box whose
internal details are hidden from view. Using only the requirements specification
and public features of the item, the testers devise tests that check input values
to make sure the system yields the expected result for each. They use the item’s
regular interface to carry out the tests.
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Black-box tests are applicable to testing at the higher levels—integration, systems,
and acceptance testing—and for use by external test teams.

The method is also useful for unit and module testing, particularly when we
wish to test the item against an abstract interface with an explicit specification
(e.g., a contract stated as preconditions, postconditions, and invariants).

How do we design black-box tests? Let’s consider the possible inputs to the
item.

Input domain An item being tested has some number of input parameters—
some explicit, others implicit. Each parameter has some domain of possible
values.

The input domain of the item thus consists of the Cartesian product of the
individual domains of its parameters. A test input is thus a tuple of values, one
possible value for each parameter [2].

For example, consider testing a public instance method in a Java class. The
method has zero or more explicit parameters, one implicit parameter (giving
the method access to all the associated instance’s variables), and perhaps direct
access to variables outside its associated instance (static variables, other instances’
variables, public variables in other classes, etc.).

In most practical situations, it is impossible to check all possible test inputs.
Thus, testers need to choose a relatively small, finite set of input values to test.
But how?

Choosing test inputs In choosing test inputs, the testers can fruitfully apply
the following techniques [69,126,139].

• Define equivalence classes (or partitions) of the possible inputs based on
the kinds of behaviors of interest and then choose representative members
of each class.

After studying the requirements specification for the item being tested, the
tester first groups together inputs that result in the “same” behaviors of
interest and then chooses typical representatives of each group for tests
(e.g., from the middle of the group).

The representative values are normal use or “happy path” cases that are
not usually problematic to implement [2].

For example, consider the valid integer values for the day of a month (on
the Gregorian calendar as used in the USA). It may be useful to consider
the months falling into three equivalence classes: 31-day months, 30-day
months, and February.

• Choose boundary values—values just inside and just outside the edges of an
equivalence class (as defined above) or special values that require unusual
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handling.

Unlike the “happy path” tests, the boundary values often are values that
cause problems [2].

For example, consider the size of a data structure being constructed. The
boundary values of interest may be zero, one, minimum allowed, maximum
allowed, or just beyond the minimum or maximum.

For a mathematical function, a boundary value may also be at or near a
value for which the function is undefined or might result in a nonterminating
computation.

• Choose input values that cover the range of expected results.

This technique works from the output back toward the input to help ensure
that important paths through the item are handled properly.

For example, consider transactions on a bank account. The action might
be a balance inquiry, which returns information but does not change the
balance in the account. The action might be a deposit, which results in
a credit to the account. The action might be a withdrawal, which either
results in a debit or triggers an insufficient funds action. Tests should cover
all four cases.

• Choose input values based on the model used to specify the item (e.g.,
state machine, mathematical properties, invariants) to make sure the item
implements the model appropriately.

For example, a data abstraction should establish and preserve the invariants
of the abstraction (as shown in the Rational arithmetic case study in
Chapter 7).

Black-box testers often must give attention to tricky practical issues such as
appropriate error handling and data-type conversions.

11.5.2.2 White-box testing In white-box testing, the tester knows the
internal structure, design, and implementation of the item being tested as well
as the external requirements specification.

Note: This method is sometimes called open-box, clear-box transparent-box,
glass box, code-based, or structural testing.

This method seeks to test every path through the code to make sure every input
yields the expected result. It may use code analysis tools [2] to define the tests
or special instrumentation of the item (e.g., a testing interface) to carry out the
tests.

White-box testing is most applicable to unit and module testing (e.g., for use by
the developers of the unit), but it can also be used for integration and system
testing.
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11.5.2.3 Gray-box testing In gray-box testing, the tester has partial knowl-
edge of the internal structure, design, and requirements of the item being tested
as well as the external requirements specification.

Note: “Gray” is the typical American English spelling. International or British
English spells the word “grey”.

Gray-box testing combines aspects of black-box and white-box testing. As
in white-box testing, the tester can use knowlege of the internal details (e.g.,
algorithms, data structures, or programming language features) of the item being
tested to design the test cases. But, as in black-box testing, the tester conducts
the tests through the item’s regular interface.

This method is primarily used for integration testing, but it can be used for the
other levels as well.

11.5.2.4 Ad hoc testing In ad hoc testing, the tester does not plan the
details of the tests in advance as is typically done for the other methods. The
testing is done informally and randomly, improvised according the creativity and
experience of the tester. The tester strives to “break” the system, perhaps in
unexpected ways.

This method is primarily used at the acceptance test level. It may be carried
out by someone from outside the software development organization on behalf
of the client of a software project.

11.5.3 Testing types

Software testing types categorize tests by the purposes for which they are con-
ducted. The Software Testing Fundamentals website [161] identifies several types
of testing:

• Smoke testing seeks to ensure that the primary functions work. It uses of
a non-exhaustive set of tests to “smoke out” any major problems.

• Functional testing seeks to ensure that the system satisfies all its functional
requirements. (That is, does a given input yield the correct result?)

• Usability testing seeks to ensure that the system is easily usable from the
perspective of an end-user.

• Security testing seeks to ensure that the system’s data and resources are
protected from possible intruders by revealing any vulnerabilities in the
system

• Performance testing seeks to ensure that the system meets its performance
requirements under certain loads.

• Regression testing seeks to ensure that software changes (bug fixes or
enhancements) do not break other functionality.
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• Compliance testing seeks to ensure the system complies to required internal
or external standards.

In this book, we are primarily interested in functional testing.

11.5.4 Combining levels, methods, and types

A tester can conduct some type of testing during some stage of software develop-
ment using some method. For example,

• a test team might conduct functional testing (a type) at the system testing
level using the black-box testing method to determine whether the system
performs correctly

• a programmer might do smoke testing (a type) of the code at the module
testing level using the white-box testing method to find and resolve major
shortcomings before proceeding with more complete functional testing

As noted above, in this book we are primarily interested in applying functional
testing (type) techniques at the unit, module, or integration testing levels using
black-box or gray-box testing methods. We are also interested in automating our
tests.

11.6 Aside: Test-Driven Development
The traditional software development process follows a design-code-test cycle.
The developers create a design to satisfy the requirements, then implement the
design as code in a programming language, and then test the code.

Test-driven development (TDD) reverses the traditional cycle; it follows a test-
code-design cycle instead. It uses a test case to drive the writing of code that
satisfies the test. The new code drives the restructuring (i.e., refactoring) of the
code base to evolve a good design. The goal is for the design and code to grow
organically from the tests [10,112].

Beck describes the following “algorithm” for TDD [10].

1. Add a test for a small, unmet requirement.

If there are no unmet requirements, stop. The program is complete.

2. Run all the tests.

If no tests fail, go to step 1.

3. Write code to make a failing test succeed.

4. Run all the tests.

If any test fails, go to step 3.

5. Refactor the code to create a “clean” design.
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6. Run all the tests.

If any test fails, go to step 3.

7. Go to step 1 to start a new cycle.

Refactoring [77] (step 5) is critical for evolving good designs and good code. It
involves removing duplication, moving code to provide a more logical structure,
splitting apart existing abstractions (e.g., functions, modules, and data types),
creating appropriate new procedural and data abstractions, generalizing constants
to variables or functions, and other code transformations.

TDD focuses on functional-type unit and module testing using black-box and
gray-box methods. The tests are defined and conducted by the developers, so
the tests may not cover the full functional requirements needed at the higher
levels. The tests often favor “happy path” tests over possible error cases [2].

This book presents programming language concepts using mostly small programs
consisting of a few functions and modules. The book does not use TDD techniques
directly, but it promotes similar rigor in analyzing requirements. As we have
seen in previous chapters, this book focuses on design using contracts (i.e.,
preconditions, postconditions, and invariants), information-hiding modules, pure
functions, and other features we study in later chapters.

As illustrated in Chapter 12, these methods are also compatible with functional-
type unit and module testing using black-box and gray-box methods.

11.7 Principles for Test Automation
Based on earlier work on the Test Automation Manifesto [127], Meszaros proposes
several principles for test automation [126, Ch. 5]. These focus primarily on
unit and module testing. The principles include the following:

1. Write the tests first.

This principle suggests that developers should use Test-Driven Development
(TDD) [10] as described in Section 11.6.

2. Design for testability.

Developers should consider how to test an item while the item is being
designed and implemented. This is natural when TDD is being used, but,
even if TDD is not used, testability should be an important consideration
during design and implementation. If code cannot be tested reliably, it is
usually bad code.

The application of this principle requires judicious use of the abstraction
techniques, such as those illustrated in Chapters 6 and 7 and in later
chapters.

3. Use the front door first.
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Testing should be done primarily through the standard public interface of
the item being tested. A test involves invoking a standard operation and
then verifying that the operation has the desired result. (In terms of the
testing methods described in Section 11.5.2, this principle implies use of
black-box and gray-box methods.)

Special testing interfaces and operations may sometimes be necessary, but
they can introduce new problems. They make the item being tested more
complex and costly to maintain. They promote unintentional (or perhaps
intentional) overspecification of the item. This can limit future changes to
the item—or at least it makes future changes more difficult.

Note: Overspecification means imposing requirements on the software
that are not explicitly needed to meet the users’ actual requirements. For
example, a particular order may be imposed on a sequence of data or
activities when an arbitrary order may be sufficient to meet the actual
requirements.

4. Communicate intent.

As with any other program, a test program should be designed, imple-
mented, tested, and documented carefully.

However, test code is often more difficult to understand than other code
because the reader must understand both the test program and the item
being tested. The “big picture” meaning is often obscured by the mass of
details.

Testers should ensure they communicate the intent of a set of tests. They
should use a naming scheme that reveals the intent and include appropriate
comments. They should use standard utility procedures from the testing
framework or develop their own utilities to abstract out common activities
and data.

5. Don’t modify the system under test.

Testers should avoid modifying a “completed” item to enable testing. This
can break existing functionality and introduce new flaws. Also, if the tests
are not conducted on the item to be deployed, then the results of the tests
may be inaccurate or misleading.

As noted in principles above, it is better to “design for testability” from
the beginning so that tests can be conducted through “the front door” if
possible.

6. Keep tests independent.

A test should be designed and implemented to be run independently of all
other tests of that unit or module. It should be possible to execute a set
of tests in any order, perhaps even concurrently, and get the same results
for all tests.
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Thus each automated test should set up its needed precondition state,
run the test, determine whether the test succeeds or fails, and ensure no
artifacts created by the test affect any of the other tests.

If one item depends upon the correct operation of a second item, then it
may be useful to test the second item fully before testing the first. This
dependency should be documented or enforced by the testing program.

7. Isolate the system under test.

Almost all programs depend on some programming language, its standard
runtime library, and basic features of the underlying operating system.
Most modern software depends on much more: the libraries, frameworks,
database systems, hardware devices, and other software that it uses.

As much as possible, developers and testers should isolate the system
being tested from other items not being tested at that time. They should
document the versions and configurations of all other items that the system
under test depends on. They should ensure the testing environment controls
(or at least records) what versions and configurations are used.

As much as practical, the software developers should encapsulate criti-
cal external dependencies within information-hiding components. This
approach helps the developers to provide stable behavior over time. If
necessary, this also enables the testers to substitute a “test double” for a
problematic system.

A test double is a “test-specific equivalent” [126, Ch. 11, Ch. 23] that is
substituted for some component upon which the system under test depends.
It may replace a component that is necessary but which is not available for
safe use in the testing environment. For example, testers might be testing
on system that interacts with another that has not yet been developed.

8. Minimize test overlap.

Tests need to cover as much functionality of a system as possible, but it
may be counterproductive to test the same functionality more than once.
If the code for that functionality is defective, it likely will cause all the
overlapping tests to fail. Following up on the duplicate failures takes time
and effort that can better be invested in other testing work.

9. Minimize untestable code.

Some components cannot be tested fully using an automated test program.
For example, code in graphical user interfaces (GUIs), in multithreaded
programs, or in test programs themselves are embedded in contexts that
may not support being called by other programs.

However, developers can design the system so that as much as possible is
moved to separate components that can be tested in an automated fashion.
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For example, a GUI can perhaps be designed as a “thin” interactive layer
that sets up calls to an application programming interface (API) to carry
out most of the work. In addition to being easier to test, such an API may
enable other kinds of interfaces in addition to the GUI.

10. Keep test logic out of production code.

As suggested above, developers should “design for testability” through “the
front door”. Code should be tested in a configuration that is as close as
possible to the production configuration.

Developers and testers should avoid inserting special test hooks into the
code (e.g., if testing then doSomething) that will not be active in
the production code. In addition to distorting the tests, such hooks can
introduce functional or security flaws into the production code and make
the program larger, slower, and more difficult to understand.

11. Verify one condition per test.

If one test covers multiple conditions, it may be nontrivial to determine
the specific condition causing a failure. This is likely not a problem with a
manual test carried out by a human; it may be an efficient use of time to
do fewer, broader tests.

However, tests covering multiple conditions are an unnecessary compli-
cation for inexpensive automated tests. Each automated test should be
“independent” of others, do its own setup, and focus on a single likely cause
of a failure. ”

12. Test concerns separately.

The behavior of a large system consists of many different, “small” behaviors.
Sometimes a component of the system may implement several of the “small”
behaviors. Instead of focusing a test on broad concerns of the entire system,
testers should focus a test on a narrow concern. The failure of such a test
can help pinpoint where the problem is.

The key here is to “pull apart” the overall behaviors of the system to
identify “small” behaviors that can be tested independently.

13. Ensure commensurate effort and responsibility.

Developing test code that follows all of these principles can exceed the time
it took to develop the system under test. Such an imbalance is bad. Testing
should take approximately the same time as design and implementation.

The developers may need to devote more time and effort to “designing for
testability” so that testing becomes less burdensome.

The testers may need to better use existing tools and frameworks to avoid
too much special testing code. The testers should consider carefully which
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tests can provide useful information and which do not. There is no need
for a test if it does not help reduce risk.

11.8 What Next?
This chapter (11) surveyed software testing concepts. Chapter 12 applies them
to testing Haskell modules from Chapters 4 and 7.

11.9 Exercises
TODO

11.10 Acknowledgements
I wrote this chapter in Summer 2018 for the 2018 version of the textbook
Exploring Languages with Interpreters and Functional Programming.

• The discussion of the dimensions of software testing — levels, methods, and
types — draws on the discussion on the Software Testing Fundamentals
website [161] and other sources [2,16,69,139].

• The presentation of the goals and principles of test automation draws on
the ideas of Meszaros [126,127].

• The description of Test-Driven Development (TDD) “algorithm” is adapted
from that of Beck [10] and Koskela [112].
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I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
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11.11 Terms and Concepts
Stakeholder, software requirements specification, test, test plan, testing dimen-
sions (levels, methods, types), testing levels (unit, module, integration, system,
and acceptance testing), testing methods (black-box, white-box, gray-box, and
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data-type conversions, testing types (smoke testing, functional testing, usability
testing, security testing, performance testing, regression testing, compliance
testing), test-driven development (TDD), design-code-test vs. test-code-design.
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12 Testing Haskell Programs
12.1 Chapter Introduction
The goal of this chapter (12)is to illustrate the testing techniques by manually
constructing test scripts for Haskell functions and modules. It builds on the
concepts and techniques surveyed in Chapter 11.

We use two testing examples in this chapter:

• the group of factorial functions from Chapters 4 and 9

The series of tests can be applied any of the functions.

• the rational arithmetic modules from Chapter 7

12.2 Organizing Tests
Testers commonly organize unit tests on a system using the Arrange-Act-Assert
pattern [10,112].

1. Arrange: Select input values from the input domain and construct appro-
priate “objects” to use in testing the test subject.

2. Act: Apply some operation from the test subject to appropriate input
“objects”.

3. Assert: Determine whether or not the result satisfies the specification.

Each test should create the test-specific input “objects” it needs and remove
those and any result “objects” that would interfere with other tests.

Note: In this chapter, we use the word “object” in a general sense of any data
entity, not in the specific sense defined for object-based programming.

12.3 Testing Functions
In terms of the dimensions of testing described in Chapter 11, this section
approaches testing of a group of Haskell functions as follows.

Testing level: unit testing of each Haskell function
Testing method: primarily black-box testing of each Haskell function relative

to its specification
Testing type: functional testing of each Haskell function relative to its specifi-

cation

12.3.1 Factorial example

As an example, consider the set of seven factorial functions developed in Chapters
4 and 9 (in source file Factorial.hs). All have the requirement to implement
the mathematical function
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fact(n) =
∏i=n

i=1 i

for any n ≥ 0. The specification is ambiguous on what should be the result of
calling the function with a negative argument.

12.3.2 Arrange

To carry out black-box testing, we must arrange our input values. The factorial
function tests do not require any special testing “objects”.

We first partition the input domain. We identify two equivalence classes of
inputs for the factorial function:

1. the set of nonnegative integers for which the mathematical function is
defined and the Haskell function returns that value within the positive Int
range

2. the set of nonnegative integers for which the mathematical function is
defined but the Haskell function returns a value that overflows the Int
range

The class 2 values result are errors, but integer overflow is typically not detected
by the hardware.

We also note that the negative integers are outside the range of the specification.

Next, we select the following values inside the “lower” boundary of class 1 above:

• 0, empty case at the lower boundary
• 1, smallest nonempty case at the lower boundary

Then we choose representative values within class 1:

• 2, one larger than the smallest nonempty case
• 5, arbitrary value representative of values away from the boundary

Note: The choice of two representative values might be considered a violation of
the “minimize test overlap” principle from Chapter 11. So it could be acceptable
to drop the input of 2. Of course, we could argue that we should check 2 as a
possible boundary value.

We also select the value -1, which is just outside the lower boundary implied by
the n ≥ 0 requirement.

All of the factorial functions have the type signature (where N is 1, 2, 3, 4, 4',
5, or 6):

factN :: Int -> Int

Thus the factN functions also have an “upper” boundary that depends on the
maximum value of the Int type on a particular machine. The author is testing
these functions on a machine with 64-bit, two’s complement integers. Thus the
largest integer whose factorial is less than 263 is 20.
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We thus select input the following input values:

• 20, which is just inside the upper boundary of class 1

• 21, which is just outside class 1 and inside class 2

12.3.3 Act

We can test a factorial function at a chosen input value by simply applying the
function to the value such as the following:

fact1 0

A Haskell function has no side effects, so we just need to examine the integer
result returned by the function to determine whether it satisfies the function’s
specification.

12.3.4 Assert

We can test the result of a function by stating a Boolean expression—an assertion—
that the value satisfies some property that we want to check.

In simple cases like the factorial function, we can just compare the actual result
for equality with the expected result. If the comparison yields True, then the
test subject “passes” the test.

fact1 0 == 1

12.3.5 Aggregating into test script

There are testing frameworks for Haskell (e.g., HUnit [90], QuickCheck [89], or
Tasty [91]), but, in this section, we manually develop a simple test script.

We can state a Haskell IO program to print the test and whether or not it passes
the test. (Simple input and output will eventually be discussed in a Chapter 10.
For now, see the Haskell Wikibooks [179] page on “Simple input and output”.)

Below is a Haskell IO script that tests class 1 boundary values 0 and 1 and
“happy path” representative values 2 and 5.

pass :: Bool -> String
pass True = "PASS"
pass False = "FAIL"

main :: IO ()
main = do

putStrLn "\nTesting fact1"
putStrLn ("fact1 0 == 1: " ++ pass (fact1 0 == 1))
putStrLn ("fact1 1 == 1: " ++ pass (fact1 1 == 1))
putStrLn ("fact1 2 == 2: " ++ pass (fact1 2 == 2))
putStrLn ("fact1 5 == 120: " ++ pass (fact1 5 == 120))
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The do construct begins a sequence of IO commands. The IO command putStrLn
outputs a string to the standard output followed by a newline character.

Testing a value below the lower boundary of class 1 is tricky. The specification
does not require any particular behavior for -1. As we saw in Chapter 4, some
of the function calls result in overflow of the runtime stack, some fail because all
of the patterns fail, and some fail with an explicit error call. However, all these
trigger a Haskell exception.

Our test script can catch these exceptions using the following code.

putStrLn ("fact1 (-1) == 1: "
++ pass (fact1 (-1) == 1))

`catch` (\(StackOverflow)
-> putStrLn ("[Stack Overflow] (EXPECTED)"))

`catch` (\(PatternMatchFail msg)
-> putStrLn ("[Pattern Match Failure]\n...."

++ msg))
`catch` (\(ErrorCall msg)

-> putStrLn ("[Error Call]\n...." ++ msg))

To catch the exceptions, the program needs to import the module
Control.Exception from the Haskell library.

import Prelude hiding (catch)
import Control.Exception

By catching the exception, the test program prints an appropriate error message
and then continues with the next test; otherwise the program would halt when
the exception is thrown.

Testing an input value in class 2 (i.e., outside the boundary of class 1) is also
tricky.

First, the values we need to test depend on the default integer (Int) size on the
particular machine.

Second, because the actual value of the factorial is outside the Int range, we
cannot express the test with Haskell Ints. Fortunately, by converting the values
to the unbounded Integer type, the code can compare the result to the expected
value.

The code below tests input values 20 and 21.

putStrLn ("fact1 20 == 2432902008176640000: "
++ pass (toInteger (fact1 20) ==

2432902008176640000))
putStrLn ("fact1 21 == 51090942171709440000: "

++ pass (toInteger (fact1 21) ==
51090942171709440000)

++ " (EXPECT FAIL for 64-bit Int)" )
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The above is a black-box unit test. It is not specific to any one of the seven
factorial functions defined in Chapters 4 and 9. (These are defined in the source
file Factorial.hs.) The series of tests can be applied any of the functions.

The test script for the entire set of functions from Chapters 4 and 9 (and others)
are in the source file TestFactorial.hs.

12.4 Testing Modules
In terms of the dimensions of testing described in Chapter 11, this section
approaches testing of Haskell modules as follows.

Testing level: module-level testing of each Haskell module
Testing method: primarily black-box testing of each Haskell module relative

to its specification
Testing type: functional testing of each Haskell module relative to its specifi-

cation

Normally, module-level testing requires that unit-level testing be done for each
function first. In cases where the functions within a module are strongly coupled,
unit-level and module-level testing may be combined into one phase.

12.4.1 Rational arithmetic modules example

For this section, we use the rational arithmetic example from Chapter 7.

In the rational arithmetic example, we define two abstract (information-hiding)
modules: RationalRep and Rational.

Given that the Rational module depends on the RationalRep module, we first
consider testing the latter.

12.4.2 Data representation modules

Chapter 7 defines the abstract module RationalRep and presents two distinct
implementations, RationalCore and RationalDeferGCD. The two implementa-
tions differ in how the rational numbers are represented using data type Rat.
(See source files RationalCore.hs and RationalDeferGCD.hs.)

Consider the public function signatures of RationalRep (from Chapter 7):

makeRat :: Int -> Int -> Rat
numer :: Rat -> Int
denom :: Rat -> Int
zeroRat :: Rat
showRat :: Rat -> String

Because the results of makeRat and zeroRat and the inputs to numer, denom,
and showRat are abstract, we cannot test them directly as we did the factorial
functions Section 12.3. For example, we cannot just call makeRat with two
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integers and compare the result to some specific concrete value. Similarly, we
cannot test numer and denom directly by providing them some specific input
value.

However, we can test both through the abstract interface, taking advantages of
the interface invariant.

RationalRep Interface Invariant (from Chapter 7):

: For any valid Haskell rational number r, all the following hold:

- `r`{.haskell} $\in$ `Rat`{.haskell}
- `denom r > 0`{.haskell}
- if `numer r == 0`{.haskell}, then `denom r == 1`{.haskell}
- `numer r`{.haskell} and `denom r`{.haskell} are relatively prime
- the (mathematical) rational number value is

$\frac{\texttt{numer r}}{\texttt{denom r}}$

The invariant allows us to check combinations of the functions to see if they give
the expected results. For example, suppose we define x' and y' as follows:

x' = numer (makeRat x y)
y' = denom (makeRat x y)

Then the interface invariant and contracts for makeRat, numer, and denom allow
us to infer that the (mathematical) rational number values x’

y’ and x
y are equal.

This enables us to devise pairs of test assertions such as

numer (makeRat 1 2) == 1
denom (makeRat 1 2) == 2

and

numer (makeRat 4 (-2)) == -2
denom (makeRat 4 (-2)) == 1

to indirectly test the functions in terms of their interactions with each other.
All the tests above should succeed if the module is designed and implemented
according to its specification.

Similarly, we cannot directly test the private functions signum', abs', and gcd'.
But we try to choose inputs the tests above to cover testing of these functions.
(Private functions should be tested as the module is being developed to detect
any more problems.)

12.4.2.1 Arrange To conduct black-box testing, we must arrange the input
values we wish to test. The module tests do not require any special test objects,
but each pair of tests both create a Rat object with makeRat and select its
numerator and denominator with numer and denom.
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However, for convenience, we can define the following shorter names for constants:

maxInt = (maxBound :: Int)
minInt = (minBound :: Int)

TODO: Draw a diagram as discussed

Each pair of tests has two Int parameters—the x and y parameters of makeRat.
Thus we can visualize the input domain as the integer grid points on an x-y
coordinate plane using the usual rectangular layout from high school algebra.

We note that any input x-y value along the x-axis does not correspond to a
rational number; the pair of integer values does not satisfy the precondition for
makeRat and thus result in an error exception.

For the purposes of our tests, we divide the rest of the plane into the following
additional partitions (equivalence classes):

• the y-axis

Input arguments where x == 0 may require special processing because of
the required unique representation for rational number zero.

• each quadrant of the plane (excluding the axes)

The x-y values in different quadrants may require different processing to
handle the y > 0 and “relatively prime” aspects of the interface invariant.

Given that the module uses the finite integer type Int, we bound the
quadrants by the maximum and minimum integer values along each axis.

We identify the following boundary values for special attention in our tests.

• Input pairs along the x-axis are outside any of the partitions.

• Input pairs composed of integer values 0, 1, and -1 are on the axes or just
inside the “corners” of the quadrants . In addition, these are special values
in various mathematical properties.

• Input pairs composed of the maximum Int (maxInt) and minimum Int
(minInt) values may be near the outer bounds of the partitions.

Note: If the machine’s integer arithmetic uses the two’s complement
representation, then minInt can cause a problem with overflow because
its negation is not in Int. Because of overflow, -minInt == minInt. So
we should check both minInt and -maxInt in most cases.

In addition, we identify representative values for each quadrant. Although we
do not partition the quadrants further, in each quadrant we should choose some
input values whose (mathematical) rational number values differ and some whose
values are the same.

Thus we choose the following (x,y) input pairs for testing:

• (0,0), (1,0), and (-1,0) as error inputs along the x-axis
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• (0,1), (0,-1), (0,9), and (0,-9) as inputs along the y-axis

• (1,1), (9,9), and (maxInt,maxInt) as inputs from the first quadrant and
(-1,-1), (-9,-9), and (-maxInt,-maxInt) as inputs from the third quadrant,
all of whom have the same rational number value 1

1 .

We also test input pairs (minInt,minInt) and (-minInt,-minInt), cog-
nizant that the results might depend upon the machine’s integer represen-
tation.

• (-1,1), (-9,9), and (-maxInt,maxInt) as inputs from the second quadrant and
(1,-1), (9,-9), and (maxInt,-maxInt) as inputs from the fourth quadrant,
all of whom have the same rational number value − 1

1 .

We also test input pairs (-minInt,minInt) and (minInt,-minInt), cog-
nizant that the results might depend upon the machine’s integer represen-
tation.

• (3,2) and (12,8) as inputs from the first quadrant and (-3,-2) and (-12,-8)
as inputs from the third quadrant, all of whom have the same rational
number value 3

2 .

• (-3,2) and (-12,8) as inputs from the second quadrant and (3,-2) and (12,-8)
as inputs from the fourth quadrant, all of whom have the same rational
number value − 3

2 .

• (maxInt,1), (maxInt,-1), (-maxInt,1) and (-maxInt,-1) as input values in
the “outer corners” of the quadrants.

We also test input pairs (minInt,1) and (minInt,-1), cognizant that the
results might depend upon the machine’s integer representation.

12.4.2.2 Act As we identified in the introduction to this example, we must
carry out a pair of actions in our tests. For example,

numer (makeRat 12 8)

and

denom (makeRat 12 8)

for the test of the input pair (12,8).

Note: The code above creates each test object (e.g., makeRat 12 8) twice. These
could be created once and then used twice to make the tests run slightly faster.

12.4.2.3 Assert The results of the test actions must then be examined
to determine whether they have the expected values. In the case of the
makeRat-numer-denom tests, it is sufficient to compare the result for equal-
ity with the expected result. The expected result must satisfy the interface
invariant.
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For the two actions listed above, the comparison are

numer (makeRat 12 8) == 3

and

denom (makeRat 12 8) == 2

for the test of the input pair (12,8).

12.4.2.4 Aggregate into test script As with the factorial functions in
Section 12.3, we can bring the various test actions together into a Haskell IO
program. The excerpt below shows some of the tests.

pass :: Bool -> String
pass True = "PASS"
pass False = "FAIL"

main :: IO ()
main =

do
-- Test 3/2
putStrLn ("numer (makeRat 3 2) == 3: " ++

pass (numer (makeRat 3 2) == 3))
putStrLn ("denom (makeRat 3 2) == 2: " ++

pass (denom (makeRat 3 2) == 2))
-- Test -3/-2
putStrLn ("numer (makeRat (-3) (-2)) == 3: " ++

pass (numer (makeRat (-3) (-2)) == 3))
putStrLn ("denom (makeRat (-3) (-2)) == 2: " ++

pass (denom (makeRat (-3) (-2)) == 2))
-- Test 12/8
putStrLn ("numer (makeRat 12 8) == 3: " ++

pass (numer (makeRat 12 8) == 3))
putStrLn ("denom (makeRat 12 8) == 2: " ++

pass (denom (makeRat 12 8) == 2))
-- Test -12/-8
putStrLn ("numer (makeRat (-12) (-8)) == 3: " ++

pass (numer (makeRat (-12) (-8)) == 3))
putStrLn ("denom (makeRat (-12) (-8)) == 2: " ++

pass (denom (makeRat (-12) (-8)) == 2))
-- Test 0/0
putStrLn ("makeRat 0 0 is error: "

++ show (makeRat 0 0))
`catch` (\(ErrorCall msg)

-> putStrLn ("[Error Call] (EXPECTED)\n"
++ msg))
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The first four pairs of tests above check the test inputs (3,2), (-3,-2), (12,8), and
(-12,-8). These are four test inputs, drawn from the first and third quadrants,
that all have the same rational number value 3

2 .

The last test above checks whether the error pair (0,0) responds with an error
exception as expected.

For the full test script (including tests of showRat) examine the source file
TestRatRepCore.hs or TestRatRepDefer.hs.

12.4.2.5 Broken encapsulation So far, the tests have assumed that any
rational number object passed as an argument to numer, denom, and showRat is
an object returned by makeRat.

However, the encapsulation of the data type Rat within a RationalRep module
is just a convention. Rat is really an alias for (Int,Int). The alias is exposed
when the module is imported.

A user could call a function and directly pass an integer pair. If the integer pair
does not satisfy the interface invariant, then the functions might not return a
valid result.

For example, if we call numer with the invalid rational number value (1,0), what
is returned?

Because this value is outside the specification for RationalRep, each implementa-
tion could behave differently. In fact, RationalCore returns the first component
of the tuple and RationalDeferGCD throws a “divide by zero” exception.

The test scripts include tests of the invalid value (1,0) for each of the functions
numer, denom, and showRat.

A good solution to this broken encapsulation problem is (a) to change Rat to a
user-defined type and (b) only export the type name but not its components.
Then the Haskell compiler will enforce the encapsulation we have assumed. We
discuss approach in later chapters.

12.4.3 Rational arithmetic modules

TODO: Write section

The interface to the module Rational consists of the functions negRat, addRat,
subRat, mulRat, divRat, and eqRat, the RationalRep module’s interface. It
does not add any new data types, constructors, or destructors.

The Rational abstract module’s functions preserve the interface invariant for
the RationalRep abstract module, but it does not add any new components to
the invariant.
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12.4.3.1 Arrange TODO: Write section

TODO: Draw a diagram to help visualize input domain

12.4.3.2 Act TODO: Write section

12.4.3.3 Assert TODO: Write section

12.4.3.4 Aggregate into test script TODO: Write section

TODO: Discuss TestRational1.hs and TestRational2.hs

12.4.4 Reflection on this example

TODO: Update after completing chapter

I designed and implemented the Rational and RationalCore modules using the
approach described in the early sections of Chapter 7, doing somewhat ad hoc
testing of the modules with the REPL. I later developed the RationalDeferGCD
module, abstracting from the RationalCore module. After that, I wrote Chapter
7 to describe the example and the development process. Even later, I constructed
the systematic test scripts and wrote Chapters 11 and 12 (this chapter).

As I am closing out the discussion of this example, I find it useful to reflect upon
the process.

• The problem seemed quite simple, but I learned there are several subtle
issues in the problem and the modules developed to solve it. As the saying
goes, “the devil is in the details”.

• In my initial development and testing of these simple modules, I got the
“happy paths” right and covered the primary error conditions. Although
singer Bobby McFerrin’s song “Don’t Worry, Be Happy” may give good
advice for many life circumstances, it should not be taken too literally for
software development and testing.

• In writing both Chapter 7 and this chapter, I realized that my state-
ments of the preconditions, postconditions, and interface invariants of
RationalRep abstraction needed to be reconsidered and restated more
carefully. Specifying a good abstract interface for a family of modules is
challenging.

• In developing the systematic test scripts, I encountered other issues I had
either not considered sufficiently or overlooked totally:

– the full implications of using the finite data Int data type for the
rational arithmetic modules

– the impact of the underlying integer arithmetic representation (e.g.,
as two’s complement) on the Haskell code
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– the effects of calls of functions like numer, denom, and showRat with
invalid input data

– a subtle violation of the interface invariant in the RationalDeferGCD
implementations of makeRat and showRat

– the value of a systematic input domain partitioning for both developing
good tests and understanding the problem

It took me much longer to develop the systematic tests and document them
than it did to develop the modules initially. I clearly violated the Meszaros’s
final principle, “ensure commensurate effort and responsibility” described in the
previous chapter (also in Mesazaros [126, Ch. 5]).

For future programming, I learned I need to pay attention to other of Meszaros’s
principles such as “design for testability”, “minimize untestable code”, “commu-
nicate intent”, and perhaps “write tests first” or at least to develop the tests
hand-in-hand with the program.

12.5 What Next?
Chapters 11 and 12 examined software testing concepts and applied them to
testing Haskell functions and modules from Chapters 4 and 7.

So far we have limited our examples mostly to primitive types. In Chapters 13
and 14, we explore first-order, polymorphic list programming in Haskell.

12.6 Chapter Source Code
The source code for the group of factorial functions from Chapters 4 and 9 is in
following
files:

• Factorial.hs, the source code for the functions

• TestFactorial.hs, the source code for the factorial test script

The source code for the rational arithmetic modules from Chapter 7 is in following
files:

• RationalCore.hs and RationalDeferGCD.hs, the source code for the two
implementations of the “RationalRep” abstract module

• TestRatRepCore.hs and TestRatRepDefer.hs, the test scripts for the
two above implementations of the “RationalRep” abstract module

• Rational1.hs and Rational2.hs, the source code for the Rational arith-
metic module paired with the two above implementations of the “Ratio-
nalRep” abstract module

• TestRational1.hs and TestRational2.hs, the test scripts for the
Rational module paired with the two “RationalRep” implementations
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12.7 Exercises
1. Using the approach of this chapter, develop a black-box unit-testing script

for the fib and fib2 Fibonacci functions from Chapter 9. Test the
functions with your script.

2. Using the approach of this chapter, develop a black-box unit-testing script
for the expt, expt2, and expt3 exponentiation functions from Chapter 9.
Test the functions with your script.

3. Using the approach of this chapter, develop a black-box unit/module-
testing script for the module Sqrt from Chapter 6. Test the module with
your script.

4. Using the approach of this chapter, develop a black-box unit/module-
testing script for the line-segment modules developed in exercises 1-3 of
Chapter 7. Test the module with your script.

12.8 Acknowledgements
I wrote this chapter in Summer 2018 for the 2018 version of the textbook
Exploring Languages with Interpreters and Functional Programming.

• The presentation builds on the concepts and techniques surveyed in the
Chapter 11, which was written at the same time.
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discussion in Beck [10] and Koskela [112].

• The testing examples draw on previously existing function and (simple)
test script examples and on discussion of the examples in Chapters 4 and
7. However, I did redesign and reimplement the test scripts to be more
systematic and to follow the discussion in this new chapter.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
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reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.
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12.9 Terms and Concepts
Test, testing level, testing method, testing type, unit and module testing (levels),
black-box and gray-box testing (methods), functional testing (type), arrange-act-
assert, input domain, input partitioning, representative values (for equivalence
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classes), boundary values, testing based on the specification, Haskell IO program,
do, putStrLn, exceptions.
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13 List Programming
13.1 Chapter Introduction
This chapter introduces the list data type and develops the fundamental program-
ming concepts and techniques for first-order polymorphic functions to process
lists.

The goals of the chapter are to:

• introduce Haskell syntax and semantics for programming constructs related
to polymorphic list data structures

• examine correct Haskell functional programs consisting of first-order poly-
morphic functions that solve problems by processing lists and strings

• explore methods for developing Haskell list-processing programs that ter-
minate and are efficient and elegant

• examine the concepts and use of data sharing in lists

The Haskell module for this chapter is in ListProg.hs.

13.2 Polymorphic List Data Type
As we have seen, to do functional programming, we construct programs from
collections of pure functions. Given the same arguments, a pure function always
returns the same result. The function application is thus referentially transparent.

Such a pure function does not have side effects. It does not modify a variable or a
data structure in place. It does not throw an exception or perform input/output.
It does nothing that can be seen from outside the function except return its
value.

Thus the data structures in purely functional programs must be immutable, not
subject to change as the program executes.

Functional programming languages often have a number of immutable data
structures. However, the most salient one is the list.

We mentioned the Haskell list and string data types in Chapter 5. In this chapter,
we look at lists in depth. Strings are just special cases of lists.

13.2.1 List: [t]

The primary built-in data structure in Haskell is the list, a sequence of values.
All the elements in a list must have the same type. Thus we declare lists with
the notation [t] to denote a list of zero or more elements of type t.

A list is is hierarchical data structure. It is either empty or it is a pair consisting
of a head element and a tail that is itself a list of elements.
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The Haskell list is an example of an algebraic data type. We discuss that concept
in Chapter 21.

A matching pair of empty square brackets ([]), pronounced “nil”, represents the
empty list.

A colon (:), pronounced “cons”, represents the list constructor operation between
a head element on the left and a tail list on the right.

Example lists include:

[]
2:[]
3:(2:[])

The Haskell language adds a bit of syntactic sugar to make expressing lists easier.
(By syntactic sugar, we mean notation that simplifies expression of a concept
but that adds no new functionality to the language. The new notation can be
defined in terms of other notation within the language.)

The cons operations binds from the right. Thus

5:(3:(2:[]))

can be written as:

5:3:2:[]

We can write this as a comma-separated sequence enclosed in brackets as follows:

[5,3,2]

Haskell supports two list selector functions, head and tail, such that

head (h:t) =⇒ h

where h is the head element of list, and

tail (h:t) =⇒ t

where t is the tail list.

Aside: Instead of head, Lisp uses car and other languages use hd, first, etc.
Instead of tail, Lisp uses cdr and other languages use tl, rest, etc.

The Prelude library supports a number of other useful functions on lists. For
example, length takes a list and returns its length.

Note that lists are defined inductively. That is, they are defined in terms of a
base element [] and the list constructor operation cons (:). As you would expect,
a form of mathematical induction can be used to prove that list-manipulating
functions satisfy various properties. We will discuss in Chapter 25.
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13.2.2 String: String

In Haskell, a string is treated as a list of characters. Thus the data type String
is defined as a type synonym:

type String = [Char]

In addition to the standard list syntax, a String literal can be given by a
sequence of characters enclosed in double quotes. For example, "oxford" is
shorthand for [’o’,’x’,’f’,’o’,’r’,’d’]‘.

Strings can contain any graphic character or any special character given as
escape code sequence (using backslash). The special escape code \& is used to
separate any character sequences that are otherwise ambiguous.

Example: "Hello\nworld!\n" is a string that has two newline characters em-
bedded.

Example: "\12\&3" represents the list ['\12','3'].

Because strings are represented as lists, all of the Prelude functions for manipu-
lating lists also apply to strings.

Consider a function to compute the length of a finite string:

len :: String -> Int
len s = if s == [] then 0 else 1 + len (tail s)

Note that the argument string for the recursive application of len is simpler
(i.e., shorter) than the original argument. Thus len will eventually be applied
to a [] argument and, hence, len’s evaluation will terminate.

How efficient is this function (i.e., its time and space complexity)?

Consider the evaluation of the expression len "five" using the evaluation model
from Chapter 8.

len "five"

=⇒

if "five" == [] then 0 else 1 + len (tail "five")

=⇒

if False then 0 else 1 + len (tail "five")

=⇒

1 + len (tail "five")

=⇒

1 + len "ive"

=⇒
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1 + (if "ive" == [] then 0 else 1 + len (tail "ive"))

=⇒

1 + (if False then 0 else 1 + len (tail "ive"))

=⇒

1 + (1 + len (tail "ive"))

=⇒

1 + (1 + len "ve")

=⇒

1 + (1 + (if "ve" == [] then 0 else 1 + len (tail "ve")))

=⇒

1 + (1 + (if False then 0 else 1 + len (tail "ve")))

=⇒

1 + (1 + (1 + len (tail "ve")))

=⇒

1 + (1 + (1 + len "e"))

=⇒

1 + (1 + (1 + (if "e" == [] then 0 else 1 + len (tail "e"))))

=⇒

1 + (1 + (1 + (if False then 0 else 1 + len (tail "e"))))

=⇒

1 + (1 + (1 + (1 + len (tail "e"))))

=⇒

1 + (1 + (1 + (1 + len "")))

=⇒

1 + (1 + (1 + (1 + (if "" == [] then 0 else 1 + len (tail "")))))

=⇒

1 + (1 + (1 + (1 + (if True then 0 else 1 + len (tail "")))))

=⇒

1 + (1 + (1 + (1 + 0)))

=⇒

1 + (1 + (1 + 1))
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=⇒

1 + (1 + 2)

=⇒

1 + 3

=⇒

4

If n is the length of the list xs, then len s requires 4*n reduction steps involving
the recursive leg (first 16 steps above), 2 steps involving the nonrecursive leg
(next 2 steps above), and n+1 steps involving the additions (last five steps). Thus,
the evaluation requires 5*n+3 reduction steps. Hence, the number of reduction
steps in proportional to the length of the input list. The time complexity of the
function is thus O(length s{.haskell]).

The largest expression above is

1 + (1 + (1 + (1 + (if "" == [] then 0 else 1 + len (tail "")))))

This expression has n + 2 (6) binary operators, 2 unary operators, and 1
ternary operator. Counting arguments (as discussed in Chapter 8), it has
size 2 * (n + 2) + 2 + 3 (or 2*n+9). Hence, the amount of space required
(given lazy evaluation) is also proportional to the length of the input list. The
space complexity of the function is thus O(length s).

13.2.3 Polymorphic lists

The above definition of len only works for strings. How can we make it work
for a list of integers or other elements?

For an arbitrary type a, we want len to take objects of type [a] and return an
Int value. Thus its type signature could be:

len :: [a] -> Int

If a is a variable name (i.e., it begins with a lowercase letter) that does not
already have a value, then the type expression a used as above is a type variable;
it can represent an arbitrary type. All occurrences of a type variable appearing
in a type signature must, of course, represent the same type.

An object whose type includes one or more type variables can be thought of
having many different types and is thus described as having a polymorphic type.
(The next subsection gives more detail on polymorphism in general.)

Polymorphism and first-class functions are powerful abstraction mechanisms:
they allow irrelevant detail to be hidden.

Other examples of polymorphic list functions from the Prelude library include:
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head :: [a] -> a
tail :: [a] -> [a]
(:) :: a -> [a] -> [a]

13.3 Programming with List Patterns
In the factorial examples in Chapter 4, we used integer patterns and guards to
break out various cases of a function definition into separate equations. Lists
and other data types may also be used in patterns.

Pattern matching helps enable the form of the algorithm to match the form
of the data structure. Or, as others may say, it helps in following types to
implementations.

This is considered elegant. It is also pragmatic. The structure of the data often
suggests the algorithm that is needed for a task.

In general, lists have two cases that need to be handled: the empty list and the
nonempty list. Breaking a definition for a list-processing function into these two
cases is usually a good place to begin.

13.3.1 Summing a list of integers: sum'

Consider a function sum' to sum all the elements in a finite list of integers. That
is, if the list is

v1, v2, v3, · · · , vn,

then the sum of the list is the value resulting from inserting the addition operator
between consecutive elements of the list:

v1 + v2 + v3 + · · ·+ vn.

Because addition is an associative operation (that is, (x + y) + z = x + (y + z)
for any integers x, y, and z), the above additions can be computed in any order.

What is the sum of an empty list?

Because there are no numbers to add, then, intuitively, zero seems to be the
proper value for the sum.

In general, if some binary operation is inserted between the elements of a list,
then the result for an empty list is the identity element for the operation. Since
0 + x = x = x + 0 for all integers x, zero is the identity element for addition.

Now, how can we compute the sum of a nonempty list?

Because a nonempty list has at least one element, we can remove one element
and add it to the sum of the rest of the list. Note that the “rest of the list”
is a simpler (i.e., shorter) list than the original list. This suggests a recursive
definition.
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The fact that Haskell defines lists recursively as a cons of a head element with
a tail list suggests that we structure the algorithm around the structure of the
beginning of the list.

Bringing together the two cases above, we can define the function sum' in Haskell
as follows. This is similar to the Prelude function sum.

{- Function sum' sums a list of integers. It is similar to
function sum in the Prelude.

-}
sum' :: [Int] -> Int
sum' [] = 0 -- nil list
sum' (x:xs) = x + sum' xs -- non-nil list

• As noted previously, all of the text between the symbol “-- ” and the end
of the line represents a comment; it is ignored by the Haskell interpreter.

The text enclosed by the {- and -} is a block comment, that can extend
over multiple lines.

• This definition uses two legs. The equation in the first leg is used for nil
list arguments, the second for non-nil arguments.

• Note the (x:xs) pattern in the second leg. The “:” denotes the list
constructor operation cons.

If this pattern succeeds, then the head element of the list argument is
bound to the variable x and the tail of the list argument is bound to the
variable xs. These bindings hold for the right-hand side of the equation.

• The use of the cons in the pattern simplifies the expression of the case.
Otherwise the second leg would have to be stated using the head and tail
selectors as follows:

sum' xs = head xs + sum' (tail xs)

• We use the simple name x to represent items of some type and the name
xs, the same name with an s (for sequence) appended, to represent a list
of that same type. This is a useful convention (adopted from the classic
Bird and Wadler textbook [15]) that helps make a definition easier to
understand.

• Remember that patterns (and guards) are tested in the order of occurrence
(i.e., left to right, top to bottom). Thus, in most situations, the cases
should be listed from the most specific (e.g., nil) to the most general (e.g.,
non-nil).

• The length of a non-nil argument decreases by one for each successive
recursive application. Thus (assuming the list is finite) sum' will eventually
be applied to a [] argument and terminate.
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For a list consisting of elements 2, 4, 6, and 8, that is, 2:4:6:8:[], function
sum' computes

2 + (4 + (6 + (8 + 0)))

giving the integer result 20.

Function sum' is backward linear recursive; its time and space complexity are
both O(n), where n is the length of the input list.

We could, of course, redefine this to use a tail-recursive auxiliary function. With
tail call optimization, the recursion could be converted into a loop. It would still
be O(n) in time complexity (but with a smaller constant factor) but O(1) in
space.

13.3.2 Multiplying a list of numbers: product'

Now consider a function product' to multiply together a finite list of integers.

The product of an empty list is 1 (which is the identity element for multiplication).

The product of a nonempty list is the head of the list multiplied by the product
of the tail of the list, except that, if a 0 occurs anywhere in the list, the product
of the list is 0.

We can thus define product' with two base cases and one recursive case, as
follows. This is similar to the Prelude function product.

product' :: [Integer] -> Integer
product' [] = 1
product' (0:_) = 0
product' (x:xs) = x * product' xs

Note the use of the wildcard pattern underscore “_” in the second leg above.
This represents a “don’t care” value. In this pattern it matches the tail, but
no value is bound; the right-hand side of the equation does not need the actual
value.

0 is the zero element for the multiplication operation on integers. That is, for
all integers x:

0 ∗ x = x ∗ 0 = 0

For a list consisting of elements 2, 4, 6, and 8, that is, 2:4:6:8:[], function
product' computes:

2 * (4 * (6 * (8 * 1)))

which yields the integer result 384.

For a list consisting of elements 2, 0, 6, and 8, function product' “short circuits”
the computation as:

2 * 0
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Like sum', function product' is backward linear recursive; it has a worst-case
time complexity of O(n), where n is the length of the input list. It terminates
because the argument of each successive recursive call is one element shorter
than the previous call, approaching the first base case.

As with sum', we could redefine this to use a tail-recursive auxiliary function,
which could evaluate in O(n) space with tail call optimization.

Note that sum' and product' have similar computational patterns. In Chapter
15, we look at how to capture the commonality in a single higher-order function.

13.3.3 Length of a list: length'

As another example, consider the function for the length of a finite list that we
discussed earlier (as len). Using list patterns we can define length’ as follows:

length' :: [a] -> Int
length' [] = 0 -- nil list
length' (_:xs) = 1 + length' xs -- non-nil list

Note the use of the wildcard pattern underscore “_”. In this pattern it matches
the head, but no value is bound; the right-hand side of the equation does not
need the actual value.

Given a finite list for its argument, does this function terminate? What are its
time and space complexities?

This definition is similar to the definition for length in the Prelude.

13.3.4 Remove duplicate elements: remdups

Consider the problem of removing adjacent duplicate elements from a list. That
is, we want to replace a group of adjacent elements having the same value by a
single occurrence of that value.

As with the above functions, we let the form of the data guide the form of the
algorithm, following the type to the implementation.

The notion of adjacency is only meaningful when there are two or more of
something. Thus, in approaching this problem, there seem to be three cases to
consider:

• The argument is a list whose first two elements are duplicates; in which
case one of them should be removed from the result.

• The argument is a list whose first two elements are not duplicates; in which
case both elements are needed in the result.

• The argument is a list with fewer than two elements; in which case the
remaining element, if any, is needed in the result.
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Of course, we must be careful that sequences of more than two duplicates are
handled properly.

Our algorithm thus can examine the first two elements of the list. If they are
equal, then the first is discarded and the process is repeated recursively on
the list remaining. If they are not equal, then the first element is retained in
the result and the process is repeated on the list remaining. In either case the
remaining list is one element shorter than the original list. When the list has
fewer than two elements, it is simply returned as the result.

If we restrict the function to lists of integers, we can define Haskell function
remdups as follows:

remdups :: [Int] -> [Int]
remdups (x:y:xs)

| x == y = remdups (y:xs)
| x /= y = x : remdups (y:xs)

remdups xs = xs

• Note the use of the pattern (x:y:xs). This pattern match succeeds if the
argument list has at least two elements: the head element is bound to x,
the second element to y, and the tail list to xs.

• Note the use of guards to distinguish between the cases where the two
elements are equal (==) and where they are not equal (/=).

• In this definition the case patterns overlap, that is, a list with at least two
elements satisfies both patterns. But since the cases are evaluated top to
bottom, the list only matches the first pattern. Thus the second pattern
just matches lists with fewer than two elements.

What if we wanted to make the list type polymorphic instead of just integers?

At first glance, it would seem to be sufficient to give remdups the polymorphic
type [a] -> [a]. But the guards complicate the situation a bit.

Evaluation of the guards requires that Haskell be able to compare elements of
the polymorphic type a for equality (==) and inequality (/=). For some types
these comparisons may not be supported. (For example, suppose the elements
are functions.) Thus we need to restrict the polymorphism to types in which the
comparisons are supported.

We can restrict the range of types by using a context predicate. The following
type signature restricts the polymorphism of type variable a to the built-in type
class Eq, the group of types for which both equality (==) and inequality (/=)
comparisons have been defined:

remdups :: Eq a => [a] -> [a]

Another useful context is the class Ord, which is an extension of class Eq. Ord
denotes the class of objects for which the relational operators <, <=, >, and >=
have been defined in addition to == and /=.
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Note: Chapter 22 explores the concepts of type class, instances, and overloading
in more depth.

In most situations the type signature can be left off the declaration of a function.
Haskell then attempts to infer an appropriate type. For remdups, the type
inference mechanism would assign the type Eq [a] => [a] -> [a] . However,
in general, it is good practice to give explicit type signatures.

Like the previous functions, remdups is backward linear recursive; it takes a
number of steps that is proportional to the length of the list. This function has
a recursive call on both the duplicate and non-duplicate legs. Each of these
recursive calls uses a list that is shorter than the previous call, thus moving
closer to the base case.

13.3.5 More list patterns

Table 13.1 shows Haskell parameter patterns, corresponding arguments, and the
results of the attempted match.

Table 13.1: Example Haskell parameter patterns and match results.

Pattern Argument Succeeds? Bindings
1 1 yes none
x 1 yes x ← 1
(x:y) [1,2] yes x ← 1, y ← [2]
(x:y) [[1,2]] yes x ← [1,2], y ← []
(x:y) ["olemiss"] yes x ← "olemiss", y ← []
(x:y) "olemiss" yes x ← ’o’, y ← "lemiss"
(1:x) [1,2] yes x ← [2]
(1:x) [2,2] no none
(x:_:_:y) [1,2,3,4,5,6] yes x ← 1, y ← [4,5,6]
[] [] yes none
[x] ["Cy"] yes x ← "Cy"
[1,x] [1,2] yes x ← 2
[x,y] [1] no none
(x,y) (1,2) yes x ← 1, y ← 2

13.4 Data Sharing
Suppose we have the declaration:

xs = [1,2,3]

As we learned in the data structures course, we can implement this list as a
singly linked list xs with three cells with the values 1, 2, and 3, as shown in
Figure 13.1.
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Consider the following declarations (which are illustrated in Figure 13.1):

ys = 0:xs
zs = tail xs

where

• 0:xs returns a list that has a new cell containing 0 in front of the previous
list

• tail xs returns the list consisting of the last two elements of xs

Figure 13.1: Data sharing in lists.

If the linked list xs is immutable (i.e., the values and pointers in the three cells
cannot be changed), then neither of these operations requires any copying.

• The first just constructs a new cell containing 0, links it to the first cell in
list xs, and initializes ys with a reference to the new cell.

• The second just returns a reference to the second cell in list xs and initializes
zs with this reference.

• The original list xs is still available, unaltered.

This is called data sharing. It enables the programming language to implement
immutable data structures efficiently, without copying in many key cases.

Also, such functional data structures are persistent because existing references
are never changed by operations on the data structure.

Consider evaluation of the expression head xs. It must create a copy of the
head element (in this case 1). The result does not share data with the input list.

Similarly, the list returned by function remdups (defined above) does not share
data with its input list.

13.4.1 Preconditions for head and tail

What should tail return if the list is nil?
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One choice is to return a nil list []. However, it seems illogical for an empty list
to have a tail.

Consider a typical usage of the tail function. It is normally an error for a
program to attempt to get the tail of an empty list. Moreover, a program can
efficiently check whether a list is empty or not. So, in this case, it is better to
consider tail a partial function.

Thus, Haskell defines both tail and head to have the precondition that their
parameters are non-nil lists. If we call either with a nil list, then it will terminate
execution with a standard error message.

13.4.2 Dropping elements from beginning of list

We can generalize tail to a function drop' that removes the first n elements of
a list as follows, (This function is called drop in the Prelude.)

drop' :: Int -> [a] -> [a]
drop' n xs | n <= 0 = xs
drop' _ [] = []
drop' n (_:xs) = drop' (n-1) xs

Consider the example:

drop 2 "oxford" =⇒ · · · "ford"

This function takes a different approach to the “empty list” issue than tail
does. Although it is illogical to take the tail of an empty list, dropping the
first element from an empty list seems subtly different. Given that we often use
drop' in cases where the length of the input list is unknown, dropping the first
element of an empty list does not necessarily indicate a program error.

Suppose instead that drop' would trigger an error when called with an empty
list. To avoid this situation, the program might need to determine the length of
the list argument. This is inefficient, usually requiring a traversal of the entire
list to count the elements. Thus the choice for drop' to return a nil is also
pragmatic.

The drop' function is tail recursive. The result list shares space with the input
list.

The drop' function terminates when either the list argument is empty or the
integer argument is 0 or negative. The function eventually terminates because
each recursive call both shortens the list and decrements the integer.

What is the time complexity of drop'?

There are two base cases.

• For the first leg, the function must terminate in O(max 1 n) steps.
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• For the second leg, the function must terminate within O(length xs) steps.
So the function must terminate within O(min (max 1 n) (length xs))
steps.

What is the space complexity of drop'?

This tail recursive function evaluates in constant space when optimized.

13.4.3 Taking elements from the beginning of a list

Similarly, we can generalize head' to a function take that takes a number n and
a list and returns the first n elements of the list.

take' :: Int -> [a] -> [a]
take' n _ | n <= 0 = []
take' _ [] = []
take' n (x:xs) = x : take' (n-1) xs

Consider the following questions for this function?

• What is returned when the list argument is nil?

• Does evaluation of this function terminate?

• Does the result share data with the input?

• Is the function tail recursive?

• What are its time and space complexities?

Consider the example:

take 2 "oxford" =⇒ · · · "ox"

13.5 What Next?
This chapter (13) examined programming with the list data type using first-order
polymorphic functions. Chapter 14 continues the discussion of list programming,
introducing infix operations and more examples.

13.6 Chapter Source Code
The Haskell module for this chapter is in ListProg.hs.

13.7 Exercises
1. Answer the following questions for the take' function defined in this

chapter:

• What is returned when the list argument is nil?
• Does evaluation of the function terminate?
• Does the result share data with the input?
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• Is the function tail recursive?
• What are its time and space complexities?

2. Write a Haskell function maxlist to compute the maximum value in a
nonempty list of integers. Generalize the function by making it polymorphic,
accepting a value from any ordered type.

3. Write a Haskell function adjpairs that takes a list and returns the list of
all pairs of adjacent elements. For example, adjpairs [2,1,11,4]
returns [(2,1), (1,11), (11,4)].

4. Write a Haskell function mean that takes a list of integers and returns the
mean (i.e., average) value for the list.

5. Write the following Haskell functions using tail recursion:

a. sum'' with same functionality as sum'

b. product'' with the same functionality as product'
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13.9 Terms and Concepts
Type class (Eq, Ord, context predicate), lists (polymorphic, immutable, persistent,
data sharing, empty/nil, nonempty), string, list and string operations (cons,
head, tail, pattern matching, wildcard pattern, length), inductive definitions,
operator binding, syntactic sugar, type synonym, type variable, type signature,
follow the types to implementations, let the form of the data guide the form of
the algorithm, associativity, identity element, zero element, termination, time
and space complexity, adjacency,
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14 Infix Operators and List Examples
14.1 Chapter Introduction
This chapter introduces Haskell infix operations and continues to develop tech-
niques for first-order polymorphic functions to process lists.

The goals of the chapter are to:

• introduce Haskell syntax and semantics for infix operations

• examine correct Haskell functional programs consisting of first-order poly-
morphic functions that solve problems by processing lists and strings

• explore methods for developing Haskell list-processing programs that ter-
minate and are efficient and elegant.

The Haskell module for this chapter is in ListProgExamples.hs.

14.2 Using Infix Operations
In Haskell, a binary operation is a function of type t1 -> t2 -> t3 for some
types t1, t2, and t3.

We usually prefer to use infix syntax rather than prefix syntax to express the
application of a binary operation. Infix operators usually make expressions easier
to read; they also make statement of mathematical properties more convenient.

Often we use several infix operators in an expression. To ensure that the
expression is not ambiguous (i.e., the operations are done in the desired order), we
must either use parentheses to give the order explicitly (e.g., ((y * (z+2)) + x))
or use syntactic conventions to give the order implicitly.

Typically the application order for adjacent operators of different kinds is deter-
mined by the relative precedence of the operators. For example, the multiplication
(*) operation has a higher precedence (i.e., binding power) than addition (+), so,
in the absence of parentheses, a multiplication will be done before an adjacent
addition. That is, x + y * z is taken as equivalent to (x + (y * z)).

In addition, the application order for adjacent operators of the same binding
power is determined by a binding (or association) order. For example, the addi-
tion (+) and subtraction - operations have the same precedence. By convention,
they bind more strongly to the left in arithmetic expressions. That is, x + y - z
is taken as equivalent ((x + y) - z).

By convention, operators such as exponentiation (denoted by ˆ) and cons bind
more strongly to the right. Some other operations (e.g., division and the relational
comparison operators) have no default binding order—they are said to have free
binding.

Accordingly, Haskell provides the statements infix, infixl, and infixr for
declaring a symbol to be an infix operator with free, left, and right binding,
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respectively. The first argument of these statements give the precedence level
as an integer in the range 0 to 9, with 9 being the strongest binding. Normal
function application has a precedence of 10.

The operator precedence table for a few of the common operations from the
Prelude is shown below. We introduce the ++ operator in the next subsection.

infixr 8 ˆ -- exponentiation
infixl 7 * -- multiplication
infix 7 / -- division
infixl 6 +, - -- addition, subtraction
infixr 5 : -- cons
infix 4 ==, /=, <, <=, >=, > -- relational comparisons
infixr 3 && -- Boolean AND
infixr 2 || -- Boolean OR

14.2.1 Appending two lists: ++

Suppose we want a function that takes two lists and returns their concatenation,
that is, appends the second list after the first. This function is a binary operation
on lists much like + is a binary operation on integers.

Further suppose we want to introduce the infix operator symbol ++ for the
append function. Since we want to evaluate lists lazily from their heads, we
choose right binding for both cons and ++. Since append is, in a sense, an
extension of cons (:), we give them the same precedence:

infixr 5 ++

Consider the definition of the append function. We must define the ++ operation
in terms of application of already defined list operations and recursive applications
of itself. The only applicable simpler operation is cons.

As with previous functions, we follow the type to the implementation—let the
form of the data guide the form of the algorithm.

The cons operator takes an element as its left operand and a list as its right
operand and returns a new list with the left operand as the head and the right
operand as the tail.

Similarly, ++ must take a list as its left operand and a list as its right operand
and return a new list with the left operand as the initial segment and the right
operand as the final segment.

Given the definition of cons, it seems reasonable that an algorithm for ++ must
consider the structure of its left operand. Thus we consider the cases for nil and
non-nil left operands.

• If the left operand is nil, then the function can just return the right operand.
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• If the left operand is a cons (that is, non-nil), then the result consists of
the left operand’s head followed by the append of the left operand’s tail to
the right operand.

In following the type to the implementation, we use the form of the left operand
in a pattern match. We define ++ as follows:

infixr 5 ++

(++) :: [a] -> [a] -> [a]
[] ++ xs = xs -- nil left operand
(x:xs) ++ ys = x:(xs ++ ys) -- non-nil left operand

Above we use infix patterns on the left-hand sides of the defining equations.

For the recursive application of ++, the length of the left operand decreases by
one. Hence the left operand of a ++ application eventually becomes nil, allowing
the evaluation to terminate.

Consider the evaluation of the expression [1,2,3] ++ [3,2,1].

[1,2,3] ++ [3,2,1]

=⇒

1:([2,3] ++ [3,2,1])

=⇒

1:(2:([3] ++ [3,2,1]))

=⇒

1:(2:(3:([] ++ [3,2,1])))

=⇒

1:(2:(3:[3,2,1]))

=

[1,2,3,3,2,1]

The number of steps needed to evaluate xs ++ ys is proportional to the length
of xs, the left operand. That is, the time complexity is O(n), where n is the
length xs.

Moreover, xs ++ ys only needs to copy the list xs. The list ys is shared between
the second operand and the result. If we did a similar function to append two
(mutable) arrays, we would need to copy both input arrays to create the output
array. Thus, in this case, a linked list is more efficient than arrays!

Consider the following questions:

• What is the precondition of xs ++ ys?
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• Is ++ tail recursive?

• What is the space complexity of ++?

14.2.2 Properties of operations

The append operation has a number of useful algebraic properties, for example,
associativity and an identity element.

Associativity of ++: For any finite lists xs, ys, and zs, xs ++ (ys ++ zs) == (xs ++ ys) ++ zs.

Identity for ++: For any finite list xs, [] ++ xs = xs = xs ++ [].

We will prove these and other properties in Chapter 25.

Mathematically, the list data type and the binary operation ++ form a kind of
abstract algebra called a monoid. Function ++ is closed (i.e., it takes two lists
and gives a list back), is associative, and has an identity element.

Similarly, we can state properties of combinations of functions. We can prove
these using techniques we study in Chapter 25. For example, consider the
functions defined above in this chapter.

• For all finite lists xs, we have the following distribution properties:

sum' (xs ++ ys) = sum' xs + sum' ys
product' (xs ++ ys) = product' xs * product' ys
length' (xs ++ ys) = length' xs + length' ys

• For all natural numbers n and finite lists xs,

take n xs ++ drop n xs = xs

14.2.3 Element selection: !!

As another example of an infix operation, consider the list selection operator !!.
The expression xs!!n selects element n of list xs where the head is in position 0.
It is defined in the Prelude similar to the way !! is defined below:

infixl 9 !!

(!!) :: [a] -> Int -> a
xs !! n | n < 0 = error "!! negative index"
[] !! _ = error "!! index too large"
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)

Consider the following questions concerning the element selection operator:

• What is the precondition for element selection?
• Does evaluation terminate?
• Is the operator tail recursive?
• Does the result share any data with the input list?
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• What are its time and space complexities?

14.2.4 Reversing a list: rev

Consider the problem of reversing the order of the elements in a list.

Again we can use the structure of the data to guide the algorithm development.
If the argument is nil, then the function returns nil. If the argument is non-nil,
then the function can append the head element at the back of the reversed tail.

rev :: [a] -> [a]
rev [] = [] -- nil argument
rev (x:xs) = rev xs ++ [x] -- non-nil argument

Given that evaluation of ++ terminates, we note that evaluation of rev also
terminates because all recursive applications decrease the length of the argument
by one.

How efficient is this function?

Consider the evaluation of the expression rev "bat".

rev "bat"

=⇒

(rev "at") ++ "b"

=⇒

((rev "t") ++ "a") ++ "b"{.haskell}

=⇒

(((rev "") ++ "t") ++ "a") ++ "b"

=⇒

(("" ++ "t") ++ "a") ++ "b"

=⇒

("t" ++ "a") ++ "b"

=⇒

('t':("" ++ "a")) ++ "b"

=⇒

"ta" ++ "b"

=⇒

't':("a" ++ "b")

=⇒
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't':('a':("" ++ "b"))

=⇒

't':('a':"b")

=

"tab"

The evaluation of rev takes O(nˆ2) steps, where n is the length of the argument.
There are O(n) applications of rev; for each application of rev there are O(n)
applications of ++.

The initial list and its reverse do not share data.

Function rev has a number of useful properties, for example the following.

Distribution: For any finite lists xs and ys, rev (xs ++ ys) = rev ys ++ rev xs.

Inverse: For any finite list xs, rev (rev xs) = xs.

Also, for any finite lists xs and ys and natural numbers n, we can state properties
such as:

rev (xs ++ ys) = rev ys ++ rev xs
take n (rev xs) = rev (drop (length xs - n) xs)

14.2.5 Tail recursive reverse

Most of the list function definitions examined so far are backward recursive.
That is, for each case the recursive applications are embedded within another
expression. Operationally, significant work is done after the recursive call returns.

Now let’s look at the problem of reversing a list again to see whether we can
devise a more efficient tail recursive solution.

As we have seen, the common technique for converting a backward linear recursive
definition like rev into a tail recursive definition is to use an accumulating
parameter to build up the desired result incrementally. A possible definition
follows:

rev' [] ys = ys
rev' (x:xs) ys = rev' xs (x:ys)

In this definition parameter ys is the accumulating parameter. The head of the
first argument becomes the new head of the accumulating parameter for the tail
recursive call. The tail of the first argument becomes the new first argument for
the tail recursive call.

We know that rev’ terminates because, for each recursive application, the length
of the first argument decreases toward the base case of [].
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We note that rev xs is equivalent to rev’ xs []. We can prove this using the
techniques in Chapter 25.

To define a single-argument replacement for rev, we can embed the definition of
rev’ as an auxiliary function within the definition of a new function reverse’.
(This is similar to function reverse in the Prelude.)

reverse' :: [a] -> [a]
reverse' xs = rev xs []

where rev [] ys = ys
rev (x:xs) ys = rev xs (x:ys)

The where clause introduces the local definition rev’ that is only known within
the right-hand side of the defining equation for the function reverse’.

What is the time complexity of this function?

The evaluation of reverse’ takes O(n) steps, where n is the length of the
argument. There is one application of rev’ for each element; rev’ requires a
single cons operation in the accumulating parameter.

Where did the increase in efficiency come from?

Each application of rev applies ++, a linear time (i.e., O(n) function. In rev’,
we replaced the applications of ++ by applications of cons, a constant time (i.e.,
O(1)) function.

In addition, a compiler or interpreter that does tail call optimization can translate
this tail recursive call into a loop on the host machine.

14.3 More Useful List Functions
14.3.1 Another list-breaking function: splitAt

Above we defined list-breaking functions take' and drop'. It is sometimes
useful to have a single function that breaks a list into two parts.

The function splitAt (shown below as splitAt') takes an integer n and a list
and returns a pair whose first component is the first n elements of the list and
second component is the list remaining after the first n elements are removed.

splitAt' :: Int -> [a] -> ([a],[a])
splitAt' n xs = (take' n xs, drop' n xs)

Can we write an alternative definition that makes only one pass over argument
xs? (That is, it does not call take' and drop'.)

14.3.2 List-combining operations: zip and unzip

Another useful function in the Prelude is zip (shown below as zip’) which takes
two lists and returns a list of pairs of the corresponding elements. That is, the
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function fastens the lists together like a zipper. It’s definition is similar to zip’
given below:

zip' :: [a] -> [b] -> [(a,b)]
zip' (x:xs) (y:ys) = (x,y) : zip' xs ys -- zip.1
zip' _ _ = [] -- zip.1

Function zip applies a tuple-forming operation to the corresponding elements of
two lists. It stops the recursion when either list argument becomes nil. Putting
the recursive case first enabled the two bases cases to be combined into one leg.

Example: zip [1,2,3] "oxford" =⇒ · · · [(1,’o’),(2,’x’),(3,’f’)]

Similarly, function unzip in the Prelude takes a list of pairs and returns a pair
of lists. It’s definition is similar to unzip' below.

unzip' :: [(a,b)] -> ([a],[b])
unzip' [] = ([],[])
unzip' ((x,y):ps) = (x:xs, y:ys)

where (xs,ys) = unzip' ps

The Prelude includes versions of zip and unzip that handle the tuple-formation
for triples. Librart Data.List includes functions for up to seven input lists:
zip4 · · · zip7 and unzip4 · · · unzip7.

14.4 Insertion Sort
Consider a function to sort the elements of a list into ascending order.

A list is ascending if every element is <= all of its successors in the list. Successor
means an element that occurs later in the list (i.e., away from the head). A list
is increasing if every element is < its successors. Similarly, a list is descending or
decreasing if every element is >= or >, respectively, its successors.

A simple algorithm to do this is insertion sort. To sort a non-empty list with
head x and tail xs, sort the tail xs and then insert the element x at the right
position in the result. To sort an empty list, just return it.

If we restrict the function to integer lists, we get the following Haskell functions:

isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x xs@(y:ys)

| x <= y = (x:xs)
| otherwise = y : (insert x ys)
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Insertion sort has a (worst and average case) time complexity of O(nˆ2) where n
is the length of the input list. (Function isort requires n consecutive recursive
calls; each call uses function insert which itself requires on the order of n
recursive calls.)

Now suppose we want to generalize the sorting function and make it polymorphic.
We cannot just add a type parameter a and substitute it for Int everywhere.
Not all Haskell types can be compared on a total ordering (<, <=, >, and >= as
well).

We need to constrain the polymorphism to types in class Ord, as follows:

isort' :: Ord a => [a] -> [a]
isort' [] = []
isort' (x:xs) = insert' x (isort' xs)

insert' :: Ord a => a -> [a] -> [a]
insert' x [] = [x]
insert' x xs@(y:ys)

| x <= y = (x:xs)
| otherwise = y : (insert' x ys)

We could define insert' inside isort' and avoid the separate type parameteri-
zation. But insert is separately useful, so it is reasonable to leave it external.

Consider the following questions:

• How do we know insert' terminates?

• What are the time and space complexities of insert'?

• How do we know isort' terminates?

• What are the time and space complexities of isort'?

14.5 What Next?
Chapters 13 and 14 explored use of first-order polymorphic functions to process
lists in Haskell.

Chapters 15, 16, and 17 examine higher-order function concepts in Haskell.

14.6 Chapter Source Code
The Haskell module for this chapter is in ListProgExamples.hs.

14.7 Exercises
1. Answer the following questions for the ++ operation defined in this chapter:

• Is ++ tail recursive?
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• What is the space complexity?

1. Answer the following questions concerning the element selection operator
defined in this chapter.

• What is the precondition for element selection?
• Does evaluation terminate?
• Is the operator tail recursive?
• Does the result share any data with the input list?
• What are its time and space complexities?

2. Write a version of function splitAt' that makes only one pass over the
input list (that is, does not call take' and drop').

3. Answer the following questions for the isort' and insert' functions.

• How do we know insert' terminates?
• What are the time and space complexities of insert'?
• How do we know isort' terminates?
• What are the time and space complexities of isort'?

4. Hailstone functions.

a. (This part is repeated from Chapter 9.) Develop a function hailstone
to implement the function shown in Table 14.1.

Table 14.1: Hailstone Function.

hailstone(n) = 1, if n = 1
hailstone(n) = hailstone(n/2), if n > 1, even n
hailstone(n) = hailstone(3 ∗ n + 1), if n > 1, odd n

Note that an application of the hailstone function to the argument 3
would result in the following “sequence” of “calls” and would ultimately
return the result 1.

hailstone 3
hailstone 10

hailstone 5
hailstone 16

hailstone 8
hailstone 4

hailstone 2
hailstone 1

For further thought: What is the domain of the hailstone function?

b. Write a Haskell function that computes the results of the hailstone
function for each element of a list of positive integers. The value
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returned by the hailstone function for each element of the list should
be displayed.

c. Modify the hailstone function to return the function’s “path.”

That is, each application of this path function should return a list of
integers instead of a single integer. The list returned should consist
of the arguments of the successive calls to the hailstone function
necessary to compute the result. For example, the hailstone 3
example above should return [3,10,5,16,8,4,2,1].

5. Number base conversion.

a. Write a Haskell function natToBin that takes a natural number and
returns its binary representation as a list of 0’s and 1’s with the
most significant digit at the head. For example, natToBin 23 returns
[1,0,1,1,1]. (Note: Prelude function rem returns the remainder
from dividing its first argument by its second. Enclosing the function
name in backquotes as in ‘rem‘ allows a two-argument function to
be applied in an infix form.)

b. Generalize natToBin to function natToBase that takes a base b

(b \geq 2) and a natural number and returns the base b representa-
tion of the natural number as a list of integer digits with the most
significant digit at the head. For example, natToBase 5 42 returns
[1,3,2].

c. Write Haskell function baseToNat, the inverse of the natToBase func-
tion. For any base b (b \geq 2) and natural number n:

baseToNat b (natToBase b n) = n

6. Write a Haskell function merge that takes two increasing lists of integers
and merges them into a single increasing list (without any duplicate values).
A list is increasing if every element is less than (<) its successors. Successor
means an element that occurs later in the list, i.e., away from the head.
Generalize the function by making it polymorphic.

7. Design a module of set operations. Choose a Haskell representation for
sets. Implement functions to make sets from lists and vice versa, to insert
and delete elements from sets, to do set union, intersection, and difference,
to test for equality and subset relationships, to determine cardinality, and
so forth.

8. Bag module.

Mathematically, a bag (or multiset) is a function from some arbitrary set
of elements (the domain) to the set of nonnegative integers (the range).
We interpret the nonnegative integer as the number of occurrences of the
element in the bag. Zero means the element does not occur.
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From another perspective, a bag is an unordered collection of elements.
Each element may occur one or more times in the bag. (It is like a set
except values can occur multiple times.)

For example, {| "time', "time", "and", "time", "again" |} is a
bag containing 5 strings. There are 3 occurrences of string "time" and 1
occurrence each of strings "and" and "again".

{| 11, 2, 3, 7, 5 |} is a bag of prime numbers. It is also a set because
each element occurs exactly once.

We can represent a bag in many ways in Haskell. Using lists, we could
represent a bag with a simple (unordered) list of elements, an ordered
list of elements, an unordered or an ordered list of tuples which pair an
element with the (nonzero) number of times it occurs, etc. A bag could
also be represented with other data structures such as a Map from library
Data.Map.

Choose some representation for polymorphic bags. You may assume that
the elements in the domain are totally ordered (i.e., are from a type that
is an instance of class Ord), but otherwise the elements can be of any type.

For example, if you use a list representation, you might define the type
synonym:

type Bag a = [a]

Develop a data abstraction (information-hiding) module that encapsulates
the representation of the data structure used to store the elements inside
the module.

The module should include the following public functions. This interface
should be the same even if you change the representation of the data
internally.

a. newBag returns a new bag with no elements (i.e., empty).

b. listToBag takes a list of elements and returns a bag containing
exactly those elements. The number of occurrences of an element in
the list and in the resulting bag is the same.

c. bagToList takes a bag and returns a list containing exactly the
elements occurring in the bag. The number of occurrences of an
element in the bag and in the resulting list is the same.

Note: It is not required that:

bagToList (listToBag xs) == xs

But it is required that both sides have the same numbers of the same
elements.
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d. isEmpty takes a bag and returns True if the bag has no elements and
returns False otherwise.

e. isElem takes an element and a bag and returns True if the element
occurs in the bag and returns False otherwise.

f. size takes a bag and returns its cardinality (i.e., the total number of
occurrences of all elements).

g. occursBag takes an element and a bag and returns the number of
occurrences of the element in the bag.

h. insertElem takes an element and a bag and returns the bag with the
element inserted. Bag insertion either adds a single occurrence of a
new element to the bag or increases the number of occurrences of an
existing element by one.

i. deleteElem takes an element and a bag and returns the bag with
the element deleted. Bag deletion removes a single occurrence of an
element from the bag, decreases the number of occurrences of an
existing element by one, or does not change the bag if the element
does not occur.

j. eqBag takes two bags and returns True if the two bags are equal
(i.e., the same elements and same number of occurrences of each) and
returns False otherwise.

Note: If bagToList xs == bagToList ys, then eqBag xs ys. How-
ever, if eqBag xs ys, it is not required that bagToList xs == bagToList ys.

k. unionBag takes two bags and returns their bag union. The union of
bags X and Y contains all elements that occur in either X or Y; the
number of occurrences of an element in the union is the number in X
or in Y, whichever is greater.

l. intersectBag takes two bags and returns their bag intersection. The
intersection of bags X and Y contains all elements that occur in both
X and Y; the number of occurrences of an element in the intersection
is the number in X or in Y, whichever is lesser.

m. sumBag takes two bags and returns their bag sum. The sum of bags
X and Y contains all elements that occur in X or Y; the number of
occurrences of an element is the sum of the number of occurrences in
X and Y.

n. diffBag takes two bags and returns the bag difference, first argument
minus the second. The difference of bags X and Y contains all elements
of X that occur in Y fewer times; the number of occurrences of an
element in the difference is the number of occurrences in X minus the
number in Y.
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o. subBag takes two bags and returns True if the first is a subbag of the
second and False otherwise. X is a subbag of Y if every element of
X occurs in Y at least as many times as it does in X.

p. bagToSet takes a bag and returns a list containing exactly the set of
elements contained in the bag. Each element occurring one or more
times in the bag will occur exactly once in the list returned.

9. Develop a bag module as described in the previous exercise, but use a
different internal representation than you used in the previous exercise.
The new module should have the same public interface as the previous
module.

10. Unbounded precision arithmetic module for natural numbers (i.e., nonneg-
ative integers). Do not use the builtin Integer type.

a. Define a type synonym BigNat to represent these unbounded precision
natural numbers as lists of Int. Let each element of the list denote a
decimal digit of the “big natural” number represented, with the least
significant digit at the head of the list and the remaining digits given
in order of increasing significance. For example, the integer value
22345678901 is represented as [1,0,9,8,7,6,5,4,3,2,2].

Use the following “canonical” representation:

the value 0 is represented by the list [0] and positive numbers by a
list without “leading” 0 digits (i.e., 126 is [6,2,1] not [6,2,1,0,0]).
You may use the nil list [] to denote an error value.

Define a Haskell module with basic arithmetic operations, including
the following functions. Make sure that BigNat values returned by
these functions are in canonical form.

• intToBig takes a nonnegative Int and returns the BigNat with
the same value.

• strToBig takes a String containing the value of the number
in the “usual” format (i.e., decimal digits, left to right in order
of decreasing significance with zero or more leading spaces, but
with no spaces or punctuation embedded within the number) and
returns the BigNat with the same value.

• bigToStr takes a BigNat and returns a String containing the
value of the number in the “usual” format (i.e., left to right in
order of decreasing significance with no spaces or punctuation).

• bigComp takes two BigNats and returns the Int value -1 if the
value of the first is less than the value of the second, the value 0
if they are equal, and the value 1 if the first is greater than the
second.

• bigAdd takes two BigNat s and returns their sum as a BigNat.
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• bigSub takes two BigNat s and returns their difference as a
BigNat, first argument minus the second.

• bigMult takes two BigNats and returns their product as a
BigNat.

b. Use the package to generate a table of factorials for the naturals 0
through 25. Print the values from the table in two right-justified
columns, with the number on the left and its factorial on the right.
(Allow about 30 columns for 25!.)

c. Use the package to generate a table of Fibonacci numbers for the
naturals 0 through 50.

d. Generalize the package to handle signed integers. Add the following
new function:

• bigNeg returns the negation of its BigNat argument.

e. Add the following functions to the package:

• bigDiv takes two BigNats and returns, as a BigNat, the quotient
from dividing the first argument by the second.

• bigRem takes two BigNats and returns, as a BigNat, the remain-
der from dividing the first argument by the second.

11. Define the following set of text-justification functions. You may want to
use Prelude functions like take, drop, and length.

• spaces’ n returns a string of length n containing only space charac-
ters (i.e., the character ’ ’).

• left’ n xs returns a string of length n in which the string xs begins
at the head (i.e., left end).

Examples: left’ 3 "ab" yields "ab "; left’ 3 "abcd" yields
"abc".

• right’ n xs returns a string of length n in which the string xs ends
at the tail (i.e., right end).

Examples: right’ 3 bc yields bc; right’ 3 abcd yields bcd.

• center’ n xs returns a string of length n in which the string xs is
approximately centered.

Example: center’ 4 "bc" yields " bc ".

12. Consider simple mathematical expressions consisting of integer constants,
variable names, parentheses, and the binary operators +, -, *, and /. For
the purposes of this exercise, an expression is a string that satisfies the
following (extended) BNF grammar and lexical conventions:
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• The characters in an input string are examined left to right to form
“lexical tokens”. The tokens of the expression “language” consist of
addOps, mulOps,identifiers, numbers, and left and right parentheses.

• An expression may contain space characters at any position except
within a lexical token.

• An addOp token is either a “+” or a “-”; a mulOp token is either a
“*” or a “/”.

• An identifier q is a string of one or more contiguous characters such
that the leftmost character is a letter and the remaining characters
are either letters, digits, or underscore characters.

Examples: “Hi1”, “lo23_1”, “this_is_2_long”

• A number is a string of one or more contiguous characters such that
all (including the leftmost) are digits.

Examples: “1”, “23456711”

• All identifier and number tokens extend as far to the right as possible.
For example, consider the string

“A123 12B3+2 )”. (Note the space and right parenthesis characters).
This string consists of the six tokens “A123”, “12”, “B3”, “+”, “2”,
and “)”.

Define a Haskell function valid that takes a String and returns True if
the string is an expression as described above and returns False otherwise.

Hints:

• If you need to return more than one value from a function, you can do
so by returning a tuple of those values. This tuple can be decomposed
by Prelude functions such as fst and snd.

• Use of the where or let features can simplify many functions. You
may find Prelude functions such as span, isSpace, isDigit, isAlpha,
and isAlphanum useful.

• You may want to consider organizing your program as a simple
recursive descent recognizer for the expression language.

13. Extend the mathematical expression recognizer of the previous exercise
to evaluate integer expressions with the given syntax. The four binary
operations have their usual meanings.

Define a function eval e st that evaluates expression e using symbol
table st. If the expression e is syntactically valid, eval returns a pair
(True,val) where val is the value of e. If e is not valid, eval returns
(False,0).
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The symbol table consists of a list of pairs, in which the first component
of a pair is the variable name (a string) and the second is the variable’s
value (an integer).

Example: eval "(2+x) * y" [("y",3),("a",10),("x",8)] yields
(True,30).
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15 Higher-Order Functions
15.1 Chapter Introduction
The previous chapters discussed first-order programming in Haskell. This chapter
“kicks it up a notch” (to quote chef Emeril Lagasse) by adding powerful new
abstraction facilities.

The goals of this chapter (15) are to:

• introduce first-class and higher-order functions

• construct a library of useful higher-order functions to process lists

This chapter continues the emphasis on Haskell programs that are correct,
terminating, efficient, and elegant.

The chapter approaches the development of higher-order functions by generalizing
a set of first-order functions having similar patterns of computation.

The Haskell module for this chapter is in file HigherOrderFunctions.hs.

15.2 Generalizing Procedural Abstractions
A function in a programming language is a procedural abstraction. It separates
the logical properties of a computation from the details of how the computation
is implemented. It abstracts a pattern of behavior and encapsulates it within a
program unit.

Suppose we wish to perform the same computation on a set of similar data
structures. As we have seen, we can encapsulate the computation in a function
having the data structure as an argument. For example, the function length'
computes the number of elements in a list of any type.4 Suppose instead we wish
to perform a similar (but not identical) computation on a set of similar data
structures. For example, we want to compute the sum or the product of a list of
numbers. In this case, we may can pass the operation itself into the function.

This kind of function is called a higher-order function. A higher-order function is
a function that takes functions as arguments or returns functions in a result. Most
traditional imperative languages do not fully support higher-order functions.

In most functional programming languages, functions are treated as first class
values. That is, functions can be stored in data structures, passed as arguments
to functions, and returned as the results of functions. Historically, imperative
languages have not treated functions as first-class values. (Recently, many
imperative languages, such as Java 8, have added support for functions as
first-class values.)

The higher-order functions in Haskell and other functional programming lan-
guages enable us to construct regular and powerful abstractions and operations.

226

Ch15/HigherOrderFunctions.hs


By taking advantage of a library of higher-order functions that capture com-
mon patterns of computation, we can quickly construct concise, yet powerful,
programs.

This can increase programmer productivity and program reliability because such
programs are shorter, easier to understand, and constructed from well-tested
components.

Higher-order functions can also increase the modularity of programs by enabling
simple program fragments to be “glued together” readily into more complex
programs.

In this chapter, we examine several common patterns and build a library of
useful higher-order functions.

15.3 Defining map
Consider the following two functions, noting their type signatures and patterns
of recursion.

The first, squareAll, takes a list of integers and returns the corresponding list
of squares of the integers.

squareAll :: [Int] -> [Int] squareAll :: [Int] -> [Int]
squareAll [] = []
squareAll (x:xs) = (x * x) : squareAll xs

The second, lengthAll,q takes a list of lists and returns the corresponding list
of the lengths of the element lists; it uses the Prelude function length.

lengthAll :: [[a]] -> [Int]
lengthAll [] = []
lengthAll (xs:xss) = (length xs) : lengthAll xss

Although these functions take different kinds of data (a list of integers versus
a list of polymorphically typed lists) and apply different operations (squaring
versus list length), they exhibit the same pattern of computation. That is, both
take a list of some type and apply a given function to each element to generate
a resulting list of the same length as the original.

The combination of polymorphic typing and higher-order functions allow us to
abstract this pattern of computation into a standard function.

We can abstract the pattern of computation common to squareAll and
lengthAll as the (broadly useful) function map, which we define as follows. (In
this chapter, we often add a suffix to the base function names to avoid conflicts
with the similarly named functions in the Prelude. Here we use map’ instead of
map.)

map' :: (a -> b) -> [a] -> [b] -- map in Prelude
map' f [] = []
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map' f (x:xs) = f x : map' f xs

Function map generalizes squareAll, lengthAll, and similar functions by adding
a higher-order parameter for the operation applied and making the input and
the output lists polymorphic. Specifically, he function takes a function f of type
a -> b and a list of type [a], applies function f to each element of the list, and
produces a list of type [b].

Thus we can specialize map to give new definitions of squareAll and lengthAll
as follows:

squareAll2 :: [Int] -> [Int]
squareAll2 xs = map' sq xs

where sq x = x * x

lengthAll2 :: [[a]] -> [Int]
lengthAll2 xss = map' length xss

Consider the following questions.

• Under what circumstances does map' f xs terminate? Do we have to
assume anything about f? about xs?

• What is the time complexity of map f xs?

• What is the time complexity of squareAll2 xs? Of lengthAll2 xs?

15.4 Thinking about Data Transformations
Above we define map as a recursive function that transforms the elements of a
list one by one. However, it is often more useful to think of map in one of two
ways:

1. as a powerful list operator that transforms every element of the list. We can
combine map with other powerful operators to quickly construct powerful
list processing programs.

We can consider map as operating on every element of the list “simulta-
neously”. In fact, an implementation could use separate processors to
transform each element: this is essentially the map operation in Google’s
mapReduce distributed “big data” processing framework.

Referential transparency and immutable data structures make parallelism
easier in Haskell than in most imperative languages.

2. as a operator node in a dataflow network. A stream of data objects flows
into the map node. The map node transforms each object by applying the
argument function. Then the data object flows out to the next node of the
network.

The lazy evaluation of the Haskell functions enables such an implementa-
tion.
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Although in the early parts of these notes we give attention to the details of
recursion, learning how to think like a functional programmer requires us to
think about large-scale transformations of collections of data.

15.5 Generalizing Function Definitions
Whenever we recognize a computational pattern in a set of related functions, we
can generalize the function definition as follows:

1. Do a scope-commonality-variability (SCV) analysis on the set of related
functions [37].

That is, identify what is to be included and what not (i.e., the scope),
the parts of functions that are the same (i.e., the commonalities or frozen
spots), and the parts that differ (the variabilities or hot spots).

2. Leave the commonalities in the generalized function’s body.

3. Move the variabilities into the generalized function’s header—its type
signature and parameter list.

• If the part moved to the generalized function’s parameter list is an
expression, then make that part a function with a parameter for each
local variable accessed.

• If a data type potentially differs from a specific type used in the set
of related functions, then add a type parameter to the generalized
function.

• If the same data value or type appears in multiple roles, then consider
adding distinct type or value parameters for each role.

4. Consider other approaches if the generalized function’s type signature and
parameter list become too complex.

For example, we can introduce new data or procedural abstractions for
parts of the generalized function. These may be in the same module of the
generalized function or in an appropriately defined separate module.

15.6 Defining filter
Consider the following two functions.

The first, getEven, takes a list of integers and returns the list of those integers
that are even (i.e., are multiples of 2). The function preserves the relative order
of the elements in the list.

getEven :: [Int] -> [Int]
getEven [] = []
getEven (x:xs)
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| even x = x : getEven xs
| otherwise = getEven xs

The second, doublePos, takes a list of integers and returns the list of doubles of
the positive integers from the input list; it preserves the relative order of the
elements.

doublePos :: [Int] -> [Int]
doublePos [] = []
doublePos (x:xs)

| 0 < x = (2 * x) : doublePos xs
| otherwise = doublePos xs

Function even is from the Prelude; it returns True if its argument is evenly
divisible by 2 and returns False otherwise.

What do these two functions have in common? What differs?

• Both take a list of integers and return a (possibly shorter) list of integers.

However, the fact they use integers is not important; the key fact is that
they take and return lists of the same element type.

• Both return an empty list when its input list is empty.

• In both, the relative orders of elements in the output list is the same as in
the input list.

• Both select some elements to copy to the output and others not to copy.

Function getEven selects elements that are even numbers and function
doublePos selects elements that are positive numbers.

• Function doublePos doubles the value copied and getEven leaves the value
unchanged.

Using the generalization method outlined above, we abstract the pattern of
computation common to getEven and doublePos as the (broadly useful) function
filter found in the Prelude. (We call the function filter’ below to avoid a
name conflict.)

filter' :: (a -> Bool) -> [a] -> [a] -- filter in Prelude
filter' _ [] = []
filter' p (x:xs)

| p x = x : xs'
| otherwise = xs'

where xs' = filter' p xs

Function filter takes a predicate p of type a -> Bool and a list of type [a]
and returns a list containing those elements that satisfy p, in the same order as
the input list. Note that the keyword where begins in the same column as the =
in the defining equations; thus the scope of the definition of xs’ extends over
both legs of the definition.
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Function filter does not incorporate the doubling operation from doublePos.
We could have included it as another higher-order parameter, but we leave it
out to keep the generalized function simple. We can use the already defined map
function to achieve this separately.

Therefore, we can specialize filter to give new definitions of getEven and
doublePos as follows:

getEven2 :: [Int] -> [Int]
getEven2 xs = filter' even xs

doublePos2 :: [Int] -> [Int]
doublePos2 xs = map' dbl (filter' pos xs)

where dbl x = 2 * x
pos x = (0 < x)

Note that function doublePos2 exhibits both the filter and the map patterns
of computation.

The standard higher-order functions map and filter allow us to restate the
three-leg definitions of getEven and doublePos in just one leg each, except that
doublePos requires two lines of local definitions. In Chapter 16, we see how to
eliminate these simple local definitions as well.

• Under what circumstances does filter' p xs terminate? Do we have to
assume anything about p? about xs?

• What is the time complexity of filter' p xs? space complexity?

• What is the time complexity of getEven2 xs? space complexity?

• What is the time complexity of doublePos2 xs? space complexity?

15.7 Defining Fold Right (foldr)
Consider the sum and product {.haskell} functions we defined in Chapter 4,
ignoring the short-cut handling of the zero element in product.

sum' :: [Int] -> Int -- sum in Prelude
sum' [] = 0
sum' (x:xs) = x + sum' xs

product' :: [Integer] -> Integer -- product in Prelude
product' [] = 1
product' (x:xs) = x * product' xs

Both sum' and product' apply arithmetic operations to integers. What about
other operations with similar pattern of computation?

Also consider a function concat that concatenates a list of lists of some type into
a list of that type with the order of the input lists and their elements preserved.
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concat' :: [[a]] -> [a] -- concat in Prelude
concat' [] = []
concat' (xs:xss) = xs ++ concat' xss

For example,

sum' [1,2,3] = (1 + (2 + (3 + 0)))
product' [1,2,3] = (1 * (2 * (3 * 1)))
concat' ["1","2","3"] = ("1" ++ ("2" ++ ("3" ++ "")))

What do sum', product', and concat' have in common? What differs?

All exhibit the same pattern of computation.

• All take a list.

But the element type differs. Function sum' takes a list of Int values,
product' takes a list of Integer values, and concat' takes a polymorphic
list.

• All insert a binary operator between all the consecutive elements of the
list in order to reduce the list to a single value.

But the binary operation differs. Function sum' applies integer addition,
product' applies integer multiplication, and concat' applies ++.

• All group the operations from the right to the left.

• Each function returns some value for an empty list. The function extends
nonempty input lists to implicitly include this value as the “rightmost”
value of the input list.

But the actual value differs.

Function sum' returns integer 0, the (right) identity element for addition.

Function product' returns 1, the (right) identity element for multiplication.

Function concat' returns [], the (right) identity element for ++.

In general, this value could be something other than the identity element.

• All return a value of the same element type as the input list.

But the input type differs, as we noted above.

This group of functions inserts operations of type a -> a -> a between elements
a list of type [a].

But these are special cases of more general operations of type a -> b -> b. In
this case, the value returned must be of type b in the case of both empty and
nonempty lists.

We can abstract the pattern of computation common to sum', product', and
concat’ as the function foldr (pronounced “fold right”) found in the Prelude.
(Here we use foldrX{.haskell} to avoid the name conflict.)
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foldrX :: (a -> b -> b) -> b -> [a] -> b -- foldr in Prelude
foldrX f z [] = z
foldrX f z (x:xs) = f x (foldrX f z xs)

Function foldr:

• uses two type parameters a and b—one for the type of elements in the list
and one for the type of the result

• passes in the general binary operation f (with type a -> b -> b)
that combines (i.e., folds) the list elements

• passes in the “seed” element z (of type b) to be returned for empty lists

The foldr function “folds” the list elements (of type a) into a value (of type b)
by “inserting” operation f between the elements, with value z “appended” as
the rightmost element.

Often the seed value z is the right identity element for the operation, but foldr
may be useful in some circumstances where it is not (or perhaps even if there is
no right identity).

For example, foldr f z [1,2,3] expands to f 1 (f 2 (f 3 z)), or, using an
infix style:

1 `f` (2 `f` (3 `f` z))

Function foldr does not depend upon f being associative or having either a
right or left identity.

Function foldr is backward recursive. If the function application is fully eval-
uated, it needs a new stack frame for each element of the input list. If its list
argument is long or the folding function itself is expensive, then the function
can terminate with a stack overflow error.

In Haskell, foldr is called a fold operation. Other languages sometimes call this
a reduce or insert operation.

We can specialize foldr to restate the definitions for sum', product', and
concat’.

sum2 :: [Int] -> Int -- sum
sum2 xs = foldrX (+) 0 xs

product2 :: [Int] -> Int -- product
product2 xs = foldrX (*) 1 xs

concat2:: [[a]] -> [a] -- concat
concat2 xss = foldrX (++) [] xss

As further examples, consider the folding of the Boolean operators && (“and”)
and || (“or”) over lists of Boolean values as Prelude functions and and or (shown
as and’ and or’ below to avoid name conflicts):
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and', or' :: [Bool] -> Bool -- and, or in Prelude
and' xs = foldrX (&&) True xs
or' xs = foldrX (||) False xs

Although their definitions look different, and’ and or’ are actually identical to
functions and and or in the Prelude.

Consider the following questions.

• Under what circumstances does foldrX f z xs terminate? Do we have
to assume anything about f? about xs?

• What is the time complexity of product2? of concat2?

15.8 Using foldr
The fold functions are very powerful. By choosing an appropriate folding function
argument, many different list functions can be implemented in terms of foldr.

For example, we can implement map using foldr as follows:

map2 :: (a -> b) -> [a] -> [b] -- map
map2 f xs = foldr mf [] xs

where mf y ys = (f y) : ys

The folding function mf y ys = (f y):ys applies the mapping function f to
the next element of the list (moving right to left) and attaches the result on the
front of the processed tail. This is a case where the folding function mf does not
have a right identity, but where foldr is quite useful.

We can also implement filter in terms of foldr as follows:

filter2 :: (a -> Bool) -> [a] -> [a] -- filter
filter2 p xs = foldr ff [] xs

where ff y ys = if p y then (y:ys) else ys

The folding function ff y ys = if p x then (y:ys) else ys applies the fil-
ter predicate p to the next element of the list (moving right to left). If the
predicate evaluates to True, the folding function attaches that element on the
front of the processed tail; otherwise, it omits the element from the result.

We can also use foldr to compute the length of a polymorphic list.

length2 :: [a] -> Int -- length
length2 xs = foldr len 0 xs

where len _ acc = acc + 1

This uses the z parameter of foldr to initialize the count to 0. Higher-order
argument f of foldr is a function that takes an element of the list as its left
argument and the previous accumulator as its right argument and returns the
accumulator incremented by 1. In this application, z is not the identity element
for f but is a convenient beginning value for the counter.
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We can construct an “append” function that uses foldr as follows:

append2 :: [a] -> [a] -> [a] -- ++
append2 xs ys = foldr (:) ys xs

Here the the list that foldr operates on the first argument of the append. The z
parameter is the entire second argument and the folding function is just (:). So
the effect is to replace the [] at the end of the first list by the entire second list.

Function foldr 1s a backward recursive function that processes the elements of
a list one by one. However, as we have seen, it is often more useful to think of
foldr as a powerful list operator that reduces the element of the list into a single
value. We can combine foldr with other operators to conveniently construct
list processing programs.

15.9 Defining Fold Left (foldl)
We designed function foldr as a backward linear recursive function with the
signature:

foldr :: (a -> b -> b) -> b -> [a] -> b

As noted:

foldr f z [1,2,3] == f 1 (f 2 (f 3 z))
== 1 `f` (2 `f` (3 `f` z))

Consider a function foldl (pronounced “fold left”) such that:

foldl f z [1,2,3] == f (f (f z 1) 2) 3
== ((z `f` 1) `f` 2) `f` 3`

This function folds from the left. It offers us the opportunity to use parameter z
as an accumulating parameter in a tail recursive implementation. This is shown
below as foldlX, which is similar to foldl in the Prelude.

foldlX :: (a -> b -> a) -> a -> [b] -> a -- foldl in Prelude
foldlX f z [] = z
foldlX f z (x:xs) = foldlX f (f z x) xs

] Note how the second leg of foldlX implements the left binding of the opera-
tion. In the recursive call of foldlX the “seed value” argument is used as an
accumulating parameter.

Also note how the types of foldr and foldl differ.

Often the beginning value of z is the left identity of the operation f, but foldl
(like foldr) can be a quite useful function in circumstances when it is not (or
when f has no left identity).
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15.10 Using foldl
If ⊕ is an associative binary operation of type t -> t -> t with identity element
z (i.e., ⊕ and t form the algebraic structure know as a monoid), then, for any
xs,

foldr ( ⊕) z xs = foldl ( ⊕) z xs

The classic Bird and Wadler textbook [15] calls this property the first duality
theorem.

Because +, *, and ++ are all associative operations with identity elements, sum,
product, and concat can all be implemented with either foldr or foldl.

Which is better?

Depending upon the nature of the operation, an implementation using foldr
may be more efficient than foldl or vice versa.

We defer a more complete discussion of the efficiency until we study evaluation
strategies further in Chapter 29.

As a rule of thumb, however, if the operation ⊕ is nonstrict in either argument,
then it is usually better to use foldr. That form takes better advantage of lazy
evaluation.

If the operation ⊕ is strict in both arguments, then it is often better (i.e., more
efficient) to use the optimized version of foldl called foldl' from the standard
Haskell module Data.List.

The append operation ++ is nonstrict in its second argument, so it is better to
use foldr to implement concat.

Addition and multiplication are strict in both arguments, so we can implement
sum and product functions efficiently with foldl', as follows:

import Data.List -- to make foldl' available
sum3, product3 :: Num a => [a] -> a -- sum, product
sum3 xs = foldl' (+) 0 xs
product3 xs = foldl' (*) 1 xs

Note that we generalize these functions to operate on polymorphic lists with a
base type in class Num. Class Num includes all numeric types.

Function length3 uses foldl. It is like length2 except that the arguments of
function len are reversed.

length3 :: [a] -> Int -- length
length3 xs = foldl len 0 xs

where len acc _ = acc + 1

However, it is usually better to use the foldr version length2 because the
folding function len is nonstrict in the argument corresponding to the list.
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We can also implement list reversal using foldl as follows:

reverse2 :: [a] -> [a] -- reverse
reverse2 xs = foldl rev [] xs

where rev acc x = (x:acc)

This gives a solution similar to the tail recursive reverse function from Chapter
14. The z parameter of function foldl is initially an empty list; the folding
function parameter f of foldl uses (:) to “attach” each element of the list as
the new head of the accumulator, incrementally building the list in reverse order.

Although cons is nonstrict in its right operand, reverse2 builds up that argument
from [], so reverse2 cannot take advantage of lazy evaluation by using foldr
instead.

To avoid a stack overflow situation with foldr, we can first apply reverse to
the list argument and then apply foldl as follows:

foldr2 :: (a -> b -> b) -> b -> [a] -> b -- foldr
foldr2 f z xs = foldl flipf z (reverse xs)

where flipf y x = f x y

The combining function in the call to foldl is the same as the one passed to
foldr except that its arguments are reversed.

15.11 Defining concatMap (flatmap)
The higher-order function map applies its function argument f to every element
of a list and returns the list of results. If the function argument f returns a list,
then the result is a list of lists. Often we wish to flatten this into a single list,
that is, apply a function like concat defined in Section 15.7.

This computation is sufficiently common that we give it the name concatMap.
We can define it in terms of map and concat as

concatMap' :: (a -> [b]) -> [a] -> [b]
concatMap' f xs = concat (map f xs)

or by combining map and concat into one foldr as:

concatMap2 :: (a -> [b]) -> [a] -> [b]
concatMap2 f xs = foldr fmf [] xs

where fmf x ys = f x ++ ys

Above, the function argument to foldr applies the concatMap function argument
f to each element of the list argument and then appends the resulting list in
front of the result from processing the elements to the right.

We can also define filter in terms of concatMap as follows:

filter3 :: (a -> Bool) -> [a] -> [a]
filter3 p xs = concatMap' fmf xs
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where fmf x = if p x then [x] else []

The function argument to concatMap generates a one-element list if the filter
predicate p is true and an empty list if it is false.

Some other languages (e.g., Scala) call the concatMap function by the name
flatmap.

15.12 What Next?
This chapter introduced the concepts of first-class and higher-order functions
and generalized common computational patterns to construct a library of useful
higher-order functions to process lists.

Chapter 16 continues to examine those concepts and their implications for Haskell
programming.

15.13 Chapter Source Code
The Haskell module for this chapter is in file HigherOrderFunctions.hs.

15.14 Exercises
1. Suppose you need a Haskell function times that takes a list of integers (type

Integer) and returns the product of the elements (e.g., times [2,3,4]
returns 24). Define the following Haskell functions.

a. Function times1 that uses the Prelude function foldr (or foldr'
from this chapter).

b. Function times2 that uses backward recursion to compute the product.
(Use recursion directly. Do not use the list-folding Prelude functions
such as foldr or product.)

c. Function times3 that uses forward recursion to compute the product.
(Hint: use a tail-recursive auxiliary function with an accumulating
parameter.)

d. Function times4 that uses function foldl' from the Haskell library
Data.List.

2. For each of the following specifications, define a Haskell function that has
the given arguments and result. Use the higher order library functions
(from this chapter) such as map, filter, foldr, and foldl as appropriate.

a. Function numof takes a value and a list and returns the number of
occurrences of the value in the list.

b. Function ellen takes a list of character strings and returns a list of
the lengths of the corresponding strings.
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c. Function ssp takes a list of integers and returns the sum of the squares
of the positive elements of the list.

3. Suppose you need a Haskell function sumSqNeg that takes a list of integers
(type Integer) and returns the sum of the squares of the negative values
in the list.

Define the following Haskell functions. Use the higher order library func-
tions (from this chapter) such as map, filter, foldr, and foldl as appro-
priate.

a. Function sumSqNeg1 that is backward recursive. (Use recursion di-
rectly. Do not use the list-folding Prelude functions such as foldr or
sum.)

b. Function sumSqNeg2 that is tail recursive. (Use recursion directly. Do
not use the list-folding Prelude functions such as foldr or sum.)

c. Function sumSqNeg3 that uses standard prelude functions such as
map, filter, foldr, and foldl.

d. Function sumSqNeg4 that uses list comprehensions (Chapter 18).

4. Define a Haskell function

scalarprod :: [Int] -> [Int] -> Int

to compute the scalar product of two lists of integers (e.g., representing
vectors).

The scalar product is the sum of the products of the elements in corre-
sponding positions in the lists. That is, the scalar product of two lists xs
and ys, of length n, is:

i=n∑
i=0

xsi ∗ ysi

For example, scalarprod [1,2,3] [3,3,3] yields 18.

5. Define a Haskell function map2 that takes a list of functions and a list of
values and returns the list of results of applying each function in the first
list to the corresponding value in the second list.
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16 Haskell Function Concepts
16.1 Chapter Introduction
Chapter 15 introduced the concepts of first-class and higher-order functions
and generalized common computational patterns to construct a library of useful
higher-order functions to process lists.

This chapter continues to examine those concepts and their implications for
Haskell programming. It explores strictness, currying, partial application, com-
binators, operator sections, functional composition, inline function definitions,
evaluation strategies, and related methods.

The Haskell module for Chapter 16 is in file FunctionConcepts.hs.

16.2 Strictness
In the discussion of the fold functions, Chapter 15 introduced the concept of
strictness. In this section, we explore that in more depth.

Some expressions cannot be reduced to a simple value, for example, div 1 0.
The attempted evaluation of such expressions either return an error immediately
or cause the interpreter to go into an “infinite loop”.

In our discussions of functions, it is often convenient to assign the symbol ⊥
(pronounced “bottom”) as the value of expressions like div 1 0. We use ⊥ is a
polymorphic symbol—as a value of every type.

The symbol ⊥ is not in the Haskell syntax and the interpreter cannot actually
generate the value ⊥. It is merely a name for the value of an expression in
situations where the expression cannot really be evaluated. It’s use is somewhat
analogous to use of symbols such as ∞ in mathematics.

Although we cannot actually produce the value ⊥, we can, conceptually at least,
apply any function to ⊥.

If f ⊥ = ⊥, then we say that the function is strict; otherwise, it is nonstrict
(sometimes called lenient).

That is, a strict argument of a function must be evaluated before the final result
can be computed. A nonstrict argument of a function may not need to be
evaluated to compute the final result.

Assume that lazy evaluation is being used and consider the function two that
takes an argument of any type and returns the integer value two.

two :: a -> Int
two x = 2

The function two is nonstrict. The argument expression is not evaluated to
compute the final result. Hence, two ⊥ = 2.
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Consider the following examples.

• The arithmetic operations (e.g., +) are strict in both arguments.

• Function rev (discussed in Chapter 14) is strict in its one argument.

• Operation ++ is strict in its first argument, but nonstrict in its second
argument.

• Boolean functions && and || from the Prelude are also strict in their first
arguments and nonstrict in their second arguments.

(&&), (||) :: Bool -> Bool -> Bool
False && x = False -- second argument not evaluated
True && x = x

False || x = x
True || x = True -- second argument not evaluated

16.3 Currying and Partial Application
Consider the following two functions:

add :: (Int,Int) -> Int
add (x,y) = x + y

add' :: Int -> (Int -> Int)
add' x y = x + y

These functions are closely related, but they are not identical.

For all integers x and y, add (x,y) == add’ x y. But functions add and add’
have different types.

Function add takes a 2-tuple (Int,Int) and returns an Int. Function add’
takes an Int and returns a function of type Int -> Int.

What is the result of the application add 3? An error.

What is the result of the application add’ 3? The result is a function that “adds
3 to its argument”.

What is the result of the application (add’ 3) 4? The result is the integer value
7.

By convention, function application (denoted by the juxtaposition of a function
and its argument) binds to the left. That is, add’ x y = ((add’ x) y).

Hence, the higher-order functions in Haskell allow us to replace any function
that takes a tuple argument by an equivalent function that takes a sequence of
simple arguments corresponding to the components of the tuple. This process is
called currying. It is named after American logician Haskell B. Curry, who first
exploited the technique.
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Function add’ above is similar to the function (+) from the Prelude (i.e., the
addition operator).

We sometimes speak of the function (+) as being partially applied in the expres-
sion ((+) 3). In this expression, the first argument of the function is “frozen in”
and the resulting function can be passed as an argument, returned as a result,
or applied to another argument.

Partially applied functions are very useful in conjunction with other higher-order
functions.

For example, consider the partial applications of the relational comparison
operator (<) and multiplication operator (*) in the function doublePos3. This
function, which is equivalent to the function doublePos discussed in Chapter
15, doubles the positive integers in a list:

doublePos3 :: [Int] -> [Int]
doublePos3 xs = map ((*) 2) (filter ((<) 0) xs)

Related to the concept of currying is the property of extensionality. Two functions
f and g are extensionally equal if f x == g x for all x.

Thus instead of writing the definition of g as

f, g :: a -> a
f x = some_expression

g x = f x

we can write the definition of g as simply:

g = f

16.4 Operator Sections
Expressions such as ((*) 2) and ((<) 0), used in the definition of doublePos3
in Section 16.3, can be a bit confusing because we normally use these operators
in infix form. (In particular, it is difficult to remember that ((<) 0) returns
True for positive integers.)

Also, it would be helpful to be able to use the division operator to express a
function that halves (i.e., divides by two) its operand. The function ((/) 2)
does not do it; it divides 2 by its operand.

We can use the function flip from the Prelude to state the halving operation.
Function flip takes a function and two additional arguments and applies the
argument function to the two arguments with their order reversed.

flip' :: (a -> b -> c) -> b -> a -> c -- flip in Prelude
flip' f x y = f y x

Thus we can express the halving operator with the expression (flip (/) 2).
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Because expressions such as ((<) 0) and (flip (/) 2) are quite common in
programs, Haskell provides a special, more compact and less confusing, syntax.

For some infix operator ⊕ and arbitrary expression e, expressions of the form (e
⊕) and ( ⊕e) represent (( ⊕) e) and (flip ( ⊕) e), respectively. Expressions
of this form are called operator sections.

Examples of operator sections include:

(1+) is the successor function, which returns the value of its argument
plus 1.

(0<) is a test for a positive integer.

(/2) is the halving function.

(1.0/) is the reciprocal function.

(:[]) is the function that returns the singleton list containing the
argument.

Suppose we want to sum the cubes of list of integers. We can express the function
in the following way:

sumCubes :: [Int] -> Int
sumCubes xs = sum (map (ˆ3) xs)

Above ˆ is the exponentiation operator and sum is the list summation function
defined in the Prelude as:

sum = foldl' (+) 0 -- sum

16.5 Combinators
The function flip in Section 16.4 is an example of a useful type of function
called a combinator.

A combinator is a function without any free variables. That is, on right side of a
defining equation there are no variables or operator symbols that are not bound
on the left side of the equation.

For historical reasons, flip is sometimes called the C combinator.

There are several other useful combinators in the Prelude.

The combinator const (shown below as const’) is the constant function con-
structor; it is a two-argument function that returns its first argument. For
historical reasons, this combinator is sometimes called the K combinator.

const' :: a -> b -> a -- const in Prelude
const' k x = k

Example: (const 1) takes any argument and returns the value 1.

Question: What does sum (map (const 1) xs) do?
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Function id (shown below as id’) is the identity function; it is a one-argument
function that returns its argument unmodified. For historical reasons, this
function is sometimes called the I combinator.

id' :: a -> a -- id in Prelude
id' x = x

Combinators fst and snd (shown below as fst’ and snd’) extract the first and
second components, respectively, of 2-tuples.

fst' :: (a,b) -> a -- fst in Prelude
fst' (x,_) = x

snd' :: (a,b) -> b -- snd in Prelude
snd' (_,y) = y

Similarly, fst3, snd3, and thd3 extract the first, second, and third components,
respectively, of 3-tuples.

TODO: Correct above statement. No longer seems correct. Data.Tuple.Select
sel1, sel2, sel2, etc. Investigate and rewrite.

An interesting example that uses a combinator is the function reverse as defined
in the Prelude (shown below as reverse’):

reverse' :: [a] -> [a] -- reverse in Prelude
reverse' = foldlX (flip' (:)) []

Function flip (:) takes a list on the left and an element on the right. As this
operation is folded through the list from the left it attaches each element as the
new head of the list.

We can also define combinators that convert an uncurried function into a curried
function and vice versa. The functions curry' and uncurry' defined below are
similar to the Prelude functions.

curry' :: ((a, b) -> c) -> a -> b -> c --Prelude curry
curry' f x y = f (x, y)

uncurry' :: (a -> b -> c) -> ((a, b) -> c) --Prelude uncurry
uncurry' f p = f (fst p) (snd p)

Two other useful combinators are fork and cross [Bird 2015]. Combinator
fork applies each component of a pair of functions to a value to create a pair of
results. Combinator cross applies each component of a pair of functions to the
corresponding components of a pair of values to create a pair of results. We can
define these as follows:

fork :: (a -> b, a -> c) -> a -> (b,c)
fork (f,g) x = (f x, g x)
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cross :: (a -> b, c -> d) -> (a,c) -> (b,d)
cross (f,g) (x,y) = (f x, g y)

16.6 Functional Composition
The functional composition operator allows several “smaller” functions to be
combined to form “larger” functions. In Haskell, this combinator is denoted by
the period (.) symbol and is defined in the Prelude as follows:

infixr 9 .
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

Composition’s default binding is from the right and its precedence is higher than
all the operators we have discussed so far except function application itself.

Functional composition is an associative binary operation with the identity
function id as its identity element:

f . (g . h) = (f . g) . h
id . f = f . id

16.7 Function Pipelines
As an example, consider the function count that takes two arguments, an integer
n and a list of lists, and returns the number of the lists from the second argument
that are of length n. Note that all functions composed below are single-argument
functions: length, (filter (== n)), (map length).

count :: Int -> [[a]] -> Int
count n -- unprimed versions from Prelude

| n >= 0 = length . filter (== n) . map length
| otherwise = const 0 -- discard 2nd arg, return 0

We can think of the point-free expression length . filter (== n) . map length
as defining a function pipeline through which data flows from right to left.

TODO: Draw a diagram showing the data flow network (right to left?)

1. The pipeline takes a polymorphic list of lists as input.

2. The map length component of the pipeline replaces each inner list by its
length.

3. The filter (== n) component takes the list created by the previous step
and removes all elements not equal to n.

4. The length component takes the list created by the previous step and
determines how many elements are remaining.

5. The pipeline outputs the value computed by the previous component. The
number of lists within the input list of lists that are of length n.
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Thus composition is a powerful form of “glue” that can be used to “stick” simpler
functions together to build more powerful functions. The simpler functions in
this case include partial applications of higher order functions from the library
we have developed.

As we see above in the definition of count, partial applications (e.g.,
filter (== n)), operator sections (e.g., (== n)), and combinators (e.g., const)
are useful as plumbing the function pipeline.

Remember the function doublePos that we discussed in earlier sections.

doublePos3 xs = map ((*) 2) (filter ((<) 0) xs)

Using composition, partial application, and operator sections we can restate its
definition in point-free style as follows:

doublePos4 :: [Int] -> [Int]
doublePos4 = map (2*) . filter (0<)

Consider a function last to return the last element in a non-nil list and a
function init to return the initial segment of a non-nil list (i.e., everything
except the last element). These could quickly and concisely be written as follows:

last' = head . reverse -- last in Prelude
init' = reverse . tail . reverse -- init in Prelude

However, since these definitions are not very efficient, the Prelude implements
functions last and init in a more direct and efficient way similar to the
following:

last2 :: [a] -> a -- last in Prelude
last2 [x] = x
last2 (_:xs) = last2 xs

init2 :: [a] -> [a] -- init in Prelude
init2 [x] = []
init2 (x:xs) = x : init2 xs

The definitions for Prelude functions any and all are similar to the definitions
show below; they take a predicate and a list and apply the predicate to each
element of the list, returning True when any and all, respectively, of the individual
tests evaluate to True.

any', all' :: (a -> Bool) -> [a] -> Bool
any' p = or' . map' p -- any in Prelude
all' p = and' . map' p -- all in Prelude

The functions elem and notElem test for an object being an element of a list
and not an element, respectively. They are defined in the Prelude similarly to
the following:
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elem', notElem' :: Eq a => a -> [a] -> Bool
elem' = any . (==) -- elem in Prelude
notElem' = all . (/=) -- notElem in Prelude

These are a bit more difficult to understand since any, all, ==, and /= are
two-argument functions. Note that expression elem x xs would be evaluated as
follows:

elem’ x xs

=⇒ { expand elem’ }

(any’ . (==)) x xs

=⇒ { expand composition }

any’ ((==) x) xs

The composition operator binds the first argument with (==) to construct the
first argument to any’. The second argument of any’ is the second argument of
elem’.

16.8 Lambda Expressions
Remember the function squareAll2 we examined in Chapter 15:

squareAll2 :: [Int] -> [Int]
squareAll2 xs = map' sq xs

where sq x = x * x

We introduced the local function definition sq to denote the function to be
passed to map. It seems to be a waste of effort to introduce a new symbol for a
simple function that is only used in one place in an expression. Would it not
be better, somehow, to just give the defining expression itself in the argument
position?

Haskell provides a mechanism to do just that, an anonymous function definition.
For historical reasons, these nameless functions are called lambda expressions.
They begin with a backslash \{.haskell} and have the syntax:

\ atomicPatterns -> expression

For example, the squaring function (sq) could be replaced by a lambda expression
as (\x -> x * x). The pattern x represents the single argument for this
anonymous function and the expression x * x is its result.

Thus we can rewrite squareAll2 in point-free style using a lambda expression
as follows:

squareAll3 :: [Int] -> [Int]
squareAll3 = map' (\x -> x * x)
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A lambda expression to average two numbers can be written (\x y -> (x+y)/2).

An interesting example that uses a lambda expression is the function length
as defined in the Prelude—similar to length4 below. (Note that this uses the
optimized function foldl' from the standard Haskell Data.List module.)

length4 :: [a] -> Int -- length in Prelude
length4 = foldl' (\n _ -> n+1) 0

The anonymous function (\n _ -> n+1) takes an integer “counter” and a
polymorphic value and returns the “counter” incremented by one. As this
function is folded through the list from the left, this function counts each element
of the second argument.

16.9 Application Operator $
In Haskell, function application associates to the left and has higher binding
power than any infix operator. For example, for some function two-argument
function f and values w, x, y, and z

w + f x y * z

is the same as

w + (((f x) y) * z)

given the relative binding powers of function application and the numeric opera-
tors.

However, sometimes we want to be able to use function application where it
associates to the right and binds less tightly than any other operator. Haskell
defines the $ operator to enable this style, as follows:

infixr 0 $
($) :: (a -> b) -> a -> b
f $ x = f x

Thus, for single argument functions f, g, and h,

f $ g $ h $ z + 7

is the same as

(f (g (h (z+7))))

and as:

(f . g . h) (z+7)

Similarly, for two-argument functions f', g', and h',

f' w $ g' x $ h' y $ z + 7

is the same as
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((f' w) ((g' x) ((h' y) (z+7))))

and as:

(f' w . g' x . h' y) (z+7)

For example, this operator allows us to write

foldr (+) 0 $ map (2*) $ filter odd $ enumFromTo 1 20

where Prelude function enumFromTo m n generates the sequence of integers from
m to n, inclusive.

16.10 Eager Evaluation Using seq and $!
Haskell is a lazily evaluated language. That is, if an argument is nonstrict it
may never be evaluated.

Sometimes, using the technique called strictness analysis, the Haskell compiler
can detect that an argument’s value will always be needed. The compiler can
then safely force eager evaluation as an optimization without changing the
meaning of the program.

In particular, by selecting the -O option to the Glasgow Haskell Compiler (GHC),
we can enable GHC’s code optimization processing. GHC will generally create
smaller, faster object code at the expense of increased compilation time by taking
advantage of strictness analysis and other optimizations.

However, sometimes we may want to force eager evaluation explicitly without
invoking a full optimization on all the code (e.g., to make a particular function’s
evaluation more space efficient). Haskell provides the primitive function seq
that enables this. That is,

seq :: a -> b -> b
x `seq` y = y

where it just returns the second argument except that, as a side effect, x is
evaluated before y is returned. (Technically, x is evaluated to what is called head
normal form. It is evaluated until the outer layer of structure such as h:t is
revealed, but h and t themselves are not fully evaluated. We study evaluation
strategies further in Chapter 29.

Function foldl, the “optimized” version of foldl can be defined using seq as
follows

foldlP :: (a -> b -> a) -> a -> [b] -> a -- Data.List.foldl'
foldlP f z [] = z
foldlP f z (x:xs) = y `seq` foldl' f y xs

where y = f z x

That is, this evaluates the z argument of the tail recursive application eagerly.

Using seq, Haskell also defines $!, a strict version of the $ operator, as follows:
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infixr 0 $!
($!) :: (a -> b) -> a -> b
f $! x = x `seq` f x

The effect of f $! x is the same as f $ x except that $! eagerly evaluates the
argument x before applying function f to it.

We can rewrite foldl' using $! as follows:

foldlQ :: (a -> b -> a) -> a -> [b] -> a -- Data.List.foldl'
foldlQ f z [] = z
foldlQ f z (x:xs) = (foldlQ f $! f z x) xs

We can write a tail recursive function to sum the elements of the list as follows:

sum4 :: [Integer] -> Integer -- sum in Prelude
sum4 xs = sumIter xs 0

where sumIter [] acc = acc
sumIter (x:xs) acc = sumIter xs (acc+x)

We can then redefine sum4 to force eager evaluation of the accumulating parameter
of sumIter as follows:

sum5 :: [Integer] -> Integer -- sum in Prelude
sum5 xs = sumIter xs 0

where sumIter [] acc = acc
sumIter (x:xs) acc = sumIter xs $! acc + x

However, we need to be careful in applying seq and $!. They change the
semantics of the lazily evaluated language in the case where the argument is
nonstrict. They may force a program to terminate abnormally and/or cause it
to take unnecessary evaluation steps.

16.11 What Next?
Chapter 15 introduced the concepts of first-class and higher-order functions
and generalized common computational patterns to construct a library of useful
higher-order functions to process lists.

This chapter (16}) continued to examine those concepts and their implications for
Haskell programming by exploring concepts and features such as strictness, curry-
ing, partial application, combinators, operator sections, functional composition,
inline function definitions, and evaluation strategies.

Chapter 17 looks at additional examples that use these higher-order programming
concepts.

16.12 Chapter Source Code
The Haskell module for Chapter 16 is in file FunctionConcepts.hs.
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16.13 Exercises
1. Define a Haskell function

total :: (Integer -> Integer) -> Integer -> Integer

so that total f n gives f 0 + f 1 + f 2 + ... + f n. How could you
define it using removeFirst?

2. Define a Haskell function map2 that takes a list of functions and a list of
values and returns the list of results of applying each function in the first
list to the corresponding value in the second list.

3. Define a Haskell function fmap that takes a value and a list of functions
and returns the list of results from applying each function to the argument
value. (For example, fmap 3 [((*) 2), ((+) 2)] yields [6,5].)

4. Define a Haskell function composeList that takes a list of functions and
composes them into a single function. (Be sure to give the type signature.)
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17 Higher Order Function Examples
17.1 Chapter Introduction
Chapters 15 and 16 introduced the concepts of first-class and higher-order
functions and their implications for Haskell programming.

The goals of this chapter (17) are to:

• continue to explore first-class and higher-order functions by examining
additional library functions and examples

• examine how to express general problem-solving strategies as higher-order
functions, in particular the divide-and-conquer strategy

17.2 List-Breaking Operations
In Chapter 13, we looked at the list-breaking functions take and drop. The
Prelude also includes several higher-order list-breaking functions that take two
arguments, a predicate that determines where the list is to be broken and the
list to be broken.

Here we look at Prelude functions takeWhile and dropWhile. As you would
expect, function takeWhile “takes” elements from the beginning of the list
“while” the elements satisfy the predicate and dropWhile “drops” elements from
the beginning of the list “while” the elements satisfy the predicate. The Prelude
definitions are similar to the following:

takeWhile':: (a -> Bool) -> [a] -> [a] -- takeWhile in Prelude
takeWhile' p [] = []
takeWhile' p (x:xs)

| p x = x : takeWhile' p xs
| otherwise = []

dropWhile' :: (a -> Bool) -> [a] -> [a] -- dropWhile in Prelude
dropWhile' p [] = []
dropWhile' p xs@(x:xs')

| p x = dropWhile' p xs'
| otherwise = xs

Note the use of the pattern xs@(x:xs’) in dropWhile'. This pattern matches
a non-nil list with x and xs’ binding to the head and tail, respectively, as usual.
Variable xs binds to the entire list.

As an example, suppose we want to remove the leading blanks from a string. We
can do that with the expression:

dropWhile ((==) ' ')

As with take and drop, the above functions can also be related by a “law”. For
all finite lists xs and predicates p on the same type:
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takeWhile p xs ++ dropWhile p xs = xs

Prelude function span combines the functionality of takeWhile and dropWhile
into one function. It takes a predicate p and a list xs and returns a tuple where
the first element is the longest prefix (possibly empty) of xs that satisfies p and
the second element is the remainder of the list.

span' :: (a -> Bool) -> [a] -> ([a],[a]) -- span in Prelude
span' _ xs@[] = (xs, xs)
span' p xs@(x:xs')

| p x = let (ys,zs) = span' p xs' in (x:ys,zs)
| otherwise = ([],xs)

Thus the following “law” holds for all finite lists xs and predicates p on same
type:

span p xs == (takeWhile p xs, dropWhile p xs)

The Prelude also includes the function break, defined as follows:

break' :: (a -> Bool) -> [a] -> ([a],[a]) -- break in Prelude
break' p = span (not . p)

17.3 List-Combining operations
In Chapter 14, we also looked at the function zip, which takes two lists and
returns a list of pairs of the corresponding elements. Function zip applies an
operation, in this case tuple-construction, to the corresponding elements of two
lists.

We can generalize this pattern of computation with the function zipWith in
which the operation is an argument to the function.

zipWith' :: (a->b->c) -> [a]->[b]->[c] -- zipWith in Prelude
zipWith' z (x:xs) (y:ys) = z x y : zipWith' z xs ys
zipWith' _ _ _ = []

Using a lambda expression to state the tuple-forming operation, the Prelude
defines zip in terms of zipWith:

zip'' :: [a] -> [b] -> [(a,b)] -- zip
zip'' = zipWith' (\x y -> (x,y))

Or it can be written more simply as:

zip''' :: [a] -> [b] -> [(a,b)] -- zip
zip''' = zipWith' (,)

The zipWith function also enables us to define operations such as the scalar
product of two vectors in a concise way.

sp :: Num a => [a] -> [a] -> a
sp xs ys = sum' (zipWith' (*) xs ys)
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The Prelude includes zipWith3 for triples. Library Data.List has versions of
zipWith that take up to seven input lists: zipWith3 · · · zipWith7.

17.4 Rational Arithmetic Revisited
Remember the rational number arithmetic package developed in Chapter 7. In
that package’s Rational module, we defined a function eqRat to compare two
rational numbers for equality using the appropriate set of integer comparisons.

eqRat :: Rat -> Rat -> Bool
eqRat x y = (numer x) * (denom y) == (numer y) * (denom x)

We could have implemented the other comparison operations similarly.

Because the comparison operations are similar, they are good candidates for
us to use a higher-order function. We can abstract out the common pattern of
comparisons into a function that takes the corresponding integer comparison as
an argument.

To compare two rational numbers, we can express their values in terms of a
common denominator (e.g., denom x * denom y) and then compare the numer-
ators using the integer comparisons. We can thus abstract the comparison into
a higher-order function compareRat that takes an appropriate integer relational
operator and the two rational numbers.

compareRat :: (Int -> Int -> Bool) -> Rat -> Rat -> Bool
compareRat r x y = r (numer x * denom y) (denom x * numer y)

Then we can define the rational number comparisons in terms of compareRat.
(Note that we redefine function eqRat from the package Chapter 7.)

eqRat,neqRat,ltRat,leqRat,gtRat,geqRat :: Rat -> Rat -> Bool
eqRat = compareRat (==)
neqRat = compareRat (/=)
ltRat = compareRat (<)
leqRat = compareRat (<=)
gtRat = compareRat (>)
geqRat = compareRat (>=)

The Haskell module for the revised rational arithmetic module is in
RationalHO.hs. The module TestRationalHO.hs is an extended version of
the standard test script from Chapter 12 that tests the standard features of
the rational arithmetic module plus eqRat, neqRat, and ltRat. (It does not
currently test leqRat, gtRat, or geqRat.)

17.5 Mergesort
We defined the insertion sort in Chapter 14. It has an average-case time
complexity of O(nˆ2) where n is the length of the input list.
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We now consider a more efficient function to sort the elements of a list into
ascending order: mergesort. Mergesort works as follows:

• If the list has fewer than two elements, then it is already sorted.

• If the list has two or more elements, then we split it into two sublists, each
with about half the elements, and sort each recursively.

• We merge the two ascending sublists into an ascending list.

We define function msort to be a polymorphic, higher-order function that has
two parameters. The first (less) is the comparison operator and the second
(xs) is the list to be sorted. Function less must be defined for every element
that appears in the list to be sorted.

msort :: Ord a => (a -> a -> Bool) -> [a] -> [a]
msort _ [] = []
msort _ [x] = [x]
msort less xs = merge less (msort less ls) (msort less rs)

where n = (length xs) `div` 2
(ls,rs) = splitAt n xs
merge _ [] ys = ys
merge _ xs [] = xs
merge less ls@(x:xs) rs@(y:ys)

| less x y = x : (merge less xs rs)
| otherwise = y : (merge less ls ys)

By nesting the definition of merge, we enabled it to directly access the the
parameters of msort. In particular, we did not need to pass the comparison
function to merge.

Assuming that less evaluates in constant time, the time complexity of msort is
O(n * log2 n), where n is the length of the input list and log2 is a function
that computes the logarithm with base 2.

• Each call level requires splitting of the list in half and merging of the two
sorted lists. This takes time proportional to the length of the list argument.

• Each call of msort for lists longer than one results in two recursive calls of
msort.

• But each successive call of msort halves the number of elements in its
input, so there are O(log2 n) recursive calls.

So the total cost is O(n * log2 n). The cost is independent of distribution of
elements in the original list.

We can apply msort as follows:

msort (<) [5, 7, 1, 3]
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Function msort is defined in curried form with the comparison function first.
This enables us to conveniently specialize msort with a specific comparison
function. For example,

descendSort :: Ord a => [a] -> [a]
descendSort = msort (\ x y -> x > y) -- or (>)

17.6 Divide-and-Conquer Algorithms
The mergesort (msort) function in Section 17.5 uses the divide-and-conquer
strategy to solve the sorting problem. In this section, we exmine that strategy
in more detail.

17.6.1 General strategy

For some problem P, the general strategy for divide-and-conquer algorithms has
the following steps:

1. Decompose the problem P into subproblems, each like P but with a smaller
input argument.

2. Solve each subproblem, either directly or by recursively applying the
strategy.

3. Assemble the solution to P by combining the solutions to its subproblems.

The advantages of divide-and-conquer algorithms are that they:

• can lead to efficient solutions.

• allow use of a “horizontal” parallelism. Similar problems can be solved
simultaneously.

We examined the meregesort algorithm in Section 17.5. Other well-known divide-
and-conquer algorithms include quicksort, binary search, and multiplication
[15:6.4]. In these algorithms, the divide-and-conquer strategy leads to more
efficient algorithms.

For example, consider searching for a value in a list. A simple sequential
search has a time complexity of O(n), where n denotes the length of the list.
Application of the divide-and-conquer strategy leads to binary search, a more
efficient O(log2 n) algorithm.

17.6.2 As higher-order function

As a general pattern of computation, the divide and conquer strategy can be
expressed as the following higher-order function:

divideAndConquer :: (a -> Bool) -- trivial
-> (a -> b) -- simplySolve
-> (a -> [a]) -- decompose
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-> (a -> [b] -> b) -- combineSolutions
-> a -- problem
-> b

divideAndConquer trivial simplySolve decompose
combineSolutions problem

= solve problem
where solve p

| trivial p = simplySolve p
| otherwise = combineSolutions p

(map solve (decompose p))

If the problem is trivially simple (i.e., trivial p holds), then it can be solved
directly using simplySolve.

If the problem is not trivially simple, then it is decomposed using the decompose
function. Each subproblem is then solved separately using map solve. The
function combineSolutions then assembles the subproblem solutions into a
solution for the overall problem.

Sometimes combineSolutions may require the original problem description to
put the solutions back together properly. Hence, the parameter p in the function
definition.

Note that the solution of each subproblem is completely independent from the
solution of all the others.

If all the subproblem solutions are needed by combineSolutions, then the
language implementation could potentially solve the subproblems simultaneously.
The implementation could take advantage of the availability of multiple processors
and actually evaluate the expressions in parallel. This is “horizontal” parallelism
as described above.

If combineSolutions does not require all the subproblem solutions, then the
subproblems cannot be safely solved in parallel. If they were, the result of
combineSolutions might be nondeterministic, that is, the result could be
dependent upon the relative order in which the subproblem results are completed.

Now let’s use the function divideAndConquer to define a few functions.

17.6.3 Generating Fibonacci sequence

First, let’s define a Fibonacci function. Consider the following definition (adapted
from Kelly [109:77–78]). This function is inefficient, so it is given here primarily
to illustrate the technique.

fib :: Int -> Int
fib n = divideAndConquer trivial simplySolve decompose

combineSolutions problem
where trivial 0 = True
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trivial 1 = True
trivial (m+2) = False
simplySolve 0 = 0
simplySolve 1 = 1
decompose m = [m-1,m-2]
combineSolutions _ [x,y] = x + y

17.6.4 Folding a list

Next, let’s consider a folding function (similar to foldr and foldl) that uses
the function divideAndConquer. Consider the following definition (also adapted
from Kelly [109:79–80]).

fold :: (a -> a -> a) -> a -> [a] -> a
fold op i =

divideAndConquer trivial simplySolve decompose
combineSolutions

where trivial xs = length xs <= 1
simplySolve [] = i
simplySolve [x] = x
decompose xs = [take m xs, drop m xs]

where m = length xs / 2
combineSolutions _ [x,y] = op x y

This function divides the input list into two almost equal parts, folds each part
separately, and then applies the operation to the two partial results to get the
combined result.

The fold function depends upon the operation op being associative. That is,
the result must not be affected by the order in which the operation is applied to
adjacent elements of the input list.

In foldr and foldl, the operations are not required to be associative. Thus
the result might depend upon the right-to-left operation order in foldr or
left-to-right order in foldl.

Function fold is thus a bit less general. However, since the operation is associa-
tive and combineSolutions is strict in all elements of its second argument, the
operations on pairs of elements from the list can be safely done in parallel,

Another divide-and-conquer definition of a folding function is the function fold'
shown below. It is an optimized version of fold above.

fold' :: (a -> a -> a) -> a -> [a] -> a
fold' op i xs = foldt (length xs) xs

where foldt _ [] = i
foldt _ [x] = x
foldt n ys = op (foldt m (take m ys))

(foldt m' (drop m ys))
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where m = n / 2
m' = n - m

17.6.5 Finding minimum and maximum of a list

Now, consider the problem of finding both the minimum and the maximum
values in a nonempty list and returning them as a pair.

First let’s look at a definition that uses the left-folding operator.

sMinMax :: Ord a => [a] -> (a,a)
sMinMax (x:xs) = foldl' newmm (x,x) xs

where newmm (y,z) u = (min y u, max z u)

Let’s assume that the comparisons of the elements are expensive and base our
time measure on the number of comparisons. Let n denote the length of the list
argument and time be a time function

A singleton list requires no comparisons. Each additional element adds two
comparisons (one min and one max).

time n | n == 1 = 0
| n >= 2 = time (n-1) + 2

Thus time n == 2 * n - 2.

Now let’s look at a divide-and-conquer solution.

minMax :: Ord a => [a] -> (a,a)
minMax [x] = (x,x)
minMax [x,y] = if x < y then (x,y) else (y,x)
minMax xs = (min a c, max b d)

where m = length xs / 2
(a,b) = minMax (take m xs)
(c,d) = minMax (drop m xs)

Again let’s count the number of comparisons for a list of length n.

time n | n == 1 = 0
| n == 2 = 1
| n > 2 = time (floor (n/2)) + time (ceiling (n/2)) + 2

For convenience suppose n = 2ˆk for some k >= 1.

time n = 2 * time (n/2) + 2
= 2 * (2 * time (n/4) + 2) + 2
= 4 * time (n/4) + 4 + 2
= ...
= 2ˆ(k-1) * time 2 + sum [ 2ˆi | i <- [1..(k-1)] ]
= 2ˆ(k-1) + 2 * sum [ 2ˆi | i <- [1..(k-1)] ]

- sum [ 2ˆi | i <- [1..(k-1)] ]
= 2ˆ(k-1) + 2ˆk - 2
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= 3 * 2ˆ(k-1) - 2
= 3 * (n/2) - 2

Thus the divide and conquer version takes 25 percent fewer comparisons than
the left-folding version.

So, if element comparisons are the expensive in relation to to the take, drop, and
length list operations, then the divide-and-conquer version is better. However,
if that is not the case, then the left-folding version is probably better.

Of course, we can also express minMax in terms of the function divideAndConquer.

minMax' :: Ord a => [a] -> (a,a)
minMax' = divideAndConquer trivial simplySolve decompose

combineSolutions
where n = length xs

m = n/2
trivial xs = n <= 2
simplySolve [x] = (x,x)
simplySolve [x,y] =

if x < y then (x,y) else (y,x)
decompose xs =

[take m xs, drop m xs]
combineSolutions _ [(a,b),(c,d)] =

(min a c, max b d)

17.7 What Next?
Chapters 15, 16, and 17 (this chapter) examined higher-order list programming
concepts and features.

Chapter 18 examines list comprehensions, an alternative syntax for higher-
order list processing that is likely comfortable for programmers coming from an
imperative programming background.

17.8 Chapter Source Code
The Haskell module for list-breaking, list-combining, and mergesort functions is
in file HigherOrderExamples.hs.

The Haskell module for the revised rational arithmetic module is in
RationalHO.hs. The module TestRationalHO.hs is an extended version of the
standard test script from Chapter 12.

TODO: Reconstruct source code for divide-and-conquer functions and place links
here and in text above. May also want to break out mergesort into a separate
module.
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17.9 Exercises
1. Define a Haskell function

removeFirst :: (a -> Bool) -> [a] -> [a]

so that removeFirst p xs removes the first element of xs that has the
property p.

2. Define a Haskell function

removeLast :: (a -> Bool) -> [a] -> [a]

so that removeLast p xs removes the last element of xs that has the
property p.

How could you define it using removeFirst?

3. A list s is a prefix of a list t if there is some list u (perhaps nil) such that
s ++ u == t. For example, the prefixes of string "abc" are "", "a", "ab",
and "abc".

A list s is a suffix of a list t if there is some list u (perhaps nil) such that
u ++ s == t. For example, the suffixes of "abc" are "abc", "bc", "c",
and "".

A list s is a segment of a list t if there are some (perhaps nil) lists u and v
such that u ++ s ++ v = t. For example, the segments of string "abc"
consist of the prefixes and the suffixes plus "b".

Define the following Haskell functions. You may use functions appearing
early in the list to implement later ones.

a. Define a function prefix such that prefix xs ys returns True if xs
is a prefix of ys and returns False otherwise.

b. Define a function suffixes such that suffixes xs returns the list
of all suffixes of list xs. (Hint: Generate them in the order given in
the example of "abc" above.)

c. Define a function indexes such that indexes xs ys returns a list
of all the positions at which list xs appears in list ys. Consider
the first character of ys as being at position 0. For example,
indexes "ab" "abaabbab" returns [1,4,7]. (Hint: Remember
functions like map, filter, zip, and the functions you just defined.)

d. Define a function sublist such that sublist xs ys returns True if
list xs appears as a segment of list ys and returns False otherwise.

4. Assume that the following Haskell type synonyms have been defined:

type Word = String -- word, characters left-to-right
type Line = [Word] -- line, words left-to-right
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type Page = [Line] -- page, lines top-to-bottom
type Doc = [Page] -- document, pages front-to-back

Further assume that values of type Word do not contain any space characters.
Implement the following Haskell text-handling functions:

a. npages that takes a Doc and returns the number of Pages in the
document.

b. nlines that takes a Doc and returns the number of Lines in the
document.

c. nwords that takes a Doc and returns the number of Words in the
document.

d. nchars that takes a Doc and returns the number of Chars in the
document (not including spaces of course).

e. deblank that takes a Doc and returns the Doc with all blank lines
removed. A blank line is a line that contains no words.

f. linetext that takes a Line and returns the line as a String with
the words appended together in left-to-right order separated by space
characters and with a newline character '\n' appended to the right
end of the line. (For example, linetext ["Robert", "Khayat"]
yields "Robert Khayat\n".)

g. pagetext that takes a Page and returns the page as a String—applies
linetext to its component lines and appends the result in a top-to-
bottom order.

h. doctext that takes a Doc and returns the document as a String—
applies pagetext to its component lines and appends the result in a
top-to-bottom order.

i. wordeq that takes a two Docs and returns True if the two docu-
ments are word equivalent and False otherwise. Two documents
are word equivalent if they contain exactly the same words in
exactly the same order regardless of page and line structure.
For example, [[["Robert"],["Khayat"]]] is word equivalent to
[[["Robert","Khayat"]]].

17.10 Wally World Marketplace POP Project
17.10.1 Problem description and initial design

Wally World Marketplace (WWM) is a “big box” store selling groceries, dry goods,
hardware, electronics, etc. In this project, we develop part of a point-of-purchase
(POP) system for WWM.

The barcode scanner at a WWM POP—i.e., checkout counter—generates a list
of barcodes for the items in a customer’s shopping cart. For example, a cart
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with nine items might result in the list:

[ 1848, 1620, 1492, 1620, 1773, 2525, 9595, 1945, 1066 ]

Note that there are two instances of the item with barcode 1620.

The primary goal of this project is to develop a Haskell module WWMPOP (in
file WWMPOP.hs) that takes a list of barcodes corresponding to the items in a
shopping cart and generates the corresponding printable receipt. The module
consists of several functions that work together. We build these incrementally in
a somewhat bottom-up manner.

Let’s consider how to model the various kinds of “objects” in our application.
The basic objects include:

• barcodes for products, which we represent as integers

• prices of products, which we represent as integers denoting cents

• names of products, which we represent as strings

We introduce the following Haskell type aliases for these basic objects above:

type BarCode = Int
type Price = Int
type Name = String

We associate barcodes with the product names and prices using a “database”
represented as a list of tuples. We represent this price list database using the
following type alias:

type PriceList = [(BarCode,Name,Price)]

An example price list database is:

database :: PriceList
database = [ (1848, "Vanilla yogurt cups (4)", 188),

(1620, "Ground turkey (1 lb)", 316),
(1492, "Corn flakes cereal", 299),
(1773, "Black tea bags (100)", 307),
(2525, "Athletic socks (6)", 825),
(9595, "Claw hammer", 788),
(1945, "32-in TV", 13949),
(1066, "Zero sugar cola (12)", 334),
(2018, "Haskell programming book", 4495)

]

To generate a receipt, we need to take a list of barcodes from a shopping cart
and generate a list of prices associated with the items in the cart. From this list,
we can generate the receipt.

We introduce the type aliases:
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type CartItems = [BarCode]
type CartPrices = [(Name,Price)]

We thus identify the need for a Haskell function

priceCart :: PriceList -> CartItems -> CartPrices

that takes a database of product prices (i.e., a price list) and a list of barcodes
of the items in a shopping cart and generates the list of item prices.

Of course, we must determine the relevant sales taxes due on the items and
determine the total amount owed. We introduce the following type alias for the
bill:

type Bill = (CartPrices, Price, Price, Price)

The three Price items above are for Subtotal, Tax, and Total amounts associated
with the purchase (printed on the bottom of the receipt).

We thus identify the need for a Haskell function

makeBill :: CartPrices -> Bill

that takes the list of item prices and constructs a Bill tuple. In carrying out
this calculation, the function uses the following n constant:

taxRate :: Double
taxRate = 0.07

Given a bill, we must be able to convert it to a printable receipt. Thus we
introduce the Haskell function

formatBill :: Bill -> String

that takes a bill tuple and generates the receipt. It uses the following named
constant for the width of the line:

lineWidth :: Int
lineWidth = 34

Given the above functions, we can put the above functionality together with the
Haskell function:

makeReceipt :: PriceList -> CartItems -> String

that does the end-to-end conversion of a list of barcodes to a printed receipt
given an applicable price database, tax rate, and line width.

Given the example shopping cart items and price list database, we get the
following receipt when printed.

Wally World Marketplace

Vanilla yogurt cups (4).......1.88
Ground turkey (1 lb)..........3.16
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Toasted oat cereal............2.99
Ground turkey (1 lb)..........3.16
Black tea bags (100)..........3.07
Athletic socks (6)............8.25
Claw hammer...................7.88
32-in. television...........139.49
Zero sugar cola (12)..........3.34

Subtotal....................176.26
Tax..........................12.34
Total.......................188.60

The above Haskell definitions are collected into the source file WWMPOP_skeleton.hs.

The exercises in Section 17.10.3 guide you to develop the above functions
incrementally.

17.10.2 Prelude functions useful for project

In the exercises in Section 17.10.3, you may want to consider using some of the
following:

• numeric functions from the Prelude library such as such as:

– div, integer division truncated toward negative infinity, and quot,
integer division truncated toward 0

– rem and mod satisfy the following for y /= 0

(x `quot` y)*y + (x `rem` y) == x
(x `div` y)*y + (x `mod` y) == x

– floor, ceiling, truncate, and round that convert real numbers to
integers; truncate truncates toward 0 and round rounds away from
0

– fromIntegral converts integers to Double (and from Integer to
Int)

– show converts numbers to strings

• first-order list functions (Chapters 13 and 14 ) from the Prelude–such as
head, tail, ++, -take, drop, length, -sum, and product

• Prelude function replicate :: Int -> a -> [a] such that replicate n e
returns a list of n copies of e

• higher-order list functions (Chapters 15, 16, and 17) from the Prelude such
as map, filter, foldr, foldl, and concatMap

• list comprehensions (Chapter 18 )—not necessary for solution but may be
convenient
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17.10.3 POP project exercises

Note: Most of the exercises in this project can be programmed without direct
recursions. Consider the Prelude functions listed in the previous subsection.

Also remember that the character code '\n' is the newline character; it denotes
the end of a line in Haskell strings.

This project defines several type aliases and the constants lineWidth and
taxRate that should be defined and used in the exercises. You should start with
the template source file WWMPOP_skeleton.hs to develop your own WWMPOP.hs
solution.

1. Develop the Haskell function

formatDollars :: Price -> String

that takes a Price in cents and formats a string in dollars and cents. For
example, formatDollars 1307 returns the string 13.07. (Note the 0 in
07.)

2. Using formatDollars above, develop the Haskell function

formatLine :: (Name, Price) -> String

that takes an item and formats a line of the receipt for that item. For
example,

formatLine ("Claw hammer",788)

yields the string:

"Claw hammer...................7.88\n"

This string has length lineWidth not including the newline character. The
space between the item’s name and cost is filled using '.' characters.

3. Using the formatLine function above, develop the Haskell function

formatLines :: CartPrices -> String

that takes a list of priced items and formats a string with a line for each
item. (In general, the resulting string will consist of several lines, each
ending with a newline.)

4. Develop the Haskell function

calcSubtotal :: CartPrices -> Price

that takes a list of priced items and calculates the sum of the prices (i.e.,
the subtotal).

5. Develop the Haskell function

formatAmt :: String -> Price -> String
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that takes a label string and a price amount and generates a line of the
receipt for that label

For example,

formatAmt "Total" 18860

generates the string:‘

"Total.......................188.60\n"`.

6. Develop the Haskell function

formatBill :: Bill -> String

that takes a Bill tuple and generates a receipt string.

7. Develop the Haskell function

look :: PriceList -> BarCode -> (Name,Price)

that takes a price list database and a barcode for an item and looks up
the name and price of the item.

If the BarCode argument does not occur in the PriceList, then look
should return the tuple ("None",0).

8. Now develop the Haskell function

priceCart :: PriceList -> CartItems -> CartPrices

defined above.

9. Now develop the Haskell function

makeBill :: CartPrices -> Bill

defined above. It takes a list of priced items and generates a bill tuple. It
uses the taxRate constant.

10. Now develop the Haskell function

makeReceipt :: PriceList -> CartItems -> String

defined above. This function defines the end-to-end processing that takes
the list of items from the shopping cart and generates the receipt.

11. Develop Haskell functions

addPL :: PriceList -> BarCode -> (Name,Price)
-> PriceList

removePL :: PriceList -> BarCode -> PriceList

Function removePL takes an “old” price list and a barcode to remove and
returns a “new” price list with any occurrences of that barcode removed.
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Function addPL takes an “old” price list, a barcode, and a name/price pair
to add and returns a price list with the item added. (If the the barcode is
already in the list, the old entry should be removed.)
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17.12 Terms and Concepts
List-breaking (splitting) operators, list-combining operators, rational arithmetic,
merge sort, divide and conquer, horizontal parallelism, divide and conquer as
higher-order function, sequential search binary search, simply solve, decompose,
combine solutions, Fibonacci sequence, nondeterministic, associative.

271



18 More List Processing
18.1 Chapter Introduction
Previous chapters examined first-order and higher-order list programming. In
particular, Chapter 15 explored the standard higher order functions such as
map, filter, and concatMap and Chapter 16 explored function concepts such
as function composition.

This chapter examines list comprehensions. This feature does not add new power
to the language; the computations can be expressed with combinations of features
from the previous chapters. But list comprehensions are often easier to write and
to understand than equivalent compositions of map, filter, concatMap, etc.

The source file for the code in this chapter is in file MoreLists.hs.

18.2 Sequences
Haskell provides a compact notation for expressing arithmetic sequences.

An arithmetic sequence (or progression) is a sequence of elements from an
enumerated type (i.e., a member of class Enum) such that consecutive elements
have a fixed difference. Int, Integer, Float, Double, and Char are all predefined
members of this class.

• [m..n] produces the list of elements from m up to n in steps of one if
m <= n. It produces the nil list otherwise.

Examples:

– [1..5] =⇒ [1,2,3,4,5]
– [5..1] =⇒ []

This feature is implemented with Prelude function enumFromTo applied as
enumFromTo m n.

• [m,m’..n] produces the list of elements from m in steps of m’-m. If m’ > m
then the list is increasing up to n. If m’ < m, then it is decreasing.

Examples:

– [1,3..9] =⇒ [1,3,5,7,9]
– [9,8..5] =⇒ [9,8,7,6,5]
– [9,8..11] =⇒ []

This feature is implemented with Prelude function enumFromThenTo applied
as enumFromThenTo m’ m n.

• [m..] and [m,m’..] produce potentially infinite lists beginning with m
and having steps 1 and m’-m respectively.

These features are implemented with Prelude functions enumFrom applied
as enumFrom m and enumFromThen applied as enumFromThen m m’.
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Of course, we can provide our own functions for sequences. Consider the following
function to generate a geometric sequence.

A geometric sequence (or progression) is a sequence of elements from an ordered,
numeric type (i.e., a member of both classes Ord and Num) such that consecutive
elements have a fixed ratio.

geometric :: (Ord a, Num a) => a -> a -> a -> [a]
geometric r m n | m > n = []

| otherwise = m : geometric r (m*r) n

Example: geometric 2 1 10 =⇒ [1,2,4,8]

18.3 List Comprehensions
18.3.1 Syntax and semantics

The list comprehension is another powerful and compact notation for describing
lists. A list comprehension has the form

[ expression | qualifiers ]

where expression is any Haskell expression.

The expression and the qualifiers in a comprehension may contain variables that
are local to the comprehension. The values of these variables are bound by the
qualifiers.

For each group of values bound by the qualifiers, the comprehension generates
an element of the list whose value is the expression with the values substituted
for the local variables.

There are three kinds of qualifiers that can be used in Haskell: generators, filters,
and local definitions.

1. A generator is a qualifier of the form

pat <- exp

where exp is a list-valued expression. The generator extracts each element
of exp that matches the pattern pat in the order that the elements appear
in the list; elements that do not match the pattern are skipped.

Example:

• [ n*n | n <- [1..5]] =⇒ [1,4,9,16,25]

2. A filter is a Boolean-valued expression used as a qualifier in a list compre-
hension. These expressions work like the filter function; only values that
make the expression True are used to form elements of the list comprehen-
sion.

Example:
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• [ n*n | even n ] =⇒ (if even n then [n*n] else [])

Above variable n is global to this expression, not local to the comprehension.

3. A local definition is a qualifier of the form

let pat = expr

introduces a local definition into the list comprehension.

Example:

• [ n*n | let n = 2 ] =⇒ [4]

The real power of list comprehensions come from using several qualifiers separated
by commas on the right side of the vertical bar |.

• Generators appearing later in the list of qualifiers vary more quickly than
those that appear earlier. Speaking operationally, the generation “loop”
for the later generator is nested within the “loop” for the earlier.

Example:

– [ (m,n) | m<-[1..3], n<-[4,5] ] =⇒
[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

• Qualifiers appearing later in the list of qualifiers may use values generated
by qualifiers appearing earlier, but not vice versa.

Examples:

– [ n*n | n<-[1..10], even n ] =⇒ [4,16,36,64,100]

– [ (m,n) | m<-[1..3], n<-[1..m] ] =⇒
[ (1,1), (2,1), (2,2), (3,1), (3,2), (3,3)]

• The generated values may or may not be used in the expression.

Examples:

– [ 27 | n<-[1..3]] =⇒ [27,27,27]

– [ x | x<-[1..3], y<-[1..2]] =⇒ [1,1,2,2,3,3]

18.3.2 Translating list comprehensions

List comprehensions are syntactic sugar. We can translate them into core Haskell
features by applying the following identities.

1. For any expression e,

[ e | True ]

is equivalent to:

[ e ]
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2. For any expression e and qualifier q,

[ e | q ]

is equivalent to:

[ e | q, True ]

3. For any expression e, boolean b, and sequence of qualifiers Q,

[ e | b, Q ]

is equivalent to:

if b then [ e | Q ] else []

4. For any expression e, pattern p, list-valued expression l, sequence of
qualifiers Q, and fresh variable ok,

[ e | p <- l, Q ]

is equivalent to:

let ok p = [ e | Q ] -- p is a pattern
ok _ = []

in concatMap ok l

5. For any expression e, declaration list D, and sequence of qualifiers Q,

[ e | let D, Q ]

is equivalent to:

let D in [ e | Q ]

Function concatMap and boolean value True are as defined in the Prelude.

As we saw in a previous chapter, concatMap applies a list-returning function to
each element of an input list and then concatenates the resulting list of lists into
a single list. Both map and filter can be defined in terms of concatMap.

Consider the list comprehension:

[ n*n | n<-[1..10], even n ]

a. Apply identity 4:

let ok n = [ n*n | even n ]
ok _ = []

in concatMap ok [1..10]

b. Apply identity 2:

let ok n = [ n*n | even n, True ]
ok _ = []

in concatMap ok [1..10]

c. Apply identity 3:
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let ok n = if (even n) then [ n*n | True ]
ok _ = []

in concatMap ok [1..10]

d. Apply identity 1:

let ok n = if (even n) then [ n*n ]
ok _ = []

in concatMap ok [1..10]

18.4 Using List Comprehensions
This section gives several examples where list comprehensions can be used to
solve problems and express the solutions conveniently.

18.4.1 Strings of spaces

Consider a function spaces that takes a number and generates a string with
that many spaces.

spaces :: Int -> String
spaces n = [ ' ' | i<-[1..n]]

Note that when n < 1 the result is the empty string.

18.4.2 Prime number test

Consider a Boolean function isPrime that takes a nonzero natural number and
determines whether the number is prime. (Remember that a prime number is a
natural number whose only natural number factors are 1 and itself.)

isPrime :: Int -> Bool
isPrime n | n > 1 = (factors n == [])

where factors m = [ x | x<-[2..(m-1)], m `mod` x == 0 ]
isPrime _ = False

18.4.3 Squares of primes

Consider a function sqPrimes that takes two natural numbers and returns the
list of squares of the prime numbers in the inclusive range from the first up to
the second.

sqPrimes :: Int -> Int -> [Int]
sqPrimes m n = [ x*x | x<-[m..n], isPrime x ]

Alternatively, this function could be defined using map and filter as follows:

sqPrimes' :: Int -> Int -> [Int]
sqPrimes' m n = map (\x -> x*x) (filter isPrime [m..n])
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18.4.4 Doubling positive elements

We can use a list comprehension to define (our, by now, old and dear friend) the
function doublePos, which doubles the positive integers in a list.

doublePos5 :: [Int] -> [Int]
doublePos5 xs = [ 2*x | x<-xs, 0 < x ]

18.4.5 Concatenating a list of lists of lists

Consider a program superConcat that takes a list of lists of lists and concatenates
the elements into a single list.

superConcat :: [[[a]]] -> [a]
superConcat xsss = [ x | xss<-xsss, xs<-xss, x<-xs ]

Alternatively, this function could be defined using Prelude functions concat and
map and functional composition as follows:

superConcat' :: [[[a]]] -> [a]
superConcat' = concat . map concat

18.4.6 First occurrence in a list

Consider a function position that takes a list and a value of the same type. If
the value occurs in the list, position returns the position of the value’s first
occurrence; if the value does not occur in the list, position returns 0.

Strategy: Solve a more general problem first, then use it to get the specific
solution desired.

In this problem, we generalize the problem to finding all occurrences of a value
in a list. This more general problem is actually easier to solve.

positions :: Eq a => [a] -> a -> [Int]
positions xs x = [ i | (i,y)<-zip [1..length xs] xs, x == y]

Function zip is useful in pairing an element of the list with its position within
the list. The subsequent filter removes those pairs not involving the value x.
The “zipper” functions can be very useful within list comprehensions.

Now that we have the positions of all the occurrences, we can use head to get
the first occurrence. Of course, we need to be careful that we return 0 when
there are no occurrences of x in xs.

position :: Eq a => [a] -> a -> Int
position xs x = head ( positions xs x ++ [0] )

Because of lazy evaluation, this implementation of position is not as inefficient
as it first appears. The function positions will, in actuality, only generate the
head element of its output list.
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Also because of lazy evaluation, the upper bound length xs can be left off the
generator in positions. In fact, the function is more efficient to do so.

18.5 What Next?
This chapter (18) examined list comprehensions. Although they do not add new
power to the language, programs involving comprehensions are often easier to
write and to understand than equivalent compositions of other functions.

Chapters 19 and 20 discuss problem solving techniques. Chapter 19 discusses
systematic generalization of functions. Chapter 20 surveys various problem-
solving techniques uses in this textbook and other sources.

18.6 Chapter Source Code
The source file for the code in this chapter is in file MoreLists.hs.

18.7 Exercises
1. Show the list (or string) yielded by each of the following Haskell list

expressions. Display it using fully specified list bracket notation, e.g.,
expression [1..5] yields [1,2,3,4,5].

a. [7..11]

b. [11..7]

c. [3,6..12]

d. [12,9..2]

e. [ n*n | n <- [1..10], even n ]

f. [ 7 | n <- [1..4] ]

g. [ x | (x:xs) <- [Did, you, study?] ]

h. [ (x,y) | x <- [1..3], y <- [4,7] ]

i. [ (m,n) | m <- [1..3], n <- [1..m] ]

j. take 3 [ [1..n] | n <- [1..] ]

2. Translate the following expressions into expressions that use list
comprehensions. For example, map (*2) xs could be translated to
[ x*2 | x <- xs ].

a. map (\x -> 2*x-1) xs

b. filter p xs

c. map (ˆ2) (filter even [1..5])

d. foldr (++) [] xss
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e. map snd (filter (p . fst) (zip xs [1..]))

18.8 Acknowledgements
In 2016 and 2017, I adapted and revised my previous notes to form Chapter 7,
More List Processing and Problem Solving, in the 2017 version of this textbook.
In particular, I drew the information on More List Processing from:

• chapter 7 of my Notes on Functional Programming with Haskell [42]

In Summer 2018, I divided the 2017 More List Processing and Problem Solving
chapter back into two chapters in the 2018 version of the textbook, now titled
Exploring Languages with Interpreters and Functional Programming. Previous
sections 7.2-7.3 (essentially chapter 7 of [42]) became the basis for new Chapter
18, More List Processing (this chapter), and the Problem Solving discussion
became the basis for new Chapter 20, Problem Solving.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

18.9 Terms and Concepts
Sequence (arithmetic, geometric), list comprehension (generator, filter, local
definition, multiple generators and filters), syntactic sugar, translating list com-
prehensions to function calls, prime numbers, solve a harder problem first.
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<a name-“Ch19”>

19 Systematic Generalization
19.1 Chapter Introduction
This chapter is incomplete!

TODO: Write missing sections

• Cleanup function generalization description — make it fit better with the
discussion in chapter 15 and elsewhere

• Add eager evaluated version of merge4b, perhaps rename coseq
• Complete sequential file update example
• Update code and include link Conseq.hs

19.2 SCV Analysis
In Chapter 15, we examined families of related functions to define generic,
higher-order functions to capture the computational pattern for each family. In
this chapter, we approach function generalization more systematically.

The systematic function generalization approach begins with a prototype mem-
ber of the potential family [55,57]. As in a Schmid’s similar method for
building object-oriented software frameworks [153]; [154,155], we apply Scope-
Commonality-Variability (SCV) analysis [37] to the potential family represented
by this prototype and produce four outputs.

1. scope: the boundaries of the family. That is, we identify what we should
address and what we can ignore, what is in the family and what is not.

2. terminology: the definitions of the specialized terms, or concepts, relevant
to the family.

3. commonalities: the aspects of the family that do not change from one
member to another. We seek to reuses these among family members. We
sometimes call these the frozen spots.

4. variabilities: the aspects of the family that may vary from one member to
another. We sometimes call these the hot spots.

In SCV analysis, we must seek to identify all the implicit assumptions about
elements in the family. These implicit assumptions need to be made explicit in
family’s design and implementation.

19.3 Function Generalization
Once we have the above, we incrementally transform the prototype function for
each of the hot spots [154].
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A generalizing transformation may replace specific values or data types at a hot
spot by parameters. We may make a type more abstract, perhaps making it
polymorphic. Or we may break a type into several types if it plays potentially
different roles.

Similarly, a generalizing transformation may replace fixed, specialized operations
at a hot spot by abstract operations. We may make an abstract operation a
higher-order parameter of the generalized function.

TODO: Better tie this chapter’s technique to tht given back in Section 15.5 on
generalizing function definitions.

19.4 Developing a Cosequential Processing Family
19.4.1 Scope

Cosequential processing concerns the coordinated processing of two ordered
sequences to produce some result, often a third ordered sequence [64,67,76,87].
Key requirements include:

• Both input sequences must be ordered according to the same total ordering.

• The processing should be incremental, where only a few elements of each
sequence (perhaps just one) are examined at a time.

This important family includes the ascending merge needed in merge sort, set
and bag operations, and sequential file update applications.

Consider a function merge0 that takes two ascending sequences of integers and
merges them together to form a third ascending sequence.

merge0 :: [Int] -> [Int] -> [Int] -- xs, ys
merge0 [] ys = ys
merge0 xs [] = xs
merge0 xs@(x:xs') ys@(y:ys')

| x < y = x : merge0 xs' ys
| x == y = x : merge0 xs' ys'
| x > y = y : merge0 xs ys'

The merge0 function must satisfy a number of properties:

• Precondition: The two input lists must be in ascending order.

• Postcondition: The output list must also be in ascending order. The
number of times an element appears in the output list is the maximum
number of times it appears within one of the two input lists.

• Termination: The sum of the lengths of the two input sequences must
decrease by at least one for each call of the recursive function.

For the cosequential processing family, let take function merge0 as the prototype
member.
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Aside: The merge0 function differs from the merge function we used in the
merge sort funtion in Chapter 17. For merge sort, the x == y leg would need
to remove the head of only one of the input lists, i.e., be defined as either
x : merge0 xs' ys or x : merge0 xs ys'.

19.4.2 Frozen spots

Considering the scope and examining the prototype function merge0, we identify
the following frozen spots for the family of functions:

1. The input consists of two sequences ordered by the same total ordering.

2. The output consists of a sequence ordered by the same total ordering as
the input sequences.

3. The processing is incremental. Each step examines the current element
from each input sequence and advances at least one of the input sequences
for subsequent steps.

4. Each step compares the current elements from the input sequences to
determine what action to take at that step.

The merge function represents the frozen spots of the family. It gives the common
behavior of family members and the relationships among the various elements of
the hot spot subsystems.

A hot spot subsystem consists of a set of Haskell functions, types, and class
definitions that add the desired variability into the merge function.

19.4.3 Hot spots

Again considering the scope and examining the prototype function merge0, we
can identify the following hot spots:

1. Variability in the total ordering used for the input and output sequences,
i.e., of the comparison operators and input sequence type.

2. The ability to have more complex data entities in the input and output
sequences, i.e., variability in “record” format.

3. The ability to vary the input and output sequence structures independently
of each other.

4. Variability in the transformations applied to the data as it passes into the
output.

5. Variability in the sources of the input sequences and destination of the
output sequence.

We need to be careful to avoid enumerating hot spots that are unlikely to be
needed in an application.
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Now let’s analyze each hot spot, design a hot spot subsystem, and carry out the
appropriate transformations to generalize the Haskell program.

19.4.4 Hot spot #1: Variability in total ordering

In the function merge0, the input and output sequences are restricted to elements
of type Int and the comparison operations, hence, to the integer comparisons.

TODO: May need to explain these generalizations according to the rules in
Section 15.5.

The responsibility associated with hot spot #1 is to enable the base type of the
sequences to be any type upon which an appropriate ordering is defined. In this
transformation, we still consider all three sequences as containing simple values
of the same type.

We can generalize the function to take and return sequences of any ordered type
by making the type of the list polymorphic. Using a type variable a, we can
redefine the type signature to be [a].

However, we need to constrain type a to be a type for which an appropriate
total ordering is defined. We do this by requiring that the type be restricted to
those in the predefined Haskell type class Ord. This class consists of the group
of types for which all six relational operators are defined.

The function resulting from generalization step is merge1.

merge1 :: Ord a => [a] -> [a] -> [a] -- xs, ys
merge1 [] ys = ys
merge1 xs [] = xs
merge1 xs@(x:xs') ys@(y:ys')

| x < y = x : merge1 xs' ys
| x == y = x : merge1 xs' ys'
| x > y = y : merge1 xs ys'

This function represents the frozen spots of the cosequential processing framework.
The implementation of class Ord used in a program is hot spot #1. To satisfy
the requirement represented by frozen spot #1, we require that the two lists xs
and ys be in ascending order.

Note that, if we restrict merge1 polymorphic type a to Int, then:

merge1 xs ys == merge0 xs ys

That is, the generic function merge1 can be specialized to be equivalent to
merge0.

19.4.5 Hot spot #2: Variability in record format

The merge1 function works with sequences of any type that have appropriate
comparison operators defined. This allows the elements to be of some built-in
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type such as Int or String or some user-defined type that has been declared as
an instance of the Ord class. Thus each individual data item is of a single type.

In general, however, applications in this family will need to work with data
elements that have more complex structures. We refer to these more complex
structures as records in the general sense, not just the Haskell data structure by
that name.

The responsibility associated with hot spot #2 is to enable the elements of the
sequences to be values with more complex structures, i.e., records. Each record
is composed of one or more fields of which some subset defines the key. The
value of the key provides the information for ordering the records within that
sequence.

In this transformation, we still consider all three sequences as containing simple
values of the same type. We abstract the key as a function on the record type
that returns a value of some Ord type to enable the needed comparisons. We
transform the merge1 function by adding key as a higher-order parameter.

The function resulting from this generalization is merge2.

merge2 :: Ord b => (a -> b) -> [a] -> [a] -> [a] -- key, xs, ys
merge2 key [] ys = ys
merge2 key xs [] = xs
merge2 key xs@(x:xs') ys@(y:ys')

| key x < key y = x : merge2 key xs' ys
| key x == key y = x : merge2 key xs' ys'
| key x > key y = y : merge2 key xs ys'

The higher-order parameter key represents hot spot #2 in the generalized
function design.

Hot spot #1 is the implementation of Haskell class Ord for values of type b.

To satisfy the requirement represented by frozen spot #1, the sequence of keys
corresponding to each input sequence, i.e., map key xs and map key ys, must
be in ascending order.

Also note that

merge2 id xs ys == merge1 xs ys

where id is the identity function. Thus merge1 is a specialization of merge2.

19.4.6 Hot spot #3: Independent variability of sequences

In merge2, the records are of the same type in all three sequences. The key
extraction function is also the same for all sequences.

Some cosequential processing applications, however, require that the record
structure vary among the sequences. For example, the sequential file update
application usually involves a master file and a transaction file as the inputs and
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a new master file as the output. The master records and transaction records
usually carry different information.

The responsibility associated with hot spot #3 is to enable the three sequences
to be varied independently. That is, the records in one sequence may differ in
structure from the records in the others.

This requires separate key extraction functions for the two input sequences. These
must, however, still return key values from the same total ordering. Because
the data types for the two input sequences may differ and both may differ from
the output data type, we must introduce record transformation functions that
convert the input data types to the output types.

The function resulting from the transformation is merge3.

merge3 :: Ord d => (a -> d) -> (b -> d) -- kx, ky
-> (a -> c) -> (b -> c) -- tx, ty
-> [a] -> [b] -> [c] -- xs, ys

merge3 kx ky tx ty xs ys = mg xs ys
where

mg [] ys = map ty ys
mg xs [] = map tx xs
mg xs@(x:xs') ys@(y:ys')

| kx x < ky y = tx x : mg xs' ys
| kx x == ky y = tx x : mg xs' ys'
| kx x > ky y = ty y : mg xs ys'

Higher-order parameters kx and ky are the key extraction functions for the first
and second inputs, respectively. Similarly, tx and ty are the corresponding
functions to transform those inputs to the output.

Hot spot #3 consists of these four functions. In some sense, this transformation
subsumes hot spot #2.

To avoid repetition of the many unchanging arguments in the recursive calls, the
definition of merge3 uses an auxiliary function definition mg.

The nonrecursive legs use the higher-order library function map. To satisfy the
requirement represented by frozen spot #1, the sequence of keys corresponding
to each input sequence, i.e., map kx xs and map ky ys, must be in ascending
order.

If xs and ys are of the same type, then it is true that:

merge3 key key id id xs ys == merge2 key xs ys

Thus merge2 is a specialization of merge3.
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19.4.7 Hot spot #4: Variability in sequence transformations

Function merge3 enabled simple one-to-one, record-by-record transformations of
the input sequences to create the output sequence. Such simple transformations
are not sufficient for practical situations.

For example, in the sequential file update application, each key may be associated
with no more than one record in the master file. However, there may be any
number of update transactions that must be performed against a master record
before the new master record can be output. Thus, there needs to be some
local state maintained throughout the processing of all the transaction records
associated with one master record.

Before we address the issue of this variation directly, let us generalize the merge
function to make the state that currently exists (i.e., the evolving output list)
explicit in the parameter list.

To do this, we replace the backward linear recursive merge3 function by its tail
recursive generalization. That is, we add an accumulating parameter ss that is
used to collects the output during the recursive calls and then to generate the
final output when the end of an input sequence is reached.

The initial value of this argument is normally a nil list, but it does enable some
other initial value to be prepended to the output list. This transformation is
shown as function merge4a below.

merge4a :: Ord d => (a -> d) -> (b -> d) -- kx, ky
-> (a -> c) -> (b -> c) -- tx, ty
-> [c] -> [a] -> [b] -> [c] -- ss, xs, ys

merge4a kx ky tx ty ss xs ys = mg ss xs ys
where

mg ss [] ys = ss ++ map ty ys
mg ss xs [] = ss ++ map tx xs
mg ss xs@(x:xs') ys@(y:ys')

| kx x < ky y = mg (ss ++ [tx x]) xs' ys
| kx x == ky y = mg (ss ++ [tx x]) xs' ys'
| kx x > ky y = mg (ss ++ [ty y]) xs ys'

Note that the following holds:

merge4a kx ky tx ty ss xs ys == ss ++ merge3 kx ky tx ty xs ys

Thus function merge3 is a specialization of merge4a.

Unfortunately, building up the state ss requires a relatively expensive appending
to the end of a list (e.g., ss ++ [tx x] in the third leg).

Now consider hot spot #4 more explicitly. The responsibility associated with
the hot spot is to enable the use of more general transformations on the input
sequences to produce the output sequence.
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To accomplish this, we introduce an explicit state to record the relevant aspects
of the computation to some position in the two input sequences. Each call of the
merge function can examine the current values from the input sequences and
update the value of the state appropriately for the next call.

In some sense, the merge function “folds” together the values from the two input
sequences to compute the state. At the end of both input sequences, the merge
function then transforms the state into the output sequence.

To accomplish this, we can generalize merge4a. We generalize the accumulating
parameter ss in merge4a to be a parameter s that represents the state. We also
replace the two simple record-to-record transformation functions tx and ty by
more flexible transformation functions tl, te, and tg, that update the state in
the three guards of the recursive leg and functions tty and ttx that update the
state when the first and second input sequences, respectively, become empty.

For the “equals” guard, the amount that the input sequences are advanced also
becomes dependent upon the state of the computation. This is abstracted as
functions nex on the first input sequence and ney on the second. To satisfy the
requirement represented by frozen spot #3, the pair of functions nex and ney
must make the following progress requirement true for each call of mg:

if (kx x == ky y) then
(length (nex s xs) < length xs) ||
(length (ney s ys) < length ys)

else True

That is, the client of the framework must ensure that at least one of the input
sequences will be advanced by at least one element. We also introduce the new
function res to take the final state of the computation and return the output
sequence.

The above transformation results in function merge4b.

merge4b :: Ord d => (a -> d) -> (b -> d) -> -- kx, ky
(e -> a -> b -> e) -> -- tl
(e -> a -> b -> e) -> -- te
(e -> a -> b -> e) -> -- tg
(e -> [a] -> [a]) -> -- nex
(e -> [b] -> [b]) -> -- ney
(e -> a -> e) -> -- ttx
(e -> b -> e) -> -- tty
(e -> [c]) -> e -> -- res, s
[a] -> [b] -> [c] -- xs, ys

merge4b kx ky tl te tg nex ney ttx tty res s xs ys
= mg s xs ys
where

mg s [] ys = res (foldl tty s ys)
mg s xs [] = res (foldl ttx s xs)
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mg s xs@(x:xs') ys@(y:ys')
| kx x < ky y = mg (tl s x y) xs' ys
| kx x == ky y = mg (te s x y) (nex s xs) (ney s ys)
| kx x > ky y = mg (tg s x y) xs ys

The function uses the Prelude function foldl in the first two legs. This function
continues the computation beginning with the state computed by the recursive
leg and processes the remainder of the nonempty input sequence by “folding”
the remaining elements as defined in the functions ttx and tty.

As was the case for merge3, frozen spot #1 requires that map kx xs and
map ky ys be in ascending order for calls to merge4b.

Hot spot #4 consists of the eight functions tl, te, tg, ttx, tty, nex, ney, and
res. The following property also holds:

merge4b kx ky
(\ss x y -> ss ++ [tx x]) -- tl
(\ss x y -> ss ++ [tx x]) -- te
(\ss x y -> ss ++ [ty y]) -- tg
(\ss xs -> tail xs) -- nex
(\ss ys -> tail ys) -- ney
(\ss x -> ss ++ [x]) -- ttx
(\ss y -> ss ++ [y]) -- tty
id ss xs ys -- res, ss, xs, ys

== merge4a kx ky tx ty ss xs ys
== ss ++ merge3 kx ky tx ty xs ys

That is, we can define the general transformation functions so that they have the
same effect as the record-to-record transformations of merge4a. The statement
of this property uses the anonymous functions (lambda expression) feature of
Haskell.

Thus function merge3 is a specialization of merge4a, which in turn is a special-
ization of function merge4b.

A problem with the above “implementation” of merge3 is that the merge4b
parameters tl, te, tg, ttx, and tty all involve an expensive operation to
append to the end of the list ss.

An alternative would be to build the state sequence in reverse order and then
reverse the result as shown below.

merge4b kx ky
(\ss x y -> reverse (tx x) ++ ss) -- tl
(\ss x y -> reverse (tx x) ++ ss) -- tl
(\ss x y -> reverse (ty y) ++ ss) -- tg
(\ss xs -> tail xs) -- nex
(\ss ys -> tail ys) -- ney
(\ss x -> x : ss) -- ttx
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(\ss y -> y : ss) -- tty
reverse ss xs ys -- res, ss, xs, ys

== merge4a kx ky tx ty ss xs ys
== ss ++ merge3 kx ky tx ty xs ys

TODO: Possibly include a version with selective eager evaluation (similar to
below) and rename coseq.

merge4c :: Ord d => (a -> d) -> (b -> d) -> -- kx, ky
(e -> a -> b -> e) -> -- tl
(e -> a -> b -> e) -> -- te
(e -> a -> b -> e) -> -- tg
(e -> [a] -> [a]) -> -- nex
(e -> [b] -> [b]) -> -- ney
(e -> a -> e) -> -- ttx
(e -> b -> e) -> -- tty
(e -> [c]) -> e -> -- res, s
[a] -> [b] -> [c] -- xs, ys

merge4b kx ky tl te tg nex ney ttx tty res s xs ys
= mg s xs ys

where
mg s [] ys = res (foldl tty s ys)
mg s xs [] = res (foldl ttx s xs)
mg s xs@(x:xs') ys@(y:ys')

| kx x < ky y = (mg $! (tl s x y)) xs' ys
| kx x == ky y = (mg $! (te s x y)) ((nex $! s) xs)

((ney $! s) ys)
| kx x > ky y = (mg $! (tg s x y)) xs ys'

19.4.8 Hot spot #5 :Variability of sequence source/destination

Hot spot #5 concerns the ability to take the input sequences from many possible
sources and to direct the output to many possible destinations.

In the Haskell merge functions, these sequences are represented as the pervasive
polymorphic list data type. The redirection is simply a matter of writing
appropriate functions to produce the input lists and to consume its output list.
No changes are needed to the merge4b function itself.

Of course, for any expressions (e.g., function calls) ex and ey that generate
the input sequence arguments xs and ys of merge4b, it must be the case that
sequences map kx ex and map ky ey are ascending.

19.4.9 Bag and set operation implementations

TODO: Possibly reexpress some of the lambdas above with standard combinators.

Mathematically, a bag (also called a multiset) is an unordered collection of
elements in which each element may occur one or more times. We can model
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a bag as a total function (called the multiplicity function) over the domain of
elements to the natural numbers where the numbers 0 and above denote the
number of occurrences of the element in the bag.

A set is thus a bag for which there is no more than one occurence of any element.

If we restrict the elements to a Haskell data type that is an instance of class
Ord, we can represent a bag by an ascending list of values and a set by an
increasing list of values. With this representation, we can implement the bag an
set operations as special cases of cosequential processing.

The intersection of two bags consists of only the elements that occur in both
bags such that the number of occurrences is the minimum number for the two
input bags. We can express the bag intersection of two ascending lists in terms
of merge4b as follows.

bagIntersect xs ys =
merge4b id id

(\s x y -> s)
(\s x y -> x:s)
(\s x y -> s)
(\s xs -> tail xs)
(\s ys -> tail ys)
(\s x -> s)
(\s y -> s)
reverse [] xs ys

This function only adds an element to the output when it occurs in both input
lists.

If we require the two input lists to be increasing, the above also implements set
intersection.

The sum of two bags consists of the elements that occur in either bag such that
the number of occurrences is the total number for both bags. We can express
the bag sum of two ascending lists in terms of merge4b as follows.

bagSum xs ys =
merge4b id id

(\s x y -> x:s)
(\s x y -> x:y:s)
(\s x y -> y:s)
(\s xs -> tail xs)
(\s ys -> tail ys)
(\s x -> x:s)
(\s y -> y:s)
reverse [] xs ys

The union of two bags consists of the elements that occur in either bag such
that the number of occurrences is the minimum number in the two input lists.

290



The prototype function merge0 implements this operation on ascending lists.

The subtraction of bag B from bag A, denoted A - B, consists of only the elements
that occur in both bags such that the number of occurrences is the number of
occurrences in A minus those in B.

Questions:

• How can we represent set union in terms of merge4b?

• How can we represent a merge function that can be used in the merge sort
of two lists (whose elements are from an instance of class Ord)?

• How can we implement a bag union function bagUnion in terms of merge4b?

• How can we implement a bag subtraction function bagSub xs ys in
terms of merge4b?

• If the elements of the input lists are not instances of class Ord, how can
we implement bag union? bag intersection?

19.4.10 Sequential file update algorithm

TODO: Describe this!?

-- Simple Master-Transaction Update
-- Master increasing list [(Account,Amount)]
-- with Account < maxAccount
-- Transaction ascending list [(Account,Amount)]
-- with Account < maxAccount
-- Result is new Master increasing list [(Account,Amount)]
-- with Account < maxAccount

type Account = Int
type Amount = Integer

seqUpdate :: [(Account,Amount)] -> [(Account,Amount)]
-> [(Account,Amount)]

seqUpdate = merge4c fst fst
masterlt mastereq mastergt
masternext transnext
notrans nomaster
getResult initState

initState = ([],[])

maxAccount = maxBound :: Account

masterlt (out,[]) m t = (m:out,[])
-- no transactions for this master
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masterlt (out,[cur]) m t = (cur:out,[])
-- processed all transactions for this master

mastereq (out,[]) (ma,mb) (_,tc)
= (out, [(ma,mb+tc)]) -- first transaction

mastereq (out,[(sa,sb)]) (_,_) (_,tc)
= (out, [(sa,sb+tc)]) -- subsequent transaction

mastergt (_,_) m t
= error ("Transactions not ascending at " ++ show t)

masternext (_,_) ms = ms -- do not advance master on eq

transnext (_,_) ts = let ys = tail ts
in if null ys then [(maxAccount,0)] else ys
-- advance transaction on eq
-- force master with final (maxAccount,0)

notrans (out,[]) m = (m:out,[])
notrans (out,[cur]) m = (m:cur:out,[])

nomaster ([],[]) t -- only for empty master list
= error ("Unmatched transaction " ++ show t)

nomaster (out,[]) (maxInt,_) -- transaction list ended
= (out,[])

nomaster _ t
= error ("Unmatched transaction " ++ show t)

getResult (nms,[]) = reverse nms

19.4.11 Recap

This case study illustrates the function generalization method. It begins with
a simple Haskell program to merge two ascending lists of integers into third
ascending list of integers. This program is generalized in a step by step fashion
to produce a new program that is capable of carrying out any operation from
the family of cosequential processing programs.

Although some members of the cosequential processing family can be rather
complicated, the family has the characteristic that the primary driver for the
algorithm can be concisely stated as a simple loop (i.e., recursive function).

19.5 What Next?
TODO
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19.6 Chapter Source Code
TODO

19.7 Exercises
TODO
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ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g.„ using CSS), constructing a bibliography (e.g.„
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

19.9 Terms and Concepts
TODO
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20 Problem Solving
20.1 Chapter Introduction
This Chapter is incomplete.

TODO: - Add Chapter Introduction - Give additional and improved examples. -
Add What Next?, Chapter Source Code, and Exercises sections

20.2 Problem Solving Philosophy
I approach computing science with the following philosophy:

• Programming is the essence of computing science.

• Problem solving is the essence of programming.

Here I consider programming as the process of analyzing a problem and for-
mulating a solution suitable for execution on a computer. The solution should
be correct, elegant, efficient, and robust. It should be expressed in a manner
that is understandable, maintainable, and reusable. The solution should balance
generality and specificity, abstraction and concreteness.

In my view, programming is far more than just coding. It subsumes the concerns
of algorithms, data structures, and software engineering. It uses programming
languages and software development tools. It uses the intellectual tools of
mathematics, logic, linguistics, and computing science theory. Etc.

20.3 Polya’s Insights
The mathematician George Polya (1887–1985), a Professor of Mathematics at
Stanford University, said the following in the preface to his book Mathematical
Discovery: On Understanding, Learning and Teaching Problem Solving [142].

Solving a problem means finding a way out of a difficulty, a way
around an obstacle, attaining an aim which was not immediately at-
tainable. Solving problems is the specific achievement of intelligence,
and intelligence is the specific gift of mankind: solving problems can
be regarded as the most characteristically human activity. . . .

Solving problems is a practical art, like swimming, or skiing, or
playing the piano: you learn it only by imitation and practice. . . . if
you wish to learn swimming you have to go into the water, and if
you wish to become a problem solver you have to solve problems.

If you wish to derive the most profit from your effort, look out for
such features of a problem at hand as may be useful in handling the
problems to come. A solution that you have obtained by your own
effort or one that you have read or heard, but have followed with
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real interest and insight, may become a pattern for you, a model that
you can imitate with advantage in solving similar problems. . . .

Our knowledge about any subject consists of information and know-
how. If you have genuine bonafide experience of mathematical work
on any level, elementary or advanced, there will be no doubt in your
mind that, in mathematics, know-how is much more important than
mere possession of information. . . .

What is know-how in mathematics? The ability to solve problems—
not merely routine problems but problems requiring some degree of
independence, judgment, originality, creativity. Therefore, the first
and foremost duty . . . in teaching mathematics is to emphasize
methodical work in problem solving.

What Polya says for mathematics holds just as much for computing science.

In the book How to Solve It [141], Polya states four phases of problem solving.
These steps are important for programming as well.

1. Understand the problem.

2. Devise a plan.

3. Carry out the plan, checking each step.

4. Reexamine and reconsider the solution. (And, of course, reexamine the
understanding of the problem, the plan, and the way the plan was carried
out.)

20.4 Problem-Solving Strategies
There are many problem-solving strategies applicable to programming in general
and functional programming in particular. We have seen some of these in the
earlier chapters and will see others in later chapters. In this section, we highlight
some of the general techniques.

20.4.1 Solve a more general problem first

The first strategy is to solve a more general problem first. That is, we solve a
“harder” problem than the specific problem at hand, then use the solution of the
“harder” problem to get the specific solution desired.

Sometimes a solution of the more general problem is actually easier to find
because the problem is simpler to state, more symmetrical, or less obscured by
special conditions. The general solution can often be used to solve other related
problems.

Often the solution of the more general problem can actually lead to a more
efficient solution of the specific problem.
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Examples We have already seen one example of this technique: finding the
first occurrence of an item in a list in Chapter 18.

First, we devised a program to find all occurrences in a list. Then we selected
the first occurrence from the set of all occurrences. (Lazy evaluation of Haskell
programs means that this use of a more general solution differs very little in
efficiency from a specialized version.)

We have also seen several cases where we have generalized problems by adding
one or more accumulating parameters. These “harder” problems can lead to
more efficient tail recursive solutions.

For example, consider the tail recursive Fibonacci program we developed in
Chapter 9. We added two extra arguments to the function.

fib2 :: Int -> Int
fib2 n | n >= 0 = fibIter n 0 1

where
fibIter 0 p q = p
fibIter m p q | m > 0 = fibIter (m-1) q (p+q)

Another approach is to use the tupling technique. Instead of adding extra
arguments, we add extra results.

For example, in the Fibonacci program fastfib below, we compute (fib n,
fib (n+1)) instead of just fib n. This is a harder problem, but it actually
gives us more information to work with and, hence, provides more opportunity
for optimization. (We formally derive this solution in Chapter 26.)

fastfib :: Int -> Int
fastfib n | n >= 0 = fst (twofib n)

twofib :: Int -> (Int,Int)
twofib 0 = (0,1)
twofib n = (b,a+b)

where (a,b) = twofib (n-1)

20.4.2 Solve a simpler problem first

The second strategy is to solve a simpler problem first. After solving the simpler
problem, we then adapt or extend the solution to solve the original problem.

Often the mass of details in a problem description makes seeing a solution
difficult. In the previous technique we made the problem easier by finding a
more general problem to solve. In this technique, we move in the other direction:
we find a more specific problem that is similar and solve it.

At worst, by solving the simpler problem we should get a better understanding
of the problem we really want to solve. The more familiar we are with a problem,
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the more information we have about it, and, hence, the more likely we will be
able to solve it.

At best, by solving the simpler problem we will find a solution that can be easily
extended to build a solution to the original problem.

Examples Consider a program to convert a positive integer of up to six digits
to a string consisting of the English words for that number. For example, 369027
yields the string:

three hundred and sixty-nine thousand and twenty-seven

To deal with the complexity of this problem, we can work as follows:

a. Solve the problem of converting a two-digit number to words. (The single
digit numbers and numbers in teens are special cases.)

b. Then extend the two-digit solution to three digits. (This can basically use
the solution to part “a” twice.)

c. Then extend three-digit solution to to six digits. (This can basically use
the solution to part “b” twice.)

See Section 4.1 of the classic Bird and Wadler textbook [15] for the details of
this problem and a solution.

TODO: May want to create some code for this problem rather than just refer to
an old textbook.

The process of generalizing first-order functions into higher-order functions is
another example of this “solve a simpler problem first” strategy. Recall how we
motivated the development of the higher-order library functions such as map,
filter, and foldr in Chapter 15. Also consider the function generalization
approach used in the cosequential processing case study in Chapter 19.

20.4.3 Reuse off-the-shelf solutions to standard subproblems

The third strategy is to reuse an off-the-shelf solutions to a standard subproblem.

We have been doing this all during this semester, especially since we began began
studying polymorphism and higher-order functions.

The basic idea is to identify standard patterns of computation (e.g., standard
Prelude functions such as length, take{.haskell, zip{.haskell, map{.haskell,
filter{.haskell, foldr{.haskell) that will solve some aspects of the problem and
then combine (e.g., using function composition) these standard patterns with
your own specialized functions to construct a solution to the problem.

Examples We have seen several examples of this technique in this textbook
and its exercises.
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See section 4.2 of the classic Bird and Wadler textbook [15] for a case study
that develops a package of functions to do arithmetic on variable length integers.
The functions take advantage of several of the standard Prelude functions.

20.4.4 Solve a related problem

The fourth strategy is to solve a related problem. After solving the related
problem, we then transform the solution of the related problem to get a solution
to the original problem.

Perhaps we can find an entirely different problem formulation (i.e., stated in
different terms) for which we can readily find a solution. Then that solution can
be converted into a solution to the problem at hand.

Examples For example, we can recast a problem in terms of mathematical or
logical frameworks (e.g., sets, relations, graphs, finite state machines, grammars,
algebraic structures, differential equations, etc.), solve the corresponding problem
in those terms, and then interpret the result for the original problem. The
simplification provided by the frameworks may reveal solutions that are obscured
in the details of the problem. We can also take advantage of the theory and
techniques that have been found previously for the mathematical frameworks.

Consider the problem of breaking a string of text into the list of its component
lines.

This is not trivial. However, the “inverse” problem is trivial. All that is needed
to convert a list of lines to a string of text is to insert linefeed characters between
the lines.

We can first solve the inverse problem (line-folding) and then use it to calculate
what the line-breaking program must be. (See Section 4.3 of the Bird and Wadler
textbook [15] and a Chapter 27 in this textbook.)

20.4.5 Separate concerns

The fifth strategy is to separate concerns. That is, we partition the problem into
logically separate problems, solve each problem separately, then combine the
solutions to the subproblems to construct a solution to the problem at hand.

As we have seen in the above strategies, when a problem is complex and difficult
to attack directly, we search for simpler, but related, problems to solve, then
build a solution to the complex problem from the simpler problems.

Examples We have seen examples of this approach in earlier chapters and
homework assignments. We separated concerns when we used stepwise refinement
to develop a square root function, data abstraction in the rational number case
study, and function pipelines.
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Consider the development of a program to print a calendar for any year in
various formats. We can approach this problem by first separating it into two
independent subproblems:

a. building a calendar
b. formatting the output

After solving each of these simpler problems, the more complex problem can be
solved easily by combining the two solutions. (See Section 4.5 of the classic Bird
and Wadler textbook [15] for the details of this problem and a solution.)

20.4.6 Divide and conquer

The sixth strategy is divide and conquer. This is a special case of the “solve a
simpler problem first” strategy. In this technique, we must divide the problem
into subproblems that are the same as the original problem except that the size
of the input is smaller.

This process of division continues recursively until we get a problem that can
be solved trivially, then we combined we reverse the process by combining the
solutions to subproblems to form solutions to larger problems.

Examples Examples of divide and conquer from earlier chapters include the
logarithmic exponentiation function expt3 in Chapter 9 and the merge sort
function msort in Chapter 17.

Another common example of the divide and conquer approach is binary search.
(See Section 6.4.3 of the classic Bird and Wadler textbook [15].)

Chapter 17 examines divide and conquer algorithms in terms of a higher order
function that captures the pattern.

There are, of course, other strategies that can be used to approach problem
solving.

20.5 What Next?
TODO

20.6 Chapter Source Code
TODO

20.7 Exercises
TODO
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20.9 Terms and Concepts
Problem solving, Polya, information, know-how, bonafide experience, problem-
solving strategies, solve a more general (harder) problem first, accumulating
parameters, tupling, solve a simpler problem first, reuse an off-the-shelf solution,
higher-order functions, stepwise refinement, data abstraction, solve a related
problem, separate concerns, divide and conquer.
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21 Algebraic Data Types
21.1 Chapter Introduction
The previous chapters have primarily used Haskell’s primitive types along with
tuples, lists, and functions.

The goals of this chapter (21) are to:

• describe how to define and use of Haskell’s (user-defined) algebraic data
types

• introduce improvements in error-handling using Maybe and Either types

• present a few larger programming projects

Algebraic data types enable us to conveniently leverage the power of the type
system to write safe programs. We extensively these in the remainder of this
textbook.

The Haskell source module for this chapter is in file AlgDataTypes.hs.

TODO: It might be better to factor the source code into multiple files.

21.2 Concepts
An algebraic data type [24,173,204] is a type formed by combining other types,
that is, it is a composite data type. The data type is created by an algebra of
operations of two primary kinds:

• a sum operation that constructs values to have one variant among several
possible variants. These sum types are also called tagged, disjoint union,
or variant types.

The combining operation is the alternation operator, which denotes the
choice of one but not both between two alternatives.

• a product operation that combines several values (i.e., fields) together to
construct a single value. These are tuple and record types.

The combining operation is the Cartesian product from set theory.

We can combine sums and products recursively into arbitrarily large structures.

An enumerated type is a sum type in which the constructors take no arguments.
Each constructor corresponds to a single value.

Aside: ADT confusion

Although sometimes the acronym ADT is used for both, an algebraic data type
is a different concept from an abstract data type [61,203].

• We specify an algebraic data type with its syntax (i.e., structure)—with
rules on how to compose and decompose them.
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• We specify an abstract data type with its semantics (i.e., meaning)—with
rules about how the operations behave in relation to one another.

The modules we build with abstract interfaces, contracts, and data ab-
straction, such as the Rational Arithmetic modules from Chapter 7, are
abstract data types.

Perhaps to add to the confusion, in functional programming we sometimes use
an algebraic data type to help define an abstract data type. We do this in
the Carrie’s Candy Bowl project at the end of this chapter. We consider these
techniques more fully in Chapter 22.

21.3 Haskell Algebraic Data Types
21.3.1 Declaring data types

In addition to the built-in data types we have discussed, Haskell also allows the
definition of new data types using declarations of the form:

data Datatype a1 a2 · · · an = Cnstr1 | Cnstr2 | · · · | Cnstrm

where:

• Datatype is the name of a new type constructor of arity n (n ≥ 0). As
with the built-in types, the name of the data type must begin with an
uppercase letter.

• a1 , a2 , · · · an are distinct type variables representing the n parameters
of the data type. These begin with lowercase letters (by convention at the
beginning of the alphabet).

• Cnstr1 , Cnstr2 , · · ·, Cnstrm are the m (m ≥ 1$) data constructors
that describe the ways in which the elements of the new data type are
constructed. These begin with uppercase letters.

The data definition can also end with an optional deriving that we discuss
below.

21.3.2 Declaring type Color

For example, consider a new data type Color whose possible values are the
colors on the flag of the USA. The names of the data constructors (the color
constants in this case) must also begin with capital letters.

data Color = Red | White | Blue
deriving (Show, Eq)

Color is an example of an enumerated type, a sum type that consists of a
finite sequence of nullary (i.e., the arity—number of parameters—is zero) data
constructors.
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We can use the type and data constructor names defined with data in declarations,
patterns, and expressions in the same way that the built-in types can be used.

isRed :: Color -> Bool
isRed Red = True
isRed _ = False

Data constructors can also have associated values. For example, the constructor
Grayscale below takes an integer value.

data Color' = Red' | Blue' | Grayscale Int
deriving (Show, Eq)

Constructor Grayscale implicitly defines a constructor function with the type.

21.3.3 Deriving class instances

The optional deriving clauses in the above definitions of Color and Color'
are very useful. They declare that these new types are automatically added as
instances of the type classes listed.

Note: Chapter 23 explores the concepts of type class, instance, and overloading
in more depth.

In the above cases, Show and Eq enable objects of type Color to be converted to
a String and compared for equality, respectively.

The Haskell compiler derives the body of an instance syntactically from the
data type declaration. It can derive instances for classes Eq, Ord, Enum, Bounded,
Read, and Show.

The derived instances of type class Eq include the (==) and (/=) methods.

Type class Ord extends Eq. In addition to (==) and (/=), a derived instance
of Ord also includes the compare, (<), (<=), (>), (>=), max, and min methods.
The ordered comparison operators use the order of the constructors given in
the data statement, from smallest to largest, left to right. These comparison
operators are strict in both arguments.

Similarly, a derived Enum instance assigns successive integers to the constructors
increasing from 0 at the left. In addition to this, a derived instance of Bounded
assigns minBound to the leftmost and maxBound to the rightmost.

The derived Show instance enables the function show to convert the data type
to a syntactically correct Haskell expression consisting of only the constructor
names, parentheses, and spaces. Similarly, Read enables the function read to
parse such a string into a value of the data type.

For example, the data type Bool might be defined as:

data Bool = False | True
deriving (Ord, Show)
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Thus False < True evaluates to True and False > True evaluates to False.
If x == False, then show x yields the string False.

21.3.4 Exploring more example types

Consider a data type Point that has a type parameter. The following defines a
polymorphic type; both of the values associated with the constructor Pt must
be of type a. Constructor Pt implicitly defines a constructor function of type
a -> a -> Point a.

data Point a = Pt a a
deriving (Show, Eq)

As another example, consider a polymorphic set data type that represents a set
as a list of values as follows. Note that the name Set is used both as the type
constructor and a data constructor. In general, we should not use a symbol in
multiple ways. It is acceptable to double use only when the type has only one
constructor.

data Set a = Set [a]
deriving (Show, Eq)

Now we can write a function makeSet to transform a list into a Set. This
function uses the function nub from the Data.List module to remove duplicates
from a list.

makeSet :: Eq a => [a] -> Set a
makeSet xs = Set (nub xs)

As we have seen previously, programmers can also define type synonyms. As in
user-defined types, synonyms may have parameters. For example, the following
might define a matrix of some polymorphic type as a list of lists of that type.

type Matrix a = [[a]]

We can also use special types to encode error conditions. For example, suppose
we want an integer division operation that returns an error message if there is
an attempt to divide by 0 and returns the quotient otherwise. We can define
and use a union type Result as follows:

data Result a = Ok a | Err String
deriving (Show, Eq)

divide :: Int -> Int -> Result Int
divide _ 0 = Err "Divide by zero"
divide x y = Ok (x `div` y)

Then we can use this operation in the definition of another function f that
returns the maximum Int value maxBound when a division by 0 occurs.
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f :: Int -> Int -> Int
f x y = return (divide x y)

where return (Ok z) = z
return (Err s) = maxBound

The auxiliary function return can be avoided by using the Haskell case expres-
sion as follows:

f' x y =
case divide x y of

Ok z -> z
Err s -> maxBound

This case expression evaluates the expression divide x y, matches its result
against the patterns of the alternatives, and returns the right-hand-side of the
first matching patter.

Later in this chapter we discuss the Maybe and Either types, two polymorphic
types for handling errors defined in the Prelude.

21.4 Recursive Data Types
Types can also be recursive.

21.4.1 Defining a binary tree type

For example, consider the user-defined type BinTree, which defines a binary
tree with values of a polymorphic type.

data BinTree a = Empty | Node (BinTree a) a (BinTree a)
deriving (Show, Eq)

This data type represents a binary tree with a value in each node. The tree is
either “empty” (denoted by Empty) or it is a “node” (denoted by Node) that
consists of a value of type a and “left” and “right” subtrees. Each of the subtrees
must themselves be objects of type BinTree.

Thus a binary tree is represented as a three-part “record” as shown in on the
left side of Figure 21.1. The left and right subtrees are represented as nested
binary trees. There are no explicit “pointers”.

Consider a function flatten to return the list of the values in binary tree in the
order corresponding to a left-to-right in-order traversal. Thus expression

flatten (Node (Node Empty 3 Empty) 5
(Node (Node Empty 7 Empty) 1 Empty))

yields [3,5,7,1].

flatten :: BinTree a -> [a]
flatten Empty = []
flatten (Node l v r) = flatten l ++ [v] ++ flatten r
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Figure 21.1: Binary tree BinTree.

The second leg of flatten requires two recursive calls. However, as long as
the input tree is finite, each recursive call receives a tree that is simpler (3.g.,
shorter) than the input. Thus all recursions eventually terminate when flatten
is called with an Empty tree.

Function flatten can be rendered more efficiently using an accumulating para-
meter and cons as in the following:

flatten' :: BinTree a -> [a]
flatten' t = inorder t []

where inorder Empty xs = xs
inorder (Node l v r) xs =

inorder l (v : inorder r xs)

Auxiliary function inorder builds up the list of values from the right using cons.

To extend the example further, consider a function treeFold that folds an
associative operation op with identity element i through a left-to-right in-order
traversal of the tree.

treeFold :: (a -> a -> a) -> a -> BinTree a -> a
treeFold op i Empty = i
treeFold op i (Node l v r) = op (op (treeFold op i l) v)

(treeFold op i r)

21.4.2 Exporting types from modules

If an algebraic data type is defined in a module, we can export the type and
make it available to users of the module. Suppose the BinTree type and the
functions above are defined in a Haskell module named BinaryTrees. Then the
following module header would export the type BinTree, the three explicitly
defined functions, and the functions generated for the Eq and Show classes.

module BinaryTrees
( BinTree, flatten, flatten', treeFold )
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where -- implementation details of type and functions

This module definition makes the type BinTree and its two constructors Node
and Empty available for use in a module that imports BinaryTrees.

If we want to make the type BinTree available but not its constructors, we can
use the following module header:

module BinaryTrees
( BinTree(..), flatten, flatten', treeFold )

where -- implementation details of type and functions

With BinTree(..) in the export list, BinTree values can only be constructed
and examined by functions defined in the module (including the automatically
generated functions). Outside the module, the BinTree values are “black boxes”
that can be passed around or stored.

If the BinaryTrees module is designed and implemented as an information-
hiding module as described in Chapter 7, then we also call this an abstract data
type. We discuss these data abstractions in more detail in Chapter 22.

21.4.3 Defining an alternative binary tree type

Now let’s consider a slightly different formulation of a binary tree: a tree in
which values are only stored at the leaves.

data Tree a = Leaf a | Tree a :ˆ: Tree a
deriving (Show, Eq)

This definition introduces the constructor function name Leaf as the constructor
for leaves and the infix construction operator “:ˆ:” as the constructor for internal
nodes of the tree. (A constructor operator symbol must begin with a colon.)

These constructors allow such trees to be defined conveniently. For example, the
tree

((Leaf 1 :ˆ: Leaf 2) :ˆ: (Leaf 3 :ˆ: Leaf 4))

generates a complete binary tree with height 3 and the integers 1, 2, 3, and 4 at
the leaves.

Suppose we want a function fringe, similar to function flatten above, that
displays the leaves in a left-to-right order. We can write this as:

fringe :: Tree a -> [a]
fringe (Leaf v) = [v]
fringe (l :ˆ: r) = fringe l ++ fringe r

As with flatten and flatten' above, function fringe can also be rendered
more efficiently using an accumulating parameter as in the following:

fringe' :: Tree a -> [a]
fringe' t = leaves t []
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where leaves (Leaf v) = ((:) v)
leaves (l :ˆ: r) = leaves l . leaves r

Auxiliary function leaves builds up the list of leaves from the right using cons.

21.5 Error-handling with Maybe and Either
Before we examine Maybe and Either, let’s consider a use case.

21.5.1 Handling null references

An association list is a list of pairs in which the first component is some key
(e.g., a string) and the second component is the value associated with that key.
It is a simple form of a map or dictionary data structure.

Suppose we have an association list that maps the name of a student (a key) to
the name of the student’s academic advisor (a value). The following function
lookup' carries out the search recursively.

lookup' :: String -> [(String,String)] -> String
lookup' key ((x,y):xys)

| key == x = y
| otherwise = lookup' key xys

But what do we do when the key is not in the list (e.g., the list is empty)? How
do we define a leg for lookup' key [] ?

1. Leave the function undefined for that pattern?

In this case, evaluation will halt with a “non-exhaustive pattern” error
message.

2. Put in an explicit error call with a custom error message?

3. Return some default value of the advisor such as "NONE"?

4. Return a null reference?

The first two approaches either halt the entire program or require use of the
exception-handling mechanism. However, in any language, both abnormal
termination and exceptions should be avoided except in cases in which the
program is unable to continue. The lack of an assignment of a student to an
advisor is likely not such an extraordinary situation.

Exceptions break referential transparency and, hence, negate many of the ad-
vantages of purely functional languages such as Haskell. In addition, Haskell
programs can only catch exceptions in IO programs (i.e., the outer layers that
handle input/output).

The third approach only works when there is some value that is not valid. This
is not a very general approach.
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The fourth approach, which is not available in Haskell, can be an especially
unsafe programming practice. British computing scientist Tony Hoare, who
introduced the null reference into the Algol type system in the mid-1960s, calls
that his “billion dollar mistake” [97] because it “has led to innumerable errors,
vulnerabilities, and system crashes”.

What is a safer, more general approach than these?

21.5.2 Introducing Maybe and Either

Haskell includes the union type Maybe (from the Prelude and Data.Maybe) which
can be used to handle such cases.

data Maybe a = Nothing | Just a
deriving (Eq, Ord)

The Maybe algebraic data type encapsulates an optional value. A value of type
Maybe a either contains a value of type a (represented by Just a) or it is empty
(represented by Nothing).

The Maybe type is a good way to handle errors or exceptional cases without
resorting to an error call.

Now we can define a general version of lookup' using a Maybe return type. (This
is essentially function lookup from the Prelude.)

lookup'' :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup'' key [] = Nothing
lookup'' key ((x,y):xys)

| key == x = Just y
| otherwise = lookup'' key xys

Suppose advisorList is an association list pairing students with their advisors
and defaultAdvisor is the advisor the student should consult if no advisor is
officially assigned. We can look up the advisor with a call to lookup and then
pattern match on the Maybe value returned. (Here we use a case expression.)

whoIsAdvisor :: String -> String
whoIsAdvisor std =

case lookup std advisorList of
Nothing -> defaultAdvisor
Just prof -> prof

The whoIsAdvisor function just returns a default value in place of Nothing.
The function

fromMaybe :: a -> Maybe a -> a

supported by the Data.Maybe library has the same effect. Thus we can rewrite
whoIsAdvisor as follows:
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whoIsAdvisor' std =
fromMaybe defaultAdvisor $ lookup std advisorList

Alternatively, we could use Data.Maybe functions such as:

isJust :: Maybe a -> Bool
isNothing :: Maybe a -> Bool
fromJust :: Maybe a -> a -- error if Nothing

This allows us to rewrite whoIsAdvisor as follows:

whoIsAdvisor'' std =
let ad = lookup std advisorList
in if isJust ad then fromJust ad else defaultAdvisor

If we need more fine-grained error messages, then we can use the union type
Either defined as follows:

data Either a b = Left a | Right b
deriving (Eq, Ord, Read, Show)

The Either a b type represents values with two possibilities: a Left a or
Right b. By convention, a Left constructor usually contains an error message
and a Right constructor a correct value.

As with fromMaybe, we can use similar fromRight and fromLeft functions from
the Data.Either library to extract the Right or Left values or to return a
default value when the value is represented by the other constructor.

fromLeft :: a -> Either a b -> a
fromRight :: b -> Either a b -> b

Library module Data.Either also includes functions to query for the presence
of the two constructors.

isLeft :: Either a b -> Bool
isRight :: Either a b -> Bool

21.5.3 Considering other languages

Most recently designed languages include a maybe or option type [214]. Scala
[131,151] has an Option case class [29:4,51], Rust [110,150] has an Option enum,
and Swift has an Optional class, all of which are similar to Haskell’s Maybe.
The functional languages Idris [18,19], Elm [60,70], and PureScript [79,143] also
have Haskell-like Maybe algebraic data types.

The concept of nullable type [212] is closely related to the option type. Several
older languages support this concept (e.g., Optional in Java 8, None in Python
[144,146], and ? type annotations in C#).

When programming in an object-oriented language that does not provide an
option/maybe type, a programmer can often use the Null Object design pattern
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[162,213,229] to achieve a similar result. This well-known pattern seeks to
“encapsulate the absence of an object by providing a substitutable alternative
that offers suitable default do nothing behavior” [162]. That is, the object must
be of the correct type. It must be possible to apply all operations on that type
to the object, but the operations should have neutral behaviors, with no side
effects. The null object should actively do nothing!

21.6 What Next?
This chapter (21) added Haskell’s algebraic data types to our programming
toolbox. Chapter 22 sharpens the data abstraction tools introduced in Chapter
7 by using algebraic data types from this chapter. Chapter 23 adds type classes
and overloading to the toolbox.

The remainder of this chapter includes a number of larger exercises and projects.

21.7 Chapter Source Code
The Haskell source module for this chapter is in file AlgDataTypes.hs.

21.8 Exercises
1. For trees of type Tree, implement a tree-folding function similar to

treeFold.

2. For trees of type BinTree, implement a version of treeFold that uses an
accumulating parameter. (Hint: foldl.)

3. In a binary search tree all values in the left subtree of a node are less than
the value at the node and all values in the right subtree are greater than
the value at the node.

Given binary search trees of type BinTree, implement the following Haskell
functions:

a. makeTree that takes a list and returns a perfectly balanced (i.e., mini-
mal height) BinTree such that flatten (makeTree xs) = sort xs.
Prelude function sort returns its argument rearranged into ascending
order.

b. insertTree that takes an element and a BinTree and returns the
BinTree with the element inserted at an appropriate position.

c. elemTree that takes an element and a BinTree and returns True if
the element is in the tree and False otherwise.

d. heightTree that takes a BinTree and returns its height. Assume
that height means the number of levels in the tree. (A tree consisting
of exactly one node has a height of 1.)
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e. mirrorTree that takes a BinTree and returns its mirror image. That
is, it takes a tree and returns the tree with the left and right subtrees
of every node swapped.

f. mapTree that takes a function and a BinTree and returns the BinTree
of the same shape except each node’s value is computed by applying
the function to the corresponding value in the input tree.

g. showTree that takes a BinTree and displays the tree in a parenthe-
sized, left-to-right, in-order traversal form. (That is, the traversal of
a tree is enclosed in a pair of parentheses, with the traversal of the
left subtree followed by the traversal of the right subtree.)

Extend the package to support both insertion and deletion of elements.
Keep the tree balanced using a technique such the AVL balancing algorithm.

4. Implement the package of functions described in the previous exercise for
the data type Tree.

5. Each node of a general (i.e., multiway) tree consists of a label and a list of
(zero or more) subtrees (each a general tree). We can define a general tree
data type in Haskell as follows:

data Gtree a = Node a [Gtree a]

For example, tree (Node 0 [ ]) consists of a single node with label 0;
a more complex tree Node 0 [Node 1 [ ], Node 2 [ ], Node 3 []]
consists of root node with three single-node subtrees.

Implement a “map” function for general trees, i.e., write Haskell function

mapGtree :: (a -> b) -> Gtree a -> Gtree b

that takes a function and a Gtree and returns the Gtree of the same
shape such that each label is generated by applying the function to the
corresponding label in the input tree.

6. We can introduce a new Haskell type for the natural numbers (i.e., non-
negative integers) with the statement

data Nat = Zero | Succ Nat

where the constructor Zero represents the value 0 and constructor Succ
represents the “successor function” from mathematics. Thus (Succ Zero)
denotes 1, (Succ (Succ Zero)) denotes 2, and so forth. Implement the
following Haskell functions.

a. intToNat that takes a nonnegative Int and returns the equivalent
Nat, for example, intToNat 2 returns Succ (Succ Zero).

b. natToInt that takes a Nat and returns the equivalent value of type
Int, for example, natToInt Succ (Succ Zero) returns 2.
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c. addNat that takes two Nat values and returns their sum as a Nat.
This function cannot use integer addition.

d. mulNat that takes two Nat values and returns their product as a Nat.
This function cannot use integer multiplication or addition.

e. compNat that takes two Nat values and returns the value -1 if the first
is less than the second, 0 if they are equal, and 1 if the first is greater
than the second. This function cannot use the integer comparison
operators.

7. Consider the following Haskell data type for representing sequences (i.e.,
lists):

data Seq a = Nil | Att (Seq a) a

Nil represents the empty sequence. Att xz y represents the sequence in
which last element y is “attached” at the right end of the initial sequence
xz.

Note that Att is similar to the ordinary “cons” (:) for Haskell lists ex-
cept that elements are attached at the opposite end of the sequences.
(Att (Att (Att Nil 1) 2) 3) represents the same sequence as the ordi-
nary list (1:(2:(3:[]))).

Implement Haskell functions for the following operations on type Seq. The
operations are analogous to the similarly named operations on the built-in
Haskell lists.

a. lastSeq takes a nonempty Seq and returns its last (i.e., rightmost)
element.

b. initialSeq takes a nonempty Seq and returns its initial sequence
(i.e., sequence remaining after the last element removed).

c. lenSeq takes a Seq and returns the number of elements that it
contains.

d. headSeq takes a nonempty Seq and returns its head (i.e., leftmost)
element.

e. tailSeq takes a nonempty Seq and returns the Seq remaining after
the head element is removed.

f. conSeq that takes an element and a Seq and returns a Seq with the
argument element as its head and the Seq argument as its tail.

g. appSeq takes two arguments of type Seq and returns a Seq with the
second argument appended after the first.

h. revSeq takes a Seq and returns the Seq with the same elements in
reverse order.
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i. mapSeq takes a function and a Seq and returns the Seq resulting from
applying the function to each element of the sequence in turn.

j. filterSeq that takes a predicate and a Seq and returns the Seq
containing only those elements that satisfy the predicate.

k. listToSeq takes an ordinary Haskell list and returns the Seq with the
same values in the same order (e.g., headSeq (listToSeq xs) = head xs
for nonempty xs.)

l. seqToList takes a Seq and returns the ordinary Haskell list with the
same values in the same order (e.g., head (seqToList xz) = headSeq xz
for nonempty xz.)

8. Consider the following Haskell data type for representing sequences (i.e.,
lists):

data Seq a = Nil | Unit a | Cat (Seq a) (Seq a)

The constructor Nil represents the empty sequence; Unit represents a
single-element sequence; and Cat represents the “concatenation” (i.e.,
append) of its two arguments, the second argument appended after the
first.

Implement Haskell functions for the following operations on type Seq. The
operations are analogous to the similarly named operations on the built-in
Haskell lists. (Do not convert back and forth to lists.)

a. toSeq that takes a list and returns a corresponding Seq that is
balanced.

b. fromSeq that takes a Seq and returns the corresponding list.

c. appSeq that takes two arguments of type Seq and returns a Seq with
the second argument appended after the first.

d. conSeq that takes an element and a Seq and returns a Seq with the
argument element as its head and the Seq argument as its tail.

e. lenSeq that takes a Seq and returns the number of elements that it
contains.

f. revSeq that takes a Seq and returns a Seq with the same elements
in reverse order.

g. headSeq that takes a nonempty Seq and returns its head (i.e., leftmost
or front) element. (Be careful!)

h. tailSeq that takes a nonempty Seq and returns the Seq remaining
after the head is removed.

i. normSeq that takes a Seq and returns a Seq with unnecessary embed-
ded Nil values removed. (For example, normSeq (Cat (Cat Nil (Unit 1)) Nil)
returns (Unit 1).)
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j. eqSeq that takes two Seq “trees” and returns True if the sequences
of values are equal and returns False otherwise. Note that two Seq
“trees” may be structurally different yet represent the same sequence
of values.

For example, (Cat Nil (Unit 1)) and (Cat (Unit 1) Nil) have
the same sequence of values (i.e., [1]). But (Cat (Unit 1) (Unit 2))
and (Cat (Unit 2) (Unit 1)) do not represent the same sequence
of values (i.e., [1,2] and [2,1], respectively).

Also (Cat (Cat (Unit 1) (Unit 2)) (Unit 3)) has the same
sequence of values as (Cat (Cat (Unit 1) (Unit 2)) (Unit 3))
(i.e., [1,2,3]).

In general what are the advantages and disadvantages of representing lists
this way?

21.9 Carrie’s Candy Bowl Project
21.9.1 Problem description and initial design

Carrie, the Department’s Administrative Assistant, has a candy bowl on her
desk. Often she fills this bowl with candy, but the contents are quickly consumed
by students, professors, and staff members. At a particular point in time, the
candy bowl might contain several different kinds of candy with one or more
pieces of each kind or it might be empty. Over time, the kinds of candy in the
bowl varies.

In this project, we model the candy, the candy bowl, and the “operations” that
can be performed on the bowl and develop it as a Haskell module.

What about the candy?

In general, we want to be able to identify how many pieces of candy we have of
a particular kind (e.g., we may have two Snickers bars and fourteen Hershey’s
Kisses) but do not need to distinguish otherwise between the pieces. So distinct
identifiers for the different kinds of candy should be sufficient.

We can represent the different kinds of candy in several different ways. We could
use strings, integer codes, the different values of an enumerated type, etc. In
different circumstances, we might want to use different representations.

Thus we model the kinds of candy to be a polymorphic parameter of the candy
bowl. However, we can contrain the polymorphism on the kinds of candy to be a
Haskell type that can be compared for equality (i.e., in class Eq) and converted
to a string so that it can be displayed (i.e., in class Show).

What about the candy bowl itself?

A candy bowl is some type of collection of pieces of candy with several possible
representations. We could use a list (either unordered) of the pieces of candy,
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an association list (unordered or ordered) pairing the kinds of candy with the
numbers of pieces of each, a Data.Map structure (from the Haskell library), or
some other data structure.

Thus we want to allow the developers of the candy bowl to freely choose whatever
representation they wish or perhaps to provide several different implementations
with the same interface. We will leave this hidden inside the Haskell module
that implements an abstract data type.

Thus, a Haskell module that implements the candy bowl can define a polymophic
algebraic data type CandyBowl a and export its name, but not export the
implementation details (i.e., the constructors) of the type. For example, a
represenation built around a list of kinds of candy could be defined as:

data CandyBowl a = Bowl [a]

Or a representation using an association list can be defined as:

data CandyBowl a = Bowl [(a,Int)]

Thus, to export the CandyBowl but hide the details of the representation, the
module would have a header such as:

module CarrieCandyBowl
( CandyBowl(..), -- function names exported
)

where -- implementation details of type and functions

Some of the possible representations require the ability to order the types of
candy in some way. Thus, we further constrain the polymorphic type parameter
to class Ord instead of simply Eq. (Above, we also constrained it to class Show.)

21.9.2 Carrie’s Candy Bowl project exercises

Your task for this project to develop a Haskell module CarrieCandyBowl (in a
file CarrieCandyBowl.hs), as described above. You must choose an appropriate
internal representation for the data type CandyBowl and implement the public
operations (functions) defined below. In addition to exporting the public func-
tions and data type name, the module may contain whatever other internal data
and function definitions needed for theimplemenation.

An initial Haskell source code for this project is in file CarrieCandyBowl_skeleton.hs.

You may use a function you have completed to implement other functions in the
list (as long as you do not introduce circular definitions).

1. newBowl :: (Ord a,Show a) => CandyBowl a
creates a new empty candy bowl.

2. isEmpty :: (Ord a,Show a) => CandyBowl a -> Bool
returns True if and only if the bowl is empty.
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3. putIn :: (Ord a,Show a) => CandyBowl a -> a -> CandyBowl a
adds one piece of candy of the given kind to the bowl.

For example, if we use strings to represent the kinds, then

putIn bowl "Kiss"

adds one piece of candy of kind "Kiss" to the bowl.

4. has :: (Ord a,Show a) => CandyBowl a -> a -> Bool
returns True if and only if one or more pieces of the given kind of candy is
in the bowl.

5. size :: (Ord a,Show a) => CandyBowl a -> Int
returns the total number of pieces of candy in the bowl (regardless of kind).

6. howMany :: (Ord a,Show a) => CandyBowl a -> a -> Int
returns the count of the given kind of candy in the bowl.

7. takeOut :: (Ord a,Show a) => CandyBowl a -> a -> Maybe (CandyBowl a)
attempts to remove one piece of candy of the given kind from the bowl
(so it can be eaten). If the bowl contains a piece of the given kind, the
function returns the value Just bowl, where bowl is the bowl with the
piece removed. If the bowl does not contain such a piece, it returns the
value Nothing.

8. eqBowl :: (Ord a,Show a) => CandyBowl a -> CandyBowl a -> Bool
returns True if and only if the two bowls have the same contents (i.e., the
same kinds of candy and the same number of pieces of each kind).

9. inventory :: (Ord a,Show a) => CandyBowl a -> [(a,Int)]
returns a Haskell list of pairs (k,n), where each kind k of candy in the
bowl occurs once in the list with n > 0. The list should be arranged in
ascending order by kind.

For example, if there are two "Snickers" and one "Kiss" in the bowl, the
list returned would be [("Kiss",1),("Snickers",2)].

10. restock :: (Ord a,Show a) => [(a,Int)] -> CandyBowl a
creates a new bowl such that for any bowl:

eqBowl (restock (inventory bowl)) bowl == True

11. combine :: (Ord a,Show a) => CandyBowl a -> CandyBowl a -> CandyBowl a
pours the two bowls together to form a new “larger” bowl.

12. difference :: (Ord a,Show a) => CandyBowl a -> CandyBowl a -> CandyBowl a
returns a bowl containing the pieces of candy in the first bowl that are not
in the second bowl.

For example, if the first bowl has four "Snickers" and the second has one
"Snickers", then the result will have three "Snickers".
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13. rename :: (Ord a,Show a) => CandyBowl a -> (a -> b) -> CandyBowl b
takes a bowl and a renaming function, applies the renaming function to all
the kind values in the bowl, and returns the modified bowl.

For example, for some mysterious reason, we might want to reverse the
strings for the kind names: f xs = reverse xs. Thus "Kiss" would
become "ssiK". Then rename f bowl would do the reversing of all the
names.

21.9.3 Candy Bowl alternative exercises

TODO: Maybe specify reimplentations with a different data rep, perhaps requir-
ing a map.

21.10 Sandwich DSL Project
21.10.1 Project Introduction

Few computer science graduates will design and implement a general-purpose
programming language during their careers. However, many graduates will
design and implement—and all likely will use—special-purpose languages in their
work.

These special-purpose languages are often called domain-specific languages (or
DSLs) [53]. (For more discussion of the DSL concepts, terminology, and tech-
niques, see the introductory chapter of the Notes on Domain-Specific Languages
[53].)

In this project, we design and implement a simple internal DSL [53]. This DSL
describes simple “programs” using a set of Haskell algebraic data types. We
express a program as an abstract syntax tree (AST) [53] using the DSLs data
types.

In this project, we first build a package of functions for creating and manipulating
the abstract syntax trees. We then extend the package to translate the abstract
syntax trees to a sequence of instructions for a simple “machine”.

21.10.2 Developing the Sandwich DSL

Suppose Emerald de Gassy, the owner of the Oxford-based catering business
Deli-Gate, hires us to design a domain-specific language (DSL) for describing
sandwich platters. The DSL scripts will direct Deli-Gate’s robotic kitchen
appliance SueChef (Sandwich and Utility Electronic Chef) to assemble platters
of sandwiches.

In discussing the problem with Emerald and the Deli-Gate staff, we discover the
following:

• A sandwich platter consists of zero or more sandwiches. (Zero? Why not!
Although a platter with no sandwiches may not be a useful, or profitable,
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case, there does not seem to be any harm in allowing this degenerate case.
It may simplify some of the coding and representation.)

• Each sandwich consists of layers of ingredients.

• The categories of ingredients are breads, meats, cheeses, vegetables, and
condiments.

• Available breads are white, wheat, and rye.

• Available meats are turkey, chicken, ham, roast beef, and tofu. (Okay, tofu
is not a meat, but it is a good protein source for those who do not wish to
eat meat. This is a college town after all.)

• Available cheeses are American, Swiss, jack, and cheddar.

• Available vegetables are tomato, lettuce, onion, and bell pepper.

• Available condiments are mayo, mustard, relish, and Tabasco. (Of course,
this being the South, the mayo is Blue Plate Mayonnaise and the mustard
is a Creole mustard.)

Let’s define this as an internal DSL—in particular, by using a relatively deep
embedding [53].

What is a sandwich? . . . Basically, it is a stack of ingredients.

Should we require the sandwich to have a bread on the bottom? . . . Probably.
. . . On the top? Maybe not, to allow “open-faced” sandwiches. . . . What can
the SueChef build? . . . We don’t know at this point, but let’s assume it can
stack up any ingredients without restriction.

For simplicity and flexibility, let’s define a Haskell data type Sandwich to model
sandwiches. It wraps a possibly empty list of ingredient layers. We assume the
head of the list to be the layer at the top of the sandwich. We derive Show so we
can display sandwiches.

data Sandwich = Sandwich [Layer]
deriving Show

Note: In this project, we use the same name for an algebraic data type and its
only constructor. Above the Sandwich after data defines a type and the one
after the “=” defines the single constructor for that type.

Data type Sandwich gives the specification for a sandwich. When “executed”
by the SueChef, it results in the assembly of a sandwich that satisfies the
specification.

As defined, the Sandwich data type does not require there to be a bread in
the stack of ingredients. However, we add function newSandwich that starts a
sandwich with a bread at the bottom and a function addLayer that adds a new
ingredient to the top of the sandwich. We leave the implementation of these
functions as exercises.
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newSandwich :: Bread -> Sandwich
addLayer :: Sandwich -> Layer -> Sandwich

Ingredients are in one of five categories: breads, meats, cheeses, vegetables, and
condiments.

Because both the categories and the specific type of ingredient are important, we
choose to represent both in the type structures and define the following types. A
value of type Layer represents a single ingredient. Note that we use names such
as Bread both as a constructor of the Layer type and the type of the ingredients
within that category.

data Layer = Bread Bread | Meat Meat
| Cheese Cheese | Vegetable Vegetable
| Condiment Condiment

deriving (Eq,Show)

data Bread = White | Wheat | Rye
deriving (Eq, Show)

data Meat = Turkey | Chicken | Ham | RoastBeef | Tofu
deriving (Eq, Show)

data Cheese = American | Swiss | Jack | Cheddar
deriving (Eq, Show)

data Vegetable = Tomato | Onion | Lettuce | BellPepper
deriving (Eq, Show)

data Condiment = Mayo | Mustard | Ketchup | Relish | Tabasco
deriving (Eq, Show)

We need to be able to compare ingredients for equality and convert them to
strings. Because the automatically generated default definitions are appropriate,
we derive both classes Show and Eq for these ingredient types.

We do not derive Eq for Sandwich because the default element-by-element
equality of lists does not seem to be the appropriate equality comparison for
sandwiches.

To complete the model, we define type Platter to wrap a list of sandwiches.

data Platter = Platter [Sandwich]
deriving Show

We also define functions newPlatter to create a new Platter and addSandwich
to add a sandwich to the Platter. We leave the implementation of these
functions as exercises.
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newPlatter :: Platter
addSandwich :: Platter -> Sandwich -> Platter

21.10.3 Sandwich DSL exercise set A

Please put these functions in a Haskell module SandwichDSL (in a file named
SandwichDSL.) You may use functions defined earlier in the exercises to imple-
ment those later in the exercises.

1. Define and implement the Haskell functions newSandwich, addLayer,
newPlatter, and addSandwich described above.

2. Define and implement the Haskell query functions below that take an
ingredient (i.e., Layer) and return True if and only if the ingredient is in
the specified category.

isBread :: Layer -> Bool
isMeat :: Layer -> Bool
isCheese :: Layer -> Bool
isVegetable :: Layer -> Bool
isCondiment :: Layer -> Bool

3. Define and implement a Haskell function noMeat that takes a sandwich
and returns True if and only if the sandwich contains no meats.

noMeat :: Sandwich -> Bool

4. According to a proposed City of Oxford ordinance, in the future it may be
necessary to assemble all sandwiches in Oxford Standard Order (OSO): a
slice of bread on the bottom, then zero or more meats layered above that,
then zero or more cheeses, then zero or more vegetables, then zero or more
condiments, and then a slice of bread on top. The top and bottom slices
of bread must be of the same type.

Define and implement a Haskell function inOSO that takes a sandwich and
determines whether it is in OSO and another function intoOSO that takes
a sandwich and a default bread and returns the sandwich with the same
ingredients ordered in OSO.

inOSO :: Sandwich -> Bool
intoOSO :: Sandwich -> Bread -> Sandwich

Hint: Remember Prelude functions like dropWhile.

Note: It is impossible to rearrange the layers into OSO if the sandwich
does not include exactly two breads of the same type. If the sandwich does
not include any breads, then the default bread type (second argument)
should be specified for both. If there is at least one bread, then the bread
type nearest the bottom can be chosen for both top and bottom.
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5. Suppose we store the current prices of the sandwich ingredients in an
association list with the following type synonym:

type PriceList = [(Layer,Int)]

Assuming that the price for a sandwich is base price plus the sum of the
prices of the individual ingredients, define and implement a Haskell function
priceSandwich that takes a price list, a base price, and a sandwich and
returns the price of the sandwich.

priceSandwich :: PriceList -> Int -> Sandwich -> Int

Hint: Consider using the lookup function from the Prelude. The library
Data.Maybe may also include helpful functions.

Use the following price list as a part of your testing:

prices = [ (Bread White, 20), (Bread Wheat, 30),
(Bread Rye, 30),
(Meat Turkey, 100), (Meat Chicken, 80),
(Meat Ham, 120), (Meat RoastBeef, 140),
(Meat Tofu, 50),
(Cheese American, 50), (Cheese Swiss, 60),
(Cheese Jack, 60), (Cheese Cheddar, 60),
(Vegetable Tomato, 25), (Vegetable Onion, 20),
(Vegetable Lettuce, 20), (Vegetable BellPepper,25),
(Condiment Mayo, 5), (Condiment Mustard, 4),
(Condiment Ketchup, 4), (Condiment Relish, 10),
(Condiment Tabasco, 5)

]

6. Define and implement a Haskell function eqSandwich that compares two
sandwiches for equality.

What does equality mean for sandwiches? Although the definition of
equality could differ, you can use “bag equality”. That is, two sandwiches
are equal if they have the same number of layers (zero or more) of each
ingredient, regardless of the order of the layers.

eqSandwich :: Sandwich -> Sandwich -> Bool

Hint: The “sets” operations in library Data.List might be helpful

7. Give the Haskell declaration needed to make Sandwich an instance of class
Eq. You may use eqSandwich if applicable.

21.10.4 Compiling the program for the SueChef controller

In this section, we look at compiling the Platter and Sandwich descriptions to
issue a sequence of commands for the SueChef’s controller.
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The SueChef supports the special instructions that can be issued in sequence to
its controller. The data type SandwichOp below represents the instructions.

data SandwichOp = StartSandwich | FinishSandwich
| AddBread Bread | AddMeat Meat
| AddCheese Cheese | AddVegetable Vegetable
| AddCondiment Condiment
| StartPlatter | MoveToPlatter | FinishPlatter

deriving (Eq, Show)

We also define the type Program to represent the sequence of commands resulting
from compilation of a Sandwich or Platter specification.

data Program = Program [SandwichOp]
deriving Show

The flow of a program is given by the following pseudocode:

StartPlatter
for each sandwich needed

StartSandwich
for each ingredient needed

Add ingredient on top
FinishSandwich
MoveToPlatter

FinishPlatter

Consider a sandwich defined as follows:

Sandwich [ Bread Rye, Condiment Mayo, Cheese Swiss,
Meat Ham, Bread Rye ]

The corresponding sequence of SueChef commands would be the following:

[ StartSandwich, AddBread Rye, AddMeat Ham, AddCheese Swiss,
AddCondiment Mayo, AddBread Rye, FinishSandwich, MoveToPlatter ]

21.10.5 Sandwich DSL exercise set B

Add the following functions to the module SandwichDSL developed in the Sand-
wich DSL Project exercise set A.

1. Define and implement a Haskell function compileSandwich to convert a
sandwich specification into the sequence of SueChef commands to assemble
the sandwich.

compileSandwich :: Sandwich -> [SandwichOp]

2. Define and implement a Haskell function compile to convert a platter
specification into the sequence of SueChef commands to assemble the
sandwiches on the platter.
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compile :: Platter -> Program

21.10.6 Sandwich DSL source code

The Haskell source code for this project is in file:

• SandwichDSL_base.hs

21.11 Exam DSL Project
21.11.1 Project introduction

Few computer science graduates will design and implement a general-purpose
programming language during their careers. However, many graduates will
design and implement—and all likely will use—special-purpose languages in their
work.

These special-purpose languages are often called domain-specific languages (or
DSLs) [53]. (For more discussion of the DSL concepts, terminology, and tech-
niques, see the introductory chapter of the Notes on Domain-Specific Languages
[53].)

In this project, we design and implement a simple internal DSL [53]. This DSL
describes simple “programs” using a set of Haskell algebraic data types. We
express a program as an abstract syntax tree (AST) [53] using the DSL’s data
types.

The package first builds a set of functions for creating and manipulating the
abstract syntax trees for the exams. It then extends the package to translate
the abstract syntax trees to HTML.

21.11.2 Developing the Exam DSL

Suppose Professor Harold Pedantic decides to create a DSL to encode his
(allegedly vicious) multiple choice examinations. Since his course uses Haskell to
teach programming language organization, he wishes to implement the language
processor in Haskell. Professor Pedantic is too busy to do the task himself. He
is also cheap, so he assigns us, the students in his class, the task of developing a
prototype.

In the initial prototype, we do not concern ourselves with the concrete syntax of
the Exam DSl. We focus on design of the AST as a Haskell algebraic data type.
We seek to design a few useful functions to manipulate the AST and output an
exam as HTML.

First, let’s focus on multiple-choice questions. For this prototype, we can assume
a question has the following components:

• the text of the question
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• a group of several choices for the answer to the question, exactly one of
which should be be a correct answer to the question

• a group of tags identifying topics covered by the question

Let’s define this as an internal DSL—in particular, by using a relatively deep
embedding [53].

We can state a question using the Haskell data type Question, which has a
single constructor Ask. It has three components—a list of applicable topic tags,
the text of the question, and a list of possible answers to the question.

type QText = String
type Tag = String
data Question = Ask [Tag] QText [Choice] deriving Show

We use the type QText to describe the text of a question. We also use the type
Tag to describe the topic tags we can associate with a question.

We can then state a possible answer to the question using the data type Choice,
which has a single constructor Answer. It has two components—the text of the
answer and a Boolean value that indicates whether this is a correct answer to
the question (i.e., True) or not.

type AText = String
data Choice = Answer AText Bool deriving (Eq, Show)

As above, we use the type AText to describe the text of an answer.

For example, we could encode the question “Which of the following is a required
course?” as follows.

Ask ["curriculum"]
"Which of the following is a required course?"
[ Answer "CSci 323" False,

Answer "CSci 450" True,
Answer "CSci 525" False ]

The example has a single topic tag "curriculum" and three possible answers,
the second of which is correct.

We can develop various useful functions on these data types. Most of these are
left as exercises.

For example, we can define a function correctChoice that takes a Choice and
determines whether it is marked as a correct answer or not.

correctChoice :: Choice -> Bool

We can also define function lenQuestion that takes a question and returns the
number of possible answers are given. This function has the following signature.

lenQuestion :: Question -> Int
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We can then define a function to check whether a question is valid. That is, the
question must have:

• a non-nil text

• at least 2 and no more than 10 possible answers

• exactly one correct answer

It has the type signature.

validQuestion :: Question -> Bool

We can also define a function to determine whether or not a question has a
particular topic tag.

hasTag :: Question -> Tag -> Bool

To work with our lists of answers (and other lists in our program), let’s define
function eqBag with the following signature.

eqBag :: Eq a => [a] -> [a] -> Bool

This is a “bag equality” function for two polymorphic lists. That is, the lists are
collections of elements that can be compared for equality and inequality, but not
necessarily using ordered comparisons. There may be elements repeated in the
list.

Now, what does it mean for two questions to be equal?

For our prototype, we require that the two questions have the same question
text, the same collection of tags, and the same collection of possible answers
with the same answer marked correct. However, we do not require that the tags
or possible answers appear in the same order.

We note that type Choice has a derived instance of class Eq. Thus we can give
an instance definition to make Question an instance of class Eq.

instance Eq Question where
-- fill in the details

Now, let’s consider the examination as a whole. It consists of a title and a list of
questions. We thus define the data type Exam as follows.

type Title = String
data Exam = Quiz Title [Question] deriving Show

We can encode an exam with two questions as follows.

Quiz "Curriculum Test" [
Ask ["curriculum"]

"Which one of the following is a required course?"
[ Answer "CSci 323" False,

Answer "CSci 450" True,
Answer "CSci 525" False ],
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Ask ["language","course"]
"What one of the following languages is used in CSci 450?"
[ Answer "Lua" False,

Answer "Elm" False,
Answer "Haskell" True ]

]

We can define function selectByTags selects questions from an exam based on
the occurrence of the specified topic tags.

selectByTags :: [Tag] -> Exam -> Exam

The function application selectByTags tags exam takes a list of zero or more
tags and an exam and returns an exam with only those questions in which at
least one of the given tags occur in a Question’s tag list.

We can define function validExam that takes an exam and determines whether
or not it is valid. It is valid if and only if all questions are valid. The function
has the following signature.

validExam :: Exam -> Bool

To assist in grading an exam, we can also define a function makeKey that takes
an exam and creates a list of (number,letter) pairs for all its questions. In a
pair, number is the problem number, a value that starts with 1 and increases for
each problem in order. Similarly, letter is the answer identifier, an uppercase
alphabetic character that starts with A and increases for each choice in order.
The function returns the tuples arranged by increasing problem number.

The function has the following signature.

makeKey :: Exam -> [(Int,Char)]

For the example exam above, makeKey should return [(1,'B'),(2,'C')].

21.11.3 Exam DSL exercise set A

Define the following functions in a module named ExamDSL (in a file named
ExamDSL.hs).

1. Develop function correctChoice :: Choice -> Bool as defined above.

2. Develop function lenQuestion :: Question -> Int as defined above.

3. Develop function validQuestion :: Question -> Bool as defined
above.

4. Develop function hasTag :: Question -> Tag -> Bool as defined
above.

5. Develop function eqBag :: Eq a => [a] -> [a] -> Bool as defined
above.
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6. Give an instance declaration to make data type Question an instance of
class Eq.

7. Develop function selectByTags :: [Tag] -> Exam -> Exam as defined
above.

8. Develop function validExam :: Exam -> Bool as defined above.

9. Develop function makeKey :: Exam -> [(Int,Char)] as defined above.

21.11.4 Outputting the Exam as HTML

Professor Pedantic wants to take an examination expressed with the Exam DSL,
as described above, and output it as HTML.

Again, consider the following Exam value.

Quiz "Curriculum Test" [
Ask ["curriculum"]

"Which one of the following courses is required?"
[ Answer "CSci 323" False,

Answer "CSci 450" True,
Answer "CSci 525" False ],

Ask ["language","course"]
"What one of the following is used in CSci 450?"
[ Answer "Lua" False,

Answer "Elm" False,
Answer "Haskell" True ]

]

We want to convert the above to the following HTML.

<html lang="en">
<body>
<h1>Curriculum Test</h1>
<ol type="1">
<li>Which one of the following courses is required?
<ol type="A">
<li>CSci 323</li>
<li>CSci 450</li>
<li>CSci 525</li>
</ol>
</li>
<li>What one of the following is used in CSci 450?
<ol type="A">
<li>Lua</li>
<li>Elm</li>
<li>Haskell</li>
</ol>
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</li>
</ol>
</body>
</html>

This would render in a browser something like the following.

Curriculum Test

1. Which one of the following courses is required?
A. CSci 323
B. CSci 450
C. CSci 525

2. What one of the following is used in CSci 450?
A. Lua
B. Elm
C. Haskell

Professor Pedantic developed a module of HTML template functions named
SimpleHTML to assist us in this process. (See file SimpleHTML.hs.)

A function application to_html lang content wraps the content (HTML in
a string) inside a pair of HTML tags <html> and </html> with lang attribute
set to langtype, defaulting to English (i.e., "en"). This function and the data
types are defined in the following.

type HTML = String
data LangType = English | Spanish | Portuguese | French

deriving (Eq, Show)
langmap = [ (English,"en"), (Spanish,"es"), (Portuguese,"pt"),

(French,"fr") ]

to_html :: LangType -> HTML -> HTML
to_html langtype content =

"<html lang=\"" ++ lang ++ "\">" ++ content ++ "</html>"
where lang = case lookup langtype langmap of

Just l -> l
Nothing -> "en"

For the above example, the to_html function generates the the outer layer:

<html lang="en"> ... </html>

Function application to_body content wraps the content inside a pair of
HTML tags <body> and </body>.

to_body :: HTML -> HTML
to_body content = "<body>" ++ content ++ "</body>"

Function application to_heading level title wraps string title inside a pair
of HTML tags <hN> and </hN> where N is in the range 1 to 6. If level is outside
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this range, it defaults to the nearest valid value.

to_heading:: Int -> String -> HTML
to_heading level title = open ++ title ++ close

where lev = show (min (max level 1) 6)
open = "<h" ++ lev ++ ">"
close = "</h" ++ lev ++ ">"

Function application to_list listtype content wraps the content inside a
pair of HTML tags <ul> and </ul> or <ol> and </ol>. For <ol> tags, it sets
the type attribute based on the value of the listtype argument.

data ListType = Decimal | UpRoman | LowRoman
| UpLettered | LowLettered | Bulleted

deriving (Eq, Show)

to_list :: ListType -> HTML -> HTML
to_list listtype content = open ++ content ++ close

where
(open,close) =

case listtype of
Decimal -> ("<ol type=\"1\">", "</ol>")
UpRoman -> ("<ol type=\"I\">", "</ol>")
LowRoman -> ("<ol type=\"i\">", "</ol>")
UpLettered -> ("<ol type=\"A\">", "</ol>")
LowLettered -> ("<ol type=\"a\">", "</ol>")
Bulleted -> ("<ul>", "</ul>")

Finally, function application to_li content wraps the content inside a pair of
HTML tags <li> and </li>.

to_li :: HTML -> HTML
to_li content = "<li>" ++ content ++ "</li>"

By importing the SimpleHTML module, we can now develop functions to output
an Exam as HTML.

If we start at the leaves of the Exam AST (i.e., from the Choice data type), we
can define a function choice2html function as follows in terms of to_li.

choice2html :: Choice -> HTML
choice2html (Answer text _) = to_li text

Using choice2html and the SimpleHTML module, we can define question2html
with the following signature.

question2html :: Question -> HTML

Then using question2html and the SimpleHTML module, we can define
question2html with the following signature.

exam2html :: Exam -> HTML
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Note: These two functions should add newline characters to the HTML output
so that they look like the examples at the beginning of the “Outputting the
Exam” section. Similarly, it should not output extra spaces. This both makes
the string output more readable and makes it possible to grade the assignment
using automated testing.

For example, the output of question2html for the first Question in the example
above should appear as the following when printed with the putStr input-output
command.

<li>Which one of the following courses is required?
<ol type="A">
<li>CSci 323</li>
<li>CSci 450</li>
<li>CSci 525</li>
</ol>

In addition, you may want to output the result of exam2html to a file to see how
it displays in a browser a particular exam.

writeFile "output.html" $ exam2html exam

21.11.5 Exam DSL project exercise set B

Add the following functions to the module ExamDSL developed in the Exam DSL
Project exercise set A.

1. Develop function question2html :: Question -> HTML as defined
above.

2. Develop function exam2html :: Exam -> HTML as defined above.

21.11.6 Exam DSL source code

The Haskell source code for this project is in files:

• ExamDSL_base.hs, which is the skeleton to flesh out for a solution to this
project

• SimpleHTML.hs, which is the module of HTML string templates
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21.13 Terms and Concepts
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reference, safe error handling, Maybe and Either “option” types, Null Object
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22 Data Abstraction Revisited
22.1 Chapter Introduction
This chapter (22) revisits the specification, design, and implementation of data
abstraction modules in Haskell. It follows the general approach introduced in
Chapter 7 but uses algebraic data types introduced in Chapter 21 to represent
the data. An algebraic data enables the Haskell module implementing the
abstraction to encapsulate the details of the data structure.

The goals of this chapter are to:

• reinforce the methods for specification and design of data abstractions

• illustrate how to use Haskell modules and algebraic data types to enforce
the encapsulation of a module’s implementation secrets

• introduce additional concepts and terminology for data abstractions

The concepts and terminology in this chapter are mostly general. They are
applicable to most any language. Here we look specifically at Haskell and focus
on the details of one application. (I have implemented basically the same data
abstraction module in Scala and Elixir.)

22.2 Concepts
Chapter 7 used the term data abstraction.

This chapter uses the related term abstract data type [61] to refer to a data
abstraction encapsulated in an information-hiding module. The data abstraction
module defines and exports a user-defined type (i.e., an algebraic data type) and
a set of operations (i.e., functions) on that type. The type is abstract in the
sense that its concrete representation is hidden; only the module’s operations
may manipulate the representation directly.

For convenience, this chapter sometimes uses acronym ADT to refer to an
abstract data type.

In Chapters 6 and 7, we explored the concepts of contracts, which include
preconditions and postconditions for the functions in the module and interface
and implementation) invariants for the data created and manipulated by the
module. For convenience, this chapter refers to these as the abstract model for
the ADT.

22.3 Example: Doubly Labelled Digraph
In this chapter, we develop a family of doubly labelled digraph data structures.

As a graph, the data structure consists of a finite set of vertices (nodes) and a
set of edges. Each edge connects two vertices. (Some writers require that the set
of vertices be nonempty, but here we prefer to allow an empty graph to have
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no vertices. But the question remains whether such a graph with no vertices is
pointless concept.)

As a directed graph (or digraph), each pair of vertices has at most one edge
connecting them; the edge has a direction from one of the edges to the other.

As a doubly labelled graph, each vertex and each edge has some user-defined
data (i.e., labels) attached.

This chapter draws on the discussion of digraphs and their specification in
Chapters 1 and 10 of the Dale and Walker book Abstract Data Types [61].

22.4 Use Case
For what purpose can we use a doubly labelled digraph data structure?

One concrete use case is to represent the game world in an implementation of
an adventure game.

For example, in the Wizard’s Adventure Game from Chapter 5 of Land of Lisp:
Learn to Program in Lisp, One Game at a Time [7], the game’s rooms become
vertices, passages between rooms become edges, and descriptions associated with
rooms or passages become labels on the associated vertex or edge (as shown in
Figure 22.1).

Figure 22.1: Labelled digraph for Wizard’s Adventure game.

Aside: By using a digraph to model the game world, we disallow multiple passages
directly from one room to another. By changing the graph to a multigraph, we
can allow multiple directed edges from one vertex to another.

The Adventure game must create and populate the game world initially, but it
does not typically modify the game world during play. It maintains the game
state (e.g., player location) separately from the game world. A player moves from
room to room during play; the labelled digraph provides the static structure and
descriptions of the game world.
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22.5 Defining ADTs
How can we define an abstract data type?

The behavior of an ADT is defined by a set of operations that can be applied to
an instance of the ADT.

Each operation of an ADT can have inputs (i.e., parameters) and outputs (i.e.,
results). The collection of information about the names of the operations and
their inputs and outputs is the interface of the ADT.

22.5.1 Specification

To specify an ADT, we need to give:

1. the name of the ADT

2. the sets (or domains) upon which the ADT is built

These include the type being defined and the auxiliary types (e.g., primitive
data types and other ADTs) used as parameters or return values of the
operations.

3. the signatures (syntax or structure) of the operations

• name
• input sets (i.e., the types, number, and order of the parameters)
• output set (i.e., the type of the return value)

4. the semantics (or meaning) of the operations

Note: In this chapter, we more state the specification of the data abstraction
more systematically than in Chapter 7. But we are doing essentially the same
things we did for the Rational Arithmetic modules in Chapter 7.

22.5.2 Operations

We categorize an ADT’s operations into four groups depending upon their
functionality:

• A constructor (sometimes called a creator, factory, or producer function)
constructs and initializes an instance of the ADT.

• A mutator (sometimes called a modifier, command, or setter function)
returns the instance with its state changed.

• An accessor (sometimes called an observer, query, or getter function)
returns information from the state of an instance without changing the
state.

• A destructor destroys an instance of the ADT.

We normally list the operations in that order.
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For a language with immutable data structures like Haskell, a mutator returns a
distinct new instance of the ADT with a state that is a modified version of the
original instance’s state. That is, we are taking an applicative (or functional or
referentially transparent) approach to ADT specifications.

Note: Of course, in an imperative language, a mutator can change the state of
an instance in place. That may be more efficient, but it tends to be less safe. It
also tends to make concurrent use of an abstract data type more problematic.

Technically speaking, a destructor is not an operation of the ADT. We can
represent the other types of operations as functions on the sets in the specification.
However, we cannot define a destructor in that way. But destructors are of
pragmatic importance in the implementation of ADTs, particularly in languages
that do not have automatic storage reclamation (i.e., garbage collection).

22.5.3 Approaches to semantics

There are two primary approaches for specifying the semantics of the operations:

• The axiomatic (or algebraic) approach gives a set of logical rules (properties
or axioms) that relate the operations to one another. The meanings of the
operations are defined implicitly in terms of each other.

• The constructive (or abstract model) approach describes the meaning of the
operations explicitly in terms of operations on other abstract data types.
The underlying model may be any well-defined mathematical model or a
previously defined ADT.

In some ways, the axiomatic approach is the more elegant of the two approaches.
It is based in the well-established mathematical fields of abstract algebra and
category theory. Furthermore, it defines the new ADT independently of other
ADTs. To understand the definition of the new ADT it is only necessary to
understand its axioms, not the semantics of a model.

However, in practice, the axiomatic approach to specification becomes very
difficult to apply in complex situations. The constructive approach, which
builds a new ADT from existing ADTs, is the more useful methodology for most
practical software development situations.

In this chapter, we use the constructive approach.

22.6 Specification of Labelled Digraph ADT
Now let’s look at a constructive specification of the doubly labelled digraph.

First, we specify the ADT as an implementation-independent abstraction. The
secret of the ADT module is the data structure used internally to implement the
doubly labelled digraph.

Then, we examine two implementations of the abstraction:
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• using Haskell lists to represent the vertex and edge sets

• using a Haskell Map to map a vertex to the set of outgoing edges from that
vertex

Before we specify the ADT, let’s define the mathematical notation we use. We
choose notation that can readily be used in comments in program.

22.6.1 Notation

We use the the plain-text specification notation to describe the abstract data
type’s model and its semantics. The following document summarizes this nota-
tion:

• Plain Text Specification Notation (PTSN) HTML
PDF

TODO:

• Make sure the specification in this chapter and source code use the PTSN.
• For the full ELIFP book, it might be better to make the PTSN document

an appendix chapter (81?).
• Perhaps use more traditional logic and math notation [40] in the ELIFP

book and PTSN in the code.

22.6.2 Sets

We name the abstract data type being defined to be Digraph.

We specify that this abstract data type be represented by a Haskell algebraic
data type Digraph a b c, which has three type parameters (i.e., sets):

1. VertexType, the set of possible vertices (i.e., vertex identifiers) in the
Digraph

2. VertexLabelType, the set of possible labels on vertices in the Digraph

3. EdgeLabelType, the set of possible labels on edges in the Digraph

Given this ADT defines a digraph, edges can be identified by ordered pairs
(tuples) of vertices. Values from the above types, in particular the labels, may
have several components.

22.6.3 Signatures

We define the following operations on the Labelled Digraph ADT (shown below
as Haskell function signatures).

Given the primary use case described above, we specify a constructor to create
an empty graph (new_graph), a mutator to add a new vertex (add_vertex), and
mutator to add a new edge between existing vertices (add_edge).
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We also specify mutators to remove vertices (remove_vertex) and edges
(remove_edge) and to update the labels on vertices (update_vertex) and edges
(update_edge). (Note: In the identified use case, these are likely used less often
than the mutators that add new vertices and edges.)

Constructors We specify a single constructor with the following signature:

new_graph :: Digraph a b c

Mutators We specify six mutators with the following signatures:

add_vertex :: Digraph a b c -> a -> b -> Digraph a b c
remove_vertex :: Digraph a b c -> a -> Digraph a b c
update_vertex :: Digraph a b c -> a -> b -> Digraph a b c
add_edge :: Digraph a b c -> a -> a -> c -> Digraph a b c
remove_edge :: Digraph a b c -> a -> a -> Digraph a b c
update_edge :: Digraph a b c -> a -> a -> c -> Digraph a b c

Accessors We specify query functions to check whether the labelled digraph is
empty (is_empty), has a given vertex (has_vertex), and has an edge between
two vertices (has_edge).

We also specify accessors to retrieve the label associated with a given vertex
(get_vertex) and edge (get_edge).

Given the identified use case, we also specify accessors to return lists of all vertices
in the graph (all_vertices) and of just their labels (all_vertices_labels)
and to return lists of all outgoing edges from a vertex (from_edges) and of just
their labels (from_edges_labels).

We thus specify nine accessors with the following signatures:

is_empty :: Digraph a b c -> Bool
get_vertex :: Digraph a b c -> a -> b
has_vertex :: Digraph a b c -> a -> Bool
get_edge :: Digraph a b c -> a -> a -> c
has_edge :: Digraph a b c -> a -> a -> Bool
all_vertices :: Digraph a b c -> [a]
from_edges :: Digraph a b c -> a -> [a]
all_vertices_labels :: Digraph a b c -> [(a,b)]
from_edges_labels :: Digraph a b c -> a -> [(a,c)]

TODO: Consider changing get_vertex and get_edge to return Maybe b and
Maybe c, respectively.

Destructors Given the identified use case and that Haskell uses garbage
collection, no destructor seems to be needed in most cases.
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22.6.4 Semantics

We model the state of the instance of the Labelled Digraph ADT with an abstract
value G such that G = (V,E,VL,EL) with G’s components satisfying the following
Labelled Digraph Properties.

• V is a finite subset of values from the set VertexType. V denotes the
vertices (or nodes) of the digraph.

• Any two elements of V can be compared for equality.

• E is a binary relation on the set V. A pair (v1,v2) IN E denotes that there
is a directed edge from v1 to v2 in the digraph.

Note that this model allows at most one (directed) edge from a vertex v1
to vertex v2. It allows a directed edge from a vertex to itself.

Also, because vertices can be compared for equality, any two edges can
also be compared for equality.

• VL is a total function from set V to the set VertexLabelType.

• EL is a total function from set E to the set EdgeLabelType.

22.6.4.1 Interface invariant We define the following interface invariant for
the Labelled Digraph ADT:

Any valid labelled digraph instance G, appearing in either the argu-
ments or return value of a public ADT operation, must satisfy the
Labelled Digraph Properties.

22.6.4.2 Constructive semantics We specify the various ADT operations
below using their type signatures, preconditions, and postconditions. Along
with the interface invariant, these comprise the (implementation-independent)
specification of the ADT (i.e., its abstract interface).

In these assertions, for a digraph g that satisfies the invariants, G(g) denotes its
abstract model(V,E,VL,EL) as described above. The value Result denotes the
return value of function.

TODO: Consider in what order these should appear.

• Constructor new_graph creates and returns a new empty instance of the
graph ADT.

Precondition:

True

Postcondition:

G(Result) == ({},{},{},{})
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• Accessor is_empty g returns True if and only if graph g is empty.

Precondition:

G(g) = (V,E,VL,EL)

Postcondition:

Result == (V == {} && E == {})

• Mutator add_vertex g nv nl inserts vertex nv with label nl into graph
g and returns the resulting graph.

Precondition:

G(g) = (V,E,VL,EL) && nv NOT_IN V

Postcondition:

G(Result) == (V UNION {nv}, E, VL UNION {(nv,nl)}, EL)

• Mutator remove_vertex g ov deletes vertex ov from graph g and returns
the resulting graph.

Precondition:

G(g) = (V,E,VL,EL) && ov IN V

Postcondition:

G(Result) == (V', E', VL', EL')
where V' = V - {ov}

E' = E - {(ov,*),(*,ov)}
VL' = VL - {(ov,*)}
EL' = EL - {((ov,*),*),((*,ov),*)}

• Mutator update_vertex g ov nl changes the label on vertex ov in graph
g to be nl and returns the resulting graph.

Precondition:

G(g) = (V,E,VL,EL) && ov IN V

Postcondition:

G(Result) == (V - {ov}, E, VL', EL)
where VL' = (VL - {(ov,VL(ov))}) UNION {(ov,nl)}

• Accessor get_vertex g ov returns the label from vertex ov in graph g

TODO: If signature changed to return Maybe, change precondition and
postcondition appropriately.

Precondition:

G(g) = (V,E,VL,EL) && ov IN V

Postcondition:
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Result == VL(ov)

• Accessor has_vertex g ov returns True if and only if ov is a vertex of
graph g.

Precondition:

G(g) = (V,E,VL,EL)

Postcondition:

G(Result) == ov IN V

• Mutator add_edge g v1 v2 nl inserts an edge from vertex v1 to vertex
v2 in graph g and returns the resulting graph.

Precondition:

G(g) = (V,E,VL,EL) && v1 IN V && v2 IN V &&
(v1,v2) NOT_IN E

Postcondition:

G(Result) == (V, E', VL, EL')
where E' = E UNION {(v1,v2)}

EL' = EL UNION {((v1,v2),nl)}

• Mutator remove_edge g v1 v2 deletes the edge from vertex v1 to vertex
v2 from graph g and returns the resulting graph.

Precondition:

G(g) = (V,E,VL,EL) V - {ov} && (v1,v2) IN E

Postcondition:

G(Result) == (V, E - {(v1,v2)}, VL, EL - { ((v1,v2),*) }

• Mutator update_edge g v1 v2 nl changes the label on the edge from
vertex v1 to vertex v2 in graph g to have label nl and returns the resulting
graph.

Precondition:

G(g) = (V,E,VL,EL) && (v1,v2) IN E

Postcondition:

G(Result) == (V, E, VL, EL')
where EL' == (EL - {((v1,v2),*)}) UNION {((v2,v2),nl)

• Accessor get_edge g v1 v2 returns the label on the edge from vertex v1
to vertex v2 in graph g.

TODO: If signature changed to return Maybe, change precondition and
postcondition appropriately.
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Precondition:

G(g) = (V,E,VL,EL) && (v1,v2) IN E

Postcondition:

Result == EL((v1,v2))

• Accessor has_edge g v1 v2 returns True if and only if there is an edge
from a vertex v1 to a vertex v2 in graph g.

Precondition:

G(g) = (V,E,VL,EL)

Postcondition:

Result == (v1,v2) IN E

• Accessor all_vertices g returns a sequence of all the vertices in graph g.
The returned sequence is represented by a builtin Haskell list.

Precondition:

G(g) = (V,E,VL,EL)

Postcondition:

(ForAll ov: ov IN Result <=> ov IN V) &&
length(Result) == size(V)

• Accessor from_edges g v1 returns a sequence of all vertices v2 such that
there is an edge from vertex v1 to vertex v2 in graph g. The returned
sequence is represented by a builtin Haskell list.

Precondition:

G(g) = (V,E,VL,EL) && v1 IN V

Postcondition:

(ForAll v2: v2 IN Result <=> (v1,v2) IN E) &&
length(Result) == (# v2 :: (v1,v2) IN E)

TODO: Function from_edges g v1 should return [] when v1 does not
appear in g, so that it can work well with the Wizard’s Adventure game.
We should redefine the precondition and postcondition to specify this
behavior.

• Accessor all_vertices_labels g returns a sequence of all pairs (v,l)
such that v is a vertex and l is it’s label in graph g. The returned sequence
is represented by a builtin Haskell list.

Precondition:

G(g) = (V,E,VL,EL)
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Postcondition:

(ForAll v, l: (v,l) IN Result <=> (v,l) IN VL) &&
length(Result) == size(VL)

• Accessor from_edges_labels g v1 returns a sequence of all pairs (v2,l)
such that there is an edge (v1,v2) labelled with l in graph g.

Precondition:

G(g) = (V,E,VL,EL) && v1 IN V

Postcondition:

(ForAll v2, l :: (v2,l) IN Result <=> ((v1,v2),l) IN EL)
&& length(Result) == (# v2 :: (v1,v2 ) IN E)

TODO: Function from_edges_labels g v1 should return [] when v1
does not appear in g, so that it can work well with the Wizard’s Adventure
game. We should redefine the precondition and postcondition to specify
this behavior.

22.6.5 Haskell module abstract interface

Below we state the header for a Haskell module Digraph_XXX that implements
the Labelled Digraph ADT. The module name suffix XXX denotes the particular
implementation for a data representation, but the signatures and semantics of
the operations are the same regardless of representation.

The module exports data type Digraph, but its constructors are not exported.
This allows modules that import Digraph_XXX to use the data type without
knowing how the data type is implemented.

If we had Digraph(..) in the export list, then the data type and all its con-
structors would be exported.

The intention of this interface is to constrain the type parameters of
Digraph a b c so that:

• Type a (i.e., type VertexType) must be in Haskell class Eq. This is
essentially required by the interface invariant (i.e., the Labelled Digraph
Properties).

• Types a, b, and c (i.e., types VertexType, VertexLabelType, and
EdgeLabelType) must be in Haskell class Show. This contraint enables
the vertices and labels to be displayed as text.

It may be desirable (or necessary) for an implementation to further constrain
the type parameters. For example, some implementations may need to constrain
VertexType to be from class Ord (i.e., totally ordered). It does not seem to
restrict the generality of the ADT significantly to require that vertices be drawn
from a totally ordered set such as integers, strings, or enumerated types.
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module DigraphADT_XXX
( Digraph --constraints (Eq a, Show a, Show b, Show c)
, new_graph --Digraph a b c
, is_empty --Digraph a b c -> Bool
, add_vertex --Digraph a b c -> a -> b -> Digraph a b c
, remove_vertex--Digraph a b c -> a -> Digraph a b c
, update_vertex--Digraph a b c -> a -> b -> Digraph a b c
, get_vertex --Digraph a b c -> a -> b
, has_vertex --Digraph a b c -> a -> Bool
, add_edge --Digraph a b c -> a -> a -> c -> Digraph a b c
, remove_edge --Digraph a b c -> a -> a -> Digraph a b c
, update_edge --Digraph a b c -> a -> a -> c -> Digraph a b c
, get_edge --Digraph a b c -> a -> a -> c
, has_edge --Digraph a b c -> a -> a -> Bool
, all_vertices --Digraph a b c -> [a]
, from_edges --Digraph a b c -> a -> [a]
, all_vertices_labels--Digraph a b c -> [(a,b)]
, from_edges_labels --Digraph a b c -> a -> [(a,c)]
)

where -- definitions for the types and functions

Note: The Glasgow Haskell Compiler (GHC) release 8.2 (July 2017) and the
Cabal-Install package manager release 2.0 (August 2017) support a new mixin
package system called Backpack. This extension would enable us to define an
abstract module “DigraphADT” as a signature file with the above interface.
Other modules can then implement this abstract interface thus giving a more
explicit and flexible definition of this abstract data type.

22.7 List Implementation
This section gives an implementation of the ADT that uses Haskell lists to
represent the vertex and edge sets.

22.7.1 Labelled digraph representation

We represent the List implementation of the Labelled Digraph ADT as an instance
of the Haskell algebraic data type Digraph as shown below. (Remember that
type variable a is VertexType, b is VertexLabelType, and c is EdgeLabelType.)

data Digraph a b c = Graph [(a,b)] [(a,a,c)]

In an instance (Graph vs es):

• vs is a list of tuples (v,vl) where

– v has VertexType and represents a vertex of the digraph
– vl has VertexLabelType and is the unique label associated with

vertex v
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– a vertex v occurs at most once in vs (i.e., vs encodes a function from
vertices to vertex labels)

• es is a list of tuples ((v1,v2),el) where

– v1 and v2 are vertices occurring in vs, representing a directed edge
from v1 to v2

– el has EdgeLabelType and is the unique label associated with edge
(v1,v2)

– an edge (v1,v2) occurs at most once in es (i.e., es encodes a function
from edges to edge labels)

In terms of the abstract model, vs encodes VL directly and, because VL is a total
function on V, it encodes V indirectly. Similarly, es encodes EL directly and E
indirectly.

Of course, there are many other ways to represent the graph as lists. This
representation is biased for a context where, once built, the labelled digraph
is relatively static and the most frequent operations are the retrieval of labels
attached to vertices or edges. That is, it is biased toward the Adventure game
use case.

Given that all the type parameters must be of class Show, we also define Digraph
to also be of class Show as defined below.

instance (Show a, Show b, Show c) =>
Show (Digraph a b c) where

show (Graph vs es) =
"(Digraph " ++ show vs ++ ", " ++ show es ++ ")"

22.7.2 Implementation invariant

Given the above description, we then define the following implementation (rep-
resentation) invariant for the list-based version of the Labelled Digraph ADT:

Any Haskell Digraph value (Graph vs es) with abstract model G =
(V,E,VL,EL), appearing in either the arguments or return value of
an operation, must also satisfy the following:

(ForAll v, l :: (v,l) IN vs <=> (v,l) IN VL ) &&
(ForAll v1, v2, m :: (v1,v2,m) IN es <=> ((v1,v2),m) IN EL )

22.7.3 Haskell implementation

The code in this section shows a list-based implementation for several of the
operations related to vertices.

The Haskell module for the list representation of the Labelled Digraph ADT
is in source file DigraphADT_List.hs. A simple smoke test driver module is in
source file DigraphADT_TestList.hs.
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The implementations of constructor new_graph and accessor is_empty are
straightforward.

new_graph :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c

new_graph = Graph [] []

is_empty :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> Bool

is_empty (Graph [] _ ) = True
is_empty _ = False

Function has_vertex just needs to search through the list of vertices to determine
whether or not the vertex occurs. It relies upon VertexType being in class Eq.

has_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> Bool

has_vertex (Graph vs _) ov =
not (null [ n | (n,_) <- vs, n == ov])

Because of lazy evaluation, the list comprehension only needs to evaluate far
enough to find the occurrence of the vertex in the list.

To add a new vertex and its label to the graph, add_vertex must return a new
graph with the new vertex-label pair added to the head of the vertex list. To
meet the specification, it must not allow a vertex to be added if the vertex
already occurs in the list.

add_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b -> Digraph a b c

add_vertex g@(Graph vs es) nv nl
| not (has_vertex g nv) = Graph ((nv,nl):vs) es
| otherwise = error has_nv
where has_nv =

"Vertex " ++ show nv ++ " already in digraph"

Function remove_vertex is a bit trickier with this representation. To remove
an existing vertex and its label from the graph, remove_vertex must return a
new graph with that vertex’s tuple removed from the list of vertices and with
any outgoing edges also removed from the list of edges.

remove_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> Digraph a b c

remove_vertex g@(Graph vs es) ov
| has_vertex g ov = Graph ws fs
| otherwise = error no_ov
where ws = [ (w,m) | (w,m) <- vs, w /= ov ]

fs = [ (v1,v2,m) |
(v1,v2,m) <- es, v1 /= ov, v2 /= ov ]

no_ov = "Vertex " ++ show ov ++ " not in digraph"
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The implementation of remove_vertex filters all occurrences of the vertex from
the list of vertices. Given the implementation invariant, this is not necessary.
However, this potentially adds some safety to the implementation at the possible
expense of execution time.

For an existing vertex in the list of vertices, function update_vertex replaces
the old label with the new label. Like remove_vertex, it potentially processes
the entire list of vertices and makes the change to all occurrences, when the
implementation invariant would allow it to stop on the first (and only) occurrence.

update_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b -> Digraph a b c

update_vertex g@(Graph vs es) ov nl
| has_vertex g ov = Graph (map chg vs) es
| otherwise = error no_ov
where chg (w,m) = (if w == ov then (ov,nl) else (w,m))

no_ov = "Vertex " ++ show ov ++ " not in digraph"

For an existing vertex, function get_vertex retrieves the label. Because of lazy
evaluation, the search of the list of vertices stops with the first occurrence.

TODO: Modify appropriately if changed to Maybe return.

get_vertex :: (Eq a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b

get_vertex (Graph vs _) ov
| not (null ls) = head ls
| otherwise = error no_ov
where ls = [ l | (w,l) <- vs, w == ov]

no_ov = "Vertex " ++ show ov ++ " not in digraph"

TODO: Modify source file appropriately if changed to Maybe return.

The remainder of the functions are defined in file DigraphADT_List.hs..

We can create an empty labelled digraph g0 having Int identifiers for vertices,
Int labels for vertices, and Int labels for edges as follows:

g0 = (new_graph :: Digraph Int Int Int)

Then we can add a new vertex with identifier 1 and vertex label 101 as follows:

g1 = add_vertex g0 1 101

22.7.4 Improvements to the list implementation

TODO: Consider whether to make any of the following changes to the specification
and implementation above.

Based on the list-based design and implementation above, what improvements
should we consider? Here are some possibilities.
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1. As described above, the current list implementations of functions such
as remove_vertex and update_vertex do some unnecessary work with
respect to the implementation invariant. This could be eliminated.

2. The data representation (i.e., implementation invariant) could be changed
to allow, for example, multiple occurrences of vertices in the vertex list. This
would avoid the checks of has_vertex in add_vertex and update_vertex.
Then, as it does above, remove_vertex needs to remove all occurrences of
the vertex.

Other functions would need to be modified accordingly so that they only
access the first occurrence of a vertex (especially the all_vertices and
all_vertices_labels functions).

A similar change could be made to the list of edges.

Note: The Labelled Diagraph ADT specification does not specify what
the behavior should be when the referenced vertex or edge is not defined.
The change suggested in this item gives non-error behavior to those situa-
tions. Perhaps a better alternative would be to change the general ADT
specification to require specific behaviors in those cases.

3. Most of the functions throw an error exception when the vertex they
reference does not exist. A better Haskell design would redefine these
functions to return a Maybe or Either value. This would eliminate most
of the has_vertex checks and make the functions defined on all possible
inputs.

This would require changes to the overall Labelled Digraph ADT specifica-
tion and its abstract interface.

4. New functions could be added to the Labelled Digraph ADT—such as an
equality check on graphs, a constructor that creates a copy of an existing
graph, or functions to apply various graph algorithms.

5. Existing functions could be eliminated. For example, if the graph is only
constructed and used for retrieval, then the remove and update functions
could be eliminated.

22.8 Map Implementation
This section gives an implementation of the ADT that uses a Haskell Map to
map a vertex to the set of outgoing edges from that vertex

22.8.1 Labelled digraph representation

We represent the Map implementation of the Labelled Digraph ADT as an
instance of the Haskell algebraic data type Digraph as shown below. (Re-
member that type variable a is VertexType, b is VertexLabelType, and c is
EdgeLabelType.)

349



import qualified Data.Map.Strict as M

data Digraph a b c = Graph (M.Map a (b,[(a,c)]))

In the data constructor (Graph m), m is an instance of Data.Map.Strict. This
collection is set of key-value pairs implemented as a balanced tree, giving
logarithmic access time.

An instance of (Graph m) corresponds to the abstract model as follows:

• The keys for the Map m collection are of VertexLabelType.

The interface invariant requires that VertexType be in class Eq. The
implementation based on Data.Map.Strict further constrains vertices to
be in subclass Ord because the vertices are the keys of the Map.

TODO: Consider restricting the Digraph spec to require Ord.

• Map m is defined for all keys v1 in vertex set V and undefined for all other
keys.

• For some vertex v1, the value of m at key v1 is a pair (l,es) where

– l is an element of VertexLabelType and is the unique label associated
with v1, that is, l = VL(v1).

– es is the list of all tuples (v2,el) such that (v1,v2) IN E, el IN
EdgeLabelType, and el = EL((v1,v2)). That is, (v1,v2) is an
edge and el is its unique label.

Given that all the type parameters must be of class Show, we also define Digraph
to also be of class Show as defined below.

instance (Show a, Show b, Show c) => Show (Digraph a b c) where
show (Graph m) = "(Digraph " ++ show (M.toAscList m) ++ ")"

22.8.2 Implementation invariant

Given the above description, we then define the following implementation (rep-
resentation) invariant for the list-based version of the Labelled Digraph ADT:

Any Haskell Digraph value (Graph m) with abstract model G =
(V,E,VL,EL), appearing in either the arguments or return value
of an operation, must also satisfy the following:

(ForAll v1, l, es ::
( m(v1) defined && m(v1) == (l,es) ) <=>
( VL(v1) == l &&

(ForAll v2, el :: (v2,el) IN es <=>
EL((v1,v2)) == el) ) )
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22.8.3 Haskell module

The code in this section shows a map-based implementation for the same opera-
tions we examined for the list-based implementation.

The Haskell module for the map representation of the Labelled Digraph ADT
is in source file DigraphADT_Map.hs.. A simple smoke test driver module is in
source file DigraphADT_TestMap.hs..

Constructor new_graph and accessors is_empty and has_vertex are just wrap-
pers for functions from Data.Map.Strict.

new_graph :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c

new_graph = Graph M.empty

is_empty :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> Bool

is_empty (Graph m) = M.null m

has_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> Bool

has_vertex (Graph m) ov = M.member ov m

To add a new vertex and label to the graph, add_vertex must return a graph
with the new key-value pair inserted into the existing graph’s Map. The value
consists of the label paired with a nil list of adjacent edges. To meet the
specification, it must not allow a vertex to be added if the vertex already occurs
in the list.

add_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b -> Digraph a b c

add_vertex g@(Graph m) nv nl
| not (has_vertex g nv) = Graph (M.insert nv (nl,[]) m)
| otherwise = error has_nv
where has_nv =

"Vertex " ++ show nv ++ " already in digraph"

Except for making sure the vertex to be deleted is the graph, function
remove_vertex is just a wrapper for the Data.Map.Strict.delete function.

remove_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> Digraph a b c

remove_vertex g@(Graph m) ov
| has_vertex g ov = Graph (M.delete ov m)
| otherwise = error no_ov
where no_ov = "Vertex " ++ show ov ++ " not in digraph"

If the argument vertex is in the graph, then function update_vertex retrieves
its old label and edge list and then reinserts the new label paired with the same
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edge list.

update_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b -> Digraph a b c

update_vertex g@(Graph m) ov nl
| has_vertex g ov =

Graph (M.insert ov (upd (M.lookup ov m)) m)
| otherwise = error no_ov
where upd (Just (ol,edges)) = (nl,edges)

upd _ = error no_entry
no_ov = "Vertex " ++ show ov ++ " not in digraph"
no_entry =

"Missing/malformed value for vertex " ++ show ov

For an existing vertex, function get_vertex retrieves the associated value and
extracts the label.

get_vertex :: (Ord a, Show a, Show b, Show c) =>
Digraph a b c -> a -> b

get_vertex g@(Graph m) ov
| has_vertex g ov = getlabel (M.lookup ov m)
| otherwise = error no_ov
where getlabel (Just (ol,_)) = ol

no_ov = "Vertex " ++ show ov ++ " not in digraph"

The remainder of the functions are defined in file DigraphADT_Map.hs.

The Map-based functions can be called in the same manner as the List-based
function, except that the vertices must be in class Ord.

22.8.4 Improvements to the map implementation

All the improvements suggested for the list-based implementation apply to the
map-based implementation except for the first.

For large graphs, the map-based implementation should perform better than the
list-based implementation.

For large graphs with many outgoing edges on each vertex, it might be useful to
implement the edge-list itself with a Map.

22.9 What Next?
This chapter (22) revisited the issues of specification, design, and implementation
of data abstractions as modules in Haskell. It used a labelled digraph data
structure as the example.

Although we may not specify all subsequent Haskell modules as systematically
as we did in this chapter, we do use the modular style of programming in the
various interpreters developed in Chapter 41 and following.

352

Ch22/DigraphADT_Map.hs


In the future, we plan to implement a Adventure game on top of the ADT
implemented in this chapter.

22.10 Chapter Source Code
TODO

22.11 Exercises
TODO: If the Maybe improvement is not done above for errors, put that here as
an exercise.

1. Restate the preconditions and postconditions for functions from_edges
and from_edges so that they must return empty lists when the argument
vertex v1 is not in the vertex set. (See the notes on these operations in
the semantic specification above.)

2. Develop a comprehensive test script for the Labelled Digraph ADT imple-
mentations using blackbox, module-level, functional testing as described
in Chapters 11 and 12.

3. Adapt the Haskell Labelled Digraph ADT interface and it two implemen-
tations to use GHC’s Backpack module system.

4. Specify a similar Labelled Digraph ADT as a Java interface.

5. Give two different implementations of the Labelled Digraph ADT in Java
using the specification from the previous exercise.

6. Specify a similar Labelled Digraph ADT as a Python 3 module.

7. Give two different implementations of the Labelled Digraph ADT in Python
using the specification from the previous exercise.

8. Choose one of the improvements described in the “Improvements in the
list implementation” subsection and change the specification and list im-
plementation as needed for the improvement.

9. Choose one of the improvements and change the specification and map
implementation as needed for the improvement.

10. Give a full specification (similar to the one for the Labeled Digraph ADT)
in this chapter) for the Carrie’s Candy Bowl project in Chapter 21<!-22—>.
That is, give the name, set, signatures, and constructive semantics. If
helpful, you may use the mathematical concept of bag.

11. Specify a doubly labelled directed multigraph data structure to replace the
doubled labelled digraph. (That is, allow multiple directed edges from one
vertex to another.)

12. Give an implementation of the doubly labelled directed multigraph specified
in the previous exercise.
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22.12 Mealy Machine Simulator Project
22.12.1 Project introduction

In this project, you are asked to design and implement Haskell modules to
represent Mealy Machines and to simulate their execution.

This kind of machine is a useful abstraction for simple controllers that listen
for input events and respond by generating output events. For example in an
automobile application, the input might be an event such as “fuel level low” and
the output might be command to “display low-fuel warning message”.

In the theory of computation, a Mealy Machine is a finite-state automaton whose
output values are determined both by its current state and the current input. It
is a deterministic finite state transducer such that, for each state and input, at
most one transition is possible.

Appendix A of the Linz textbook [118] defines a Mealy Machine mathematically
by a tuple

M = (Q, Σ, Γ, δ, θ, q0)

where

Q is a finite set of internal states
Σ is the input alphabet (a finite set of values)
Γ is the output alphabet (a finite set of values)
δ : Q× Σ −→ Q is the transition function
θ : Q× Σ −→ Γ is the output function
q0 is the initial state of M (an element of Q)

In an alternative formulation, the transition and output functions can be com-
bined into a single function:

δ : Q× Σ −→ Q× Γ

We often find it useful to picture a finite state machine as a transition graph
where the states are mapped to vertices and the transition function represented
by directed edges between vertices labelled with the input and output symbols.

22.12.2 Mealy Machine Simulator project exercises

1. Specify, design, and implement a general representation for a Mealy Ma-
chine as a Haskell module implementing an abstract data type. It should
hide the representation of the machine and should have, at least, the
following public operations.

• newMachine s creates a new machine with initial (and current) state
s and no transitions.

Note: This assumes that the state, input, and output sets are exactly
those added with the mutator operations below. An alternative would
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be to change this function to take the allowed state, input, and output
sets.

• addState m s adds a new state s to machine m and returns an Either
wrapping the modified machine or an error message.

• addTransition m s1 in out s2 adds a new transition to machine
m and returns an Either wrapping the modified machine or an error
message. From state s1 with input in the modified machine outputs
out and transitions to state s2.

• addResets m adds all reset transitions to machine m and returns the
modified machine. From state s1 on input in the modified machine
outputs out and transitions to state s2. This operation makes the
transition function a total function by adding any missing transitions
from a state back to the initial state.

• setCurrent m s sets the current state of machine m to s and returns
an Either wrapping the modified machine or an error message.

• getCurrent m returns the current state of machine m.

• getStates m returns a list of the elements of the state set of machine
m.

• getInputs m returns a list of the input set of machine m.

• getOutputs m returns a list of the output set of machine m.

• getTransitions m returns a list of the transition set of machine m.
Tuple (s1,in,out,s2) occurs in the returned list if and only if, from
state s1 with input in, the machine outputs out and moves to state
s2.

• getTransitionsFrom m s returns an Either wrapping a list of the
set of transitions enabled from state s of machine m or an error
message.

2. Given the above implementation for a Mealy Machine, design and imple-
ment a separate Haskell module that simulates the execution of a Mealy
Machine. It should have, at least, the following new public operations.

• move m in moves machine m from the current state given input in and
returns an Either wrapping a tuple (m',out) or an error message.
The tuple gives the modified machine m' and the output out.

• simulate m ins simulates execution of machine m from its current
state through a sequence of moves for the inputs in list ins and
returns an Either wrapping a tuple (m',outs) or an error message.
The tuple gives the modified machine m' after the sequence of moves
and the output list outs.
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Note: It is possible to use a Labelled Digraph ADT module in the imple-
mentation of the Mealy Machine.

3. Implement a Haskell module that uses a different representation for the
Mealy Machine. Make sure the simulator module still works correctly.

22.13 Acknowledgements
In Spring 2017, I created a Labelled Digraph ADT document by adapting and
revising comments from the Haskell implementations of the Labelled Digraph
abstract data type. I had specified the ADT and developed the implementations
as my solution for Assignment #1 in CSci 556 (Multiparadigm Programming) in
Spring 2015. I also included some content from my notes on Data Abstraction
[46].

(In addition to the list- and map-based Haskell implementations of the Labelled
Digraph ADT, I developed a list-based implementation in Elixir in Spring 2015
and two Scala-based implementations in Spring 2016.)

In Spring 2017, I also created a Mealy Machine Simulator Exercise document
by adapting and revising a project I had assigned in the Scala-based offering of
CSci 555 (Functional Programming) in Spring 2016.

In 2018, I merged and revised these documents to become new Chapter 22, Data
Abstraction Revisited, in the textbook Exploring Languages with Interpreters
and Functional Programming.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

22.14 Terms and Concepts
Data abstraction; abstract data type (ADT), instance; specification of ADTs
using name, sets, signatures, and semantics; constructor, accessor, mutator, and
destructor operations; axiomatic and constructive semantics; abstract model
(contract, precondition, postcondition, interface and implementation invariant,
abstract interface); use of Haskell module hiding features to implement the
abstract data type’s interface; using mathematical concepts to model the data
abstraction (graph, digraph, labelled graph, multigraph, set, sequence, bag, total
and partial functions, relation); graph data structure; adventure game.
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Mealy Machine, simulator, finite-state automaton (machine), deterministic finite
state transducer, state, transition, transition graph.
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23 Overloading and Type Classes
23.1 Chapter Introduction
Chapter 5introduced the concept of overloading. Chapters 13 and 21 introduced
the related concepts of type classes and instances.

The goals of this chapter (23) and a planned future chapter are to explore these
concepts in more detail.

The concept of type class was introduced into Haskell to handle the problem
of comparisons, but it has had a broader and more profound impact upon the
development of the language than its original purpose. This Haskell feature
has also had a significant impact upon the design of subsequent languages (e.g.,
Scala [132,151] and Rust [110,124,150]) and libraries.

TODO: This chapter, including the Introduction, should be revised after deciding
how to handle issues such as functors, monads, etc.

23.2 Polymorphism in Haskell
Chapter 5 surveyed the different kinds of polymorphism. Haskell implements
two of these kinds:

1. Parametric polymorphism (usually just called “polymorphism” in functional
languages), in which a single function definition is used for all types of
arguments and results.

For example, consider the function length :: [a] -> Int , which returns
the length of any finite list.

2. Overloading, in which the same name refers to different functions depending
upon the type.

For example, consider the (+) function, which can add any supported
number.

Chapter 13 examined parametric polymorphism. Chapter 21 introduced type
classes briefly in the context of algebraic data types. This chapter better motives
type classes and explores them more generally.

23.3 Why Overloading?
Consider testing for membership in a Boolean list, where eqBool is an equality-
testing function for Boolean values.

elemBool :: Bool -> [Bool] -> Bool
elemBool x [] = False
elemBool x (y:ys) = eqBool x y || elemBool x ys

We can define eqBool using pattern matching as follows:
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eqBool :: Bool -> Bool -> Bool
eqBool True False = False
eqBool False True = False
eqBool _ _ = True

The above is not very general. It works for booleans, but what if we want to
handle lists of integers? or of characters? or lists of lists of tuples?

The aspects of elemBool we need to generalize are the type of the input list and
the function that does the comparison for equality.

Thus let’s consider testing for membership of a general list, with the equality
function as a parameter.

elemGen :: (a -> a -> Bool) -> a -> [a] -> Bool
elemGen eqFun x [] = False
elemGen eqFun x (y:ys) = eqFun x y || elemGen eqFun x ys

This allows us to define elemBool in terms of elemGen as follows:

elemBool :: Bool -> [Bool] -> Bool
elemBool = elemGen eqBool

But really the function elemGen is too general for the intended function. Para-
meter eqFun could be any

a -> a -> Bool

function, not just an equality comparison.

Another problem is that equality is a meaningless idea for some data types.
For example, comparing functions for equality is a computationally intractable
problem.

The alternative to the above to make (==) (i.e., equality) an overloaded function.
We can then restrict the polymorphism in elem’s type signature to those types
for which (==) is defined.

We introduce the concept of type classes to to be able to define the group of
types for which an overloaded operator can apply.

We can then restrict the polymorphism of a type signature to a class by using a
context constraint as Eq a => is used below:

elem :: Eq a => a -> [a] -> Bool

We used context constraints in previous chapters. Here we examine how to define
the type classes and associate data types with those classes.

23.4 Defining an Equality Class and Its Instances
We can define class Eq to be the set of types for which we define the (==) (i.e.,
equality) operation.
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For example, we might define the class as follows, giving the type signature(s)
of the associated function(s) (also called the operations or methods of the class).

class Eq a where
(==) :: a -> a -> Bool

A type is made a member or instance of a class by defining the signature
function(s) for the type. For example, we might define Bool as an instance of
Eq as follows:

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

Other types, such as the primitive types Int and Char , can also be defined
as instances of the class. Comparison of primitive data types will often be
implemented as primitive operations built into the computer hardware.

An instance declaration can also be declared with a context constraint, such
as in the equality of lists below. We define equality of a list type in terms of
equality of the element type.

instance Eq a => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False

Above, the == on the left sides of the equations is the operation being defined
for lists. The x == y comparison on the right side is the previously defined
operation on elements of the lists. The xs == ys on the right side is a recursive
call of the equality operation for lists.

Within the class Eq , the (==) function is overloaded. The definition of (==)
given for the types of its actual operands is used in evaluation.

In the Haskell standard prelude, the class definition for Eq includes both the
equality and inequality functions. They may also have default definitions as
follows:

class Eq a where
(==), (/=) :: a -> a -> Bool
-- Minimal complete definition: (==) or (/=)
x /= y = not (x == y)
x == y = not (x /= y)

In the case of class Eq , inequality is defined as the negation of equality and vice
versa.

An instance declaration must override (i.e., redefine) at least one of these
functions (in order to break the circular definition), but the other function may
either be left with its default definition or overridden.
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23.5 Type Class Laws
Of course, our expectation is that any operation (==) defined for an instance of
Eq should implement an “equality” comparison. What does that mean?

In mathematics, we expect equality to be an equivalence relation. That is,
equality comparisons should have the following properties for all values x, y,
and z in the type’s set.

• Reflexivity: x == x is True.
• Symmetry: x == y if and only if y == x.
• Transitivity: if x == y and y == z, then x == z.

In addition, x /= y is expected to be equivalent to not (x == y) as defined in
the default method definition.

Thus class Eq has these type class laws that every instance of the class should
satisfy. The developer of the instance should ensure that the laws hold.

As in many circumstances, the reality of computing may differ a bit from
the mathematical ideal. Consider Reflexivity. If x is infinite, then it may be
impossible to implement x == x. Also, this property might not hold for floating
point number representations.

23.6 Another Example Class Visible
TODO: Perbhaps replace this example (which follows Thompson, ed. 2) with a
better one.

We can define another example class Visible, which might denote types whose
values can be displayed as strings. Method toString represents an element of
the type as a String. Method size yields the size of the argument as an Int.

class Visible a where
toString :: a -> String
size :: a -> Int

We can make various data types instances of this class:

instance Visible Char where
toString ch = [ch]
size _ = 1

instance Visible Bool where
toString True = "True"
toString False = "False"
size _ = 1

instance Visible a => Visible [a] where
toString = concat . map toString
size = foldr (+) 1 . map size
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What type class laws should hold for Visible?

There are no constraints on the conversion to strings. However, size must return
an Int, so the “size” of the input argument must be finite and bounded by the
largest value in type Int.

23.7 Class Extension (Inheritance)
Haskell supports the concept of class extension. That is, a new class can be
defined that inherits all the operations of another class and adds additional
operations.

For example, we can derive an ordering class Ord from the class Eq, perhaps as
follows. (The definition in the Prelude may differ from the following.)

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a
-- Minimal complete definition: (<) or (>)
x <= y = x < y || x == y
x < y = y > x
x >= y = x > y || x == y
x > y = y < x
max x y | x >= y = x

| otherwise = y
min x y | x <= y = x

| otherwise = y

With the above, we define Ord as a subclass of Eq; Eq is a superclass of Ord.

The above default method definitions are circular: < is defined in terms of > and
vice versa. So a complete definition of Ord requires that at least one of these be
given an appropriate definition for the type. Method == must, of course, also be
defined appropriately for superclass Eq.

What type class laws should apply to instances of Ord?

Mathematically, we expect an instance of class Ord to implement a total order
on its type set. That is, given the comparison operator (i.e., binary relation) <=,
then the following properties hold for all values x, y, and z in the type’s set.

• Reflexivity: x <= x is True.
• Antisymmetry: x <= y and y <= x, then x == y.
• Transitivity: if x <= y and y <= z, then x <= z.
• Trichotomy (comparability, totality): x <= y or y <= x.

A relation that satisfied the first three properties above is a partial order. The
fourth property requires that all values in the type’s set can be compared by <=.

In addition to the above laws, we expect == (and /=) to satisfy the Eq type class
laws and <, >, >=, max, and min to satisfy the properties (i.e., default method
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definitions) given in the class Ord declaration.

As an example, consider the function isort' (insertion sort), defined in a
previous chapter. It uses class Ord to constrain the list argument to ordered
data items.

isort' :: Ord a => [a] -> [a]
isort' [] = []
isort' (x:xs) = insert' x (isort' xs)

insert' :: Ord a => a -> [a] -> [a]
insert' x [] = [x]
insert' x (y:ys)

| x <= y = x:y:ys
| otherwise = y : insert' x ys

23.8 Multiple Constraints
Haskell also permits classes to be constrained by two or more other classes.

Consider the problem of sorting a list and then displaying the results as a string:

vSort :: (Ord a,Visible a) => [a] -> String
vSort = toString . isort'

To sort the elements, they need to be from an ordered type. To convert the
results to a string, we need them to be from a Visible type.

The multiple contraints can be over two different parts of the signature of a
function. Consider a program that displays the second components of tuples if
the first component is equal to a given value:

vLookupFirst :: (Eq a,Visible b) => [(a,b)] -> a -> String
vLookupFirst xs x = toString (lookupFirst xs x)

lookupFirst :: Eq a => [ (a,b) ] -> a -> [b]
lookupFirst ws x = [ z | (y,z) <- ws, y == x ]

Multiple constraints can occur in an instance declaration, such as might be used
in extending equality to cover pairs:

instance (Eq a,Eq b) => Eq (a,b) where
(x,y) == (z,w) = x == z && y == w

Multiple constraints can also occur in the definition of a class, as might be the
case in definition of an ordered visible class.

class (Ord a,Visible a) => OrdVis a

vSort :: OrdVis a => [a] -> String
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The case where a class extends two or more classes, as above for OrdVis is called
multiple inheritance.

Instances of class OrdVis must satisfy the type class laws for classes Ord and
Visible.

23.9 Built-In Haskell Classes
See Section 6.3 of the Haskell 2010 Language Report [120:6.3] for discussion of
the various classes in the Haskell Prelude library.

23.10 Comparison to Other Languages
Let’s compare Haskell concept of type class with the class concept in familiar
object-oriented languages such as Java and C++.

• In Haskell, a class is a collection of types. In Java and C++, class and
type are similar concepts.

For example, Java’s static type system treats the collection of objects
defined with a class construct as a (nominal) type. A class can be used
to implement a type. However, it is possible to implement classes whose
instances can behave in ways outside the discipline of the type (i.e., not
satisfy the Liskov Substitution Principle [119,205]).

• Haskell classes are similar in concept to Java and C++ abstract classes
except that Haskell classes have no data fields. (There is no multiple
inheritance from classes in Java, of course.)

• Haskell classes are similar in concept to Java interfaces. Haskell classes
can give default method definitions, a feature that was only added in Java
8 and beyond.

• Instances of Haskell classes are types, not objects. They are somewhat like
concrete Java or C++ classes that extend abstract classes or concrete Java
classes that implement Java interfaces.

• Haskell separates the definition of a type from the definition of the methods
associated with that type. A class in Java or C++ usually defines both a
data structure (the member variables) and the functions associated with
the structure (the methods). In Haskell, these definitions are separated.

• The methods defined by a Haskell class correspond to the instance methods
in Java or virtual functions in a C++ class. Each instance of a class
provides its own definition for each method; class defaults correspond
to default definitions for a virtual function in the base class. Of course,
Haskell class instances do not have implicit receiver object or mutable data
fields.
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• Methods of Haskell classes are bound statically at compile time, not
dynamically bound at runtime as in Java.

• C++ and Java attach identifying information to the runtime representation
of an object. In Haskell, such information is attached logically instead of
physically to values through the type system.

• Haskell does not support the C++ overloading style in which functions
with different types share a common name.

• The type of a Haskell object cannot be implicitly coerced; there is no
universal base class such as Java’s Object which values can be projected
into or out of.

• There is no access control (such as public or private class constituents)
built into the Haskell class system. Instead, the module system must be
used to hide or reveal components of a class. In that sense, it is similar
to the object-oriented language Component Pascal [17,176] (which is a
variant of Oberon-2 [129]) and to the imperative systems programming
language Rust [[110]; McNamara2021; [150]].

Type classes first appeared in Haskell, but similar concepts have been imple-
mented in more recently designed languages.

• The imperative systems programming language Rust [[110]; McNamara2021;
[150] supports traits, a limited form of type classes.

• The object-functional hybrid language Scala[132,151] has implicit classes
and parameters, which enable a type enrichment programming idiom
similar to type classes.

• The functional language PureScript [79,143] supports Haskell-like type
classes.

• The dependently typed functional language Idris [18,19] supports interfaces,
which are, in some ways, a generalization of Haskell’s ty.pe classes.

• Functional JavaScript libraries such as Ramda [147] have type class-like
features.

23.11 What Next?
This chapter (23) motivated and explored the concepts of overloading, type
classes, and instances in Haskell and compared them to features in other lan-
guages.

Chapter 24 further explores the profound impact of type classes on Haskell.

23.12 Chapter Source Code
The source code for this chapter is in file TypeClassMod.hs.
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23.13 Exercises
TODO

23.14 Acknowledgements
In Spring 2017, I adapted and revised this chapter from my previous notes on
this topic [42]. I based the previous notes, in part, on the presentations in:

• Chapter 12 of the Second edition of Simon Thompson’s textbook Haskell:
The Craft of Functional Programming [172]

• Section 5 of A Gentle Introduction to Haskell Version 98 [103]

For new content on Haskell typeclass laws, I read the discussions of typeclass
laws on:

• Typeclassopedia [230]

• StackOverflow

• Reddit

I also reviewed the mathematical definitions of equality, equivalence relations,
and total orders on sites as Wolfram MathWorld [226,227,and 228] and Wikipedia
[221–223].

In Summer and Fall 2017, I continued to develop this work as Chapter 9,
Overloading and Type Classes, of my 2017 Haskell-based programming languages
textbook.

In Summer 2018, I divided the Overloading and Type Classes chapter into two
chapters in the 2018 version of the textbook, now titled Exploring Languages
with Interpreters and Functional Programming. Most of the existing content
became Chapter 23, Overloading and Type Classes. I moved the planned content
on advanced type class topics (functors, monads) to a planned future chaper.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

23.15 Terms and Concepts
Polymorphism in Haskell (parametric polymorphism, overloading); Haskell type
system concepts (type classes, overloading, instances, signatures, methods, de-
fault definitions, context constraints, class extension, inheritance, subclass,

366

https://wiki.haskell.org/Typeclassopedia
https://stackoverflow.com/questions/tagged/typeclass-laws
https://www.reddit.com/search/?q=typeclass%20laws


superclass, overriding, multiple inheritance, class laws) versus related Java/C++
type system concepts (abstract and concrete classes, objects, inheritance, in-
terfaces); mathematical concepts (equivalence relation, reflexivity, symmetry,
antisymmetry, transitivity, trichotomy, total and partial orders).
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24 Future Chapter TBD
24.1 Chapter Introduction
TODO

24.2 What Next?
TODO

24.3 Exercises
TODO

24.4 Acknowledgements
TODO

24.5 Terms and Concepts
TBD
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25 Proving Haskell Laws
25.1 Chapter Introduction
The goal of this chapter is to show how to state and prove Haskell “laws”.

This chapter depends upon the reader understanding Haskell’s polymorphic,
higher-order list programming concepts (e.g., from Chapters 4-5, 8-9, and 13-17),
but it is otherwise independent of other preceding chapters.

The chapter provides useful tools that can be used in stating and formally
proving function and module contracts (Chapters 6, 7, and 22) and type class
laws (Chapter 23). It supports reasoning about program generalization (Chapter
19) and type inference (Chapter 24).

The following two chapters on program synthesis (Chapters 26 and 27) build on
the concepts and techniques introduced by this chapter.

25.2 Referential Transparency Revisited
Referential transparency is probably the most important property of purely
functional programming languages like Haskell.

Chapter 2 defines referential transparency to mean that, within some well-
defined context, a variable (or other symbol) always represents the same value.
This allows one expression to be replaced by an equivalent expression or, more
informally, “equals to be replaced by equals”.

Chapter 8 shows how referential transparency underpins the evaluation (i.e.,
substitution or reduction) model for Haskell and similar functional languages.

In this chapter, we see that referential transparency allows us to state and prove
various “laws” or identities that hold for functions and to use these “laws” to
transform programs into equivalent ones. Referential transparency underlies how
we reason about Haskell programs.

25.3 Stating and Proving Laws
As a purely functional programming language, Haskell supports mathematical
reasoning mostly within the programming language itself. We can state properties
of functions and prove them using a primarily equational, or calculational, style
of proof. The proof style is similar to that of high school trigonometric identities.

25.3.1 Example: ++ associativity and identity element

We have already seen a number of these laws. Again consider the append
operator (++) for finite lists from Chapter 14.

infixr 5 ++
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(++) :: [a] -> [a] -> [a]
[] ++ xs = xs -- append.1
(x:xs) ++ ys = x:(xs ++ ys) -- append.2

The append operator ++: has two useful properties that we have already seen.

Associativity: For any finite lists xs, ys, and zs,
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs.

Identity: For any finite list xs,
[] ++ xs = xs = xs ++ [].

Note: The above means that the append operator ++ and the set of finite lists
form the algebraic structure called a monoid.

How do we prove these properties?

25.3.2 Structural induction proof method

The answer is, of course, induction. But we need a type of induction that allows
us to prove theorems over the set of all finite lists. In fact, we have already been
using this form of induction in the informal arguments that the list-processing
functions terminate.

Induction over the natural numbers is a special case of a more general form
of induction called structural induction. This type of induction is over the
syntactic structure of recursively (inductively) defined objects. Such objects can
be partially ordered by a complexity ordering from the most simple (minimal)
to the more complex.

If we think about the usual axiomization of the natural numbers (i.e., Peano’s
postulates), then we see that 0 is the only simple (minimal) object and that the
successor function ((+) 1) is the only constructor.

In the case of finite lists, the only simple object is the nil list [] and the only
constructor is the cons operator (:).

To prove a proposition P(x) holds for any finite object x, one must prove the
following cases.

Base cases: That P(e) holds for each simple (minimal) object e.

Inductive cases: That, for all object constructors C, if P(x) holds for some
arbitrary object(s) x, then P(C(x)) also holds.

That is, we can assume P(x) holds, then prove that P(C(x)) holds. This
shows that the constructors preserve proposition ‘P.

To prove a proposition P(xs) holds for any finite list xs, the above reduces to
the following cases.

Base case xs = []: That P([]) holds.
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Inductive case xs = (a:as). That, if P(as) holds, then P(a:as) also holds.

One, often useful, strategy for discovering proofs of laws is the following:

• Determine whether induction is needed to prove the law. Some laws can
be proved directly from the definitions and other previously proved laws.

• Carefully choose the induction variable (or variables).

• Identify the base and inductive cases.

• For each case, use simplification independently on each side of the equation.
Often, it is best to start with the side that is the most complex.

Simplification means to substitute the right-hand side of a definition or
the induction hypothesis for some expression matching the left-hand side.

• Continue simplifying each expression as long as possible.

Often we can show that the two sides of an equation are the same or that
simple manipulations (perhaps using previously proved laws) will show
that they are the same.

• If necessary, identify subcases and prove each subcase independently.

A formal proof of a case should, in general, be shown as a calculation that
transforms one side of the equation into the other by substitution of equals for
equals.

This formal proof can be constructed from the calculation suggested in the above

25.3.3 Proving associativity of ++

Now that we have the mathematical machinery we need, let’s prove that ++ is
associative for all finite lists. The following proofs assume that all arguments of
the functions are defined.

Prove: For any finite lists xs, ys, and zs,
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs.

Proof:

There does not seem to be a non-inductive proof, thus we proceed by structural
induction over the finite lists. But on which variable(s)?

By examining the definition of ++, we see that it has two legs differentiated by
the value of the left operand. The right operand is not decomposed. To use this
definition in the proof, we need to consider the left operands of the ++ in the
associative law.

Thus we choose to do the induction on xs, the leftmost operand, and consider
two cases—a base case and an inductive case.

Base case xs = []:
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First, we simplify the left-hand side.

[] ++ (ys ++ zs)

= { append.1 (left to right), omit outer parentheses }

ys ++ zs

We do not know anything about ys and zs, so we cannot simplify further.

Next, we simplify the right-hand side.

([] ++ ys) ++ zs

= { append.1 (left to right), omit parentheses around ys }

ys ++ zs

Thus we have simplified the two sides to the same expression.

Of course, a formal proof can be written more elegantly as:

[] ++ (ys ++ zs)

= { append.1 (left to right) }

ys ++ zs

= { append.1 (right to left, applied to left operand) }

([] ++ ys) ++ zs

Thus the base case is established.

Note the equational style of reasoning. We proved that one expression was equal
to another by beginning with one of the expressions and repeatedly substituting
“equals for equals” until we got the other expression.

Each transformational step was justified by a definition, a known property, or (as
we see later) the induction hypothesis. We normally do not state justifications
like “omit parentheses” or “insert parentheses”. We show these justifications for
these steps in braces in the equational arguments. This style follows the common
practice in the program derivaton community [40,40,85].

In the inductive case, we find it helpful to state both the inductive assumption
and the proof goal explicitly, as we do below.

Inductive case xs = (a:as):

Assume as ++ (ys ++ zs) = (as ++ ys) ++ zs;
prove (a:as) ++ (ys ++ zs) = ((a:as) ++ ys) ++ zs.

First, we simplify the left-hand side.

(a:as) ++ (ys ++ zs)

= { append.2 (left to right) }
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a:(as ++ (ys ++ zs))

= { induction hypothesis }

a:((as ++ ys) ++ zs)

We do not know anything further about as, ys, and zs, so we cannot simplify
further.

Next, we simplify the right-hand side.

((a:as) ++ ys) ++ zs

= { append.2 (left to right, on inner ++) }

(a:(as ++ ys)) ++ zs

= { append.2 (left to right, on outer ++) }

a:((as ++ ys) ++ zs)

Thus we have simplified the two sides to the same expression.

Again, a formal proof can be written more elegantly as follows.

(a:as) ++ (ys ++ zs)

= { append.2 (left to right) }

a:(as ++ (ys ++ zs))

= { induction hypothesis }

a:((as ++ ys) ++ zs)

= { append.2 (right to left, on outer ++) }

(a:(as ++ ys)) ++ zs

= { append.2 (right to left, on inner ++) }

((a:as) ++ ys) ++ zs

Thus the inductive case is established.

Therefore, we have proven the ++ associativity property. Q.E.D.

The above proof and the ones that follow assume that the arguments of the
functions are all defined (i.e., not equal to ⊥).

25.3.4 Reviewing proof method

You should practice writing proofs in the “more elegant” form given above. This
end-to-end calculational style is more useful for synthesis of programs.

Reviewing what we have done, we can identify the following guidelines:

• Determine whether induction is really needed.
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• Choose the induction variable carefully.

• Be careful with parentheses.

Substitutions, comparisons, and pattern matches must done with the fully
parenthesized forms of definitions, laws, and expressions in mind, that is,
with parentheses around all binary operations, simple objects, and the
entire expression. We often omit “unneeded” parentheses to make the
expression more readable.

• Start with the more complex side of the equation.

That gives us more information with which to work.

25.3.5 Proving identity element for ++

Now let’s prove the identity property.

Prove: For any finite list xs,
[] ++ xs = xs = xs ++ [].

Proof:

The equation [] ++ xs = xs follows directly from append.1. Thus we consider
the equation xs ++ [] = xs, which we prove by structural induction on xs.

Base case xs = []:

[] ++ []

= { append.1 (left to right) }

[]

This establishes the base case.

Inductive case xs = (a:as):

Assume as ++ [] = as; prove (a:as) ++ [] = (a:as).

(a:as) ++ []

= { append.2 (left to right) }

a:(as ++ [])

= { induction hypothesis }

a:as

This establishes the inductive case.

Therefore, we have proved that [] is the identity element for ++. Q.E.D.

374



25.4 Example: Relating length and ++
Suppose that the list length function is defined as follows (from Chapter 13}).

length :: [a] -> Int
length [] = 0 -- length.1
length (_:xs) = 1 + length xs -- length.2

Prove: For all finite lists xs and ys:
length (xs++ys) = length xs + length ys.

Proof:

Because of the way ++ is defined, we choose xs as the induction variable.

Base case xs = []:

length [] + length ys

= { length.1 (left to right) }

0 + length ys

= { 0 is identity for addition }

length ys

= { append.1 (right to left) }

length ([] ++ ys)

This establishes the base case.

Inductive case xs = (a:as):

Assume length (as ++ ys) = length as + length ys;
prove length ((a:as) ++ ys) = length (a:as) + length ys.

length ((a:as) ++ ys)

= { append.2 (left to right) }

length (a:(as ++ ys))

= { length.2 (left to right) }

1 + length (as ++ ys)

= { induction hypothesis }

1 + (length as + length ys)

= { associativity of addition }

(1 + length as) + length ys

= { length.2 (right to left, value of a arbitrary) }

length (a:as) + length ys
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This establishes the inductive case.

Therefore, length (xs ++ ys) = length xs + length ys. Q.E.D.

Note: The proof above uses the associativity and identity properties of integer
addition.

25.5 Example: Relating take and drop
Remember the definitions for the list functions take and drop from Chapter
13}.

take :: Int -> [a] -> [a]
take n _ | n <= 0 = [] -- take.1
take _ [] = [] -- take.2
take n (x:xs) = x : take (n-1) xs -- take.3

drop :: Int -> [a] -> [a]
drop n xs | n <= 0 = xs -- drop.1
drop _ [] = [] -- drop.2
drop n (_:xs) = drop (n-1) xs -- drop.3

Prove: For any natural numbers n and finite lists xs,
take n xs ++ drop n xs = xs.

Proof:

Note that both take and drop use both arguments to distinguish the cases.
Thus we must do an induction over all natural numbers n and all finite lists xs.

We would expect four cases to consider, the combinations from n being zero and
nonzero and xs being nil and non-nil. But an examination of the definitions for
the functions reveal that the cases for n = 0 collapse into a single case.

Base case n = 0:

take 0 xs ++ drop 0 xs

= { take.1, drop.1 (both left to right) }

[] ++ xs

= { ++ identity xs }

xs

This establishes the case.

Base case n = m+1, xs = []:

take (m+1) [] ++ drop (m+1) []

= { take.2, drop.2 (both left to right) }

[] ++ []
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= { ++ identity }

[]

This establishes the case.

Inductive case n = m+1, xs = (a:as):

Assume take m as ++ drop m as = as;
prove take (m+1) (a:as) ++ drop (m+1) (a:as) = (a:as).

take (m+1) (a:as) ++ drop (m+1) (a:as)

= { take.3, drop.3 (both left to right) }

(a:(take m as)) ++ drop m as

= { append.2 (left to right) }

a:(take m as ++ drop m as)

= { induction hypothesis }

(a:as)

This establishes the case.

Therefore, the property is proved. Q.E.D.

25.6 Example: Equivalence of Functions
What do we mean when we say two functions are equivalent?

Usually, we mean that the “same inputs” yield the “same outputs”. For example,
single argument functions f and g are equivalent if f x = g x for all x.

In Chapter 14. we defined two versions of a function to reverse the elements
of a list. Function rev uses backward recursion and function reverse (called
reverse' in Chapter 14) uses a forward recursive auxiliary function rev'.

rev :: [a] -> [a]
rev [] = [] -- rev.1
rev (x:xs) = rev xs ++ [x] -- rev.2

reverse :: [a] -> [a]
reverse xs = rev' xs [] -- reverse.1

where rev' [] ys = ys -- reverse.2
rev' (x:xs) ys = rev' xs (x:ys) -- reverse.3

To show rev and reverse are equivalent, we must prove that, for all finite lists
xs:

rev xs = reverse xs

If we unfold (i.e., simplify) reverse one step, we see that we need to prove:
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rev xs = rev' xs []

Thus let’s try to prove this by structural induction on xs.

Base case xs = []:

rev []

= { rev.1 (left to right) }

[]

= { reverse.2 (right to left) }

rev' [] []

This establishes the base case.

Inductive case xs = (a:as):

Assume rev as = rev' as []; prove rev (a:as) = rev' (a:as) [].

First, we simplify the left side.

rev (a:as)

= { rev.2 (left to right) }

rev as ++ [a]

Then, we simplify the right side.

rev' (a:as) []

= { reverse.3 (left to right) }

rev' as [a]

Thus we need to show that rev as ++ [a] = rev' as [a]. But we do not
know how to proceed from this point.

Maybe another induction. But that would probably just bring us back to a point
like this again. We are stuck!

Let’s look back at rev xs = rev' xs []. This is difficult to prove directly.
Note the asymmetry, one argument for rev versus two for rev'.

Thus let’s look for a new, more symmetrical, problem that might be easier to
solve. Often it is easier to find a solution to a problem that is symmetrical than
one which is not.

Note the place we got stuck above (proving rev as ++ [a] = rev' as [a])
and also note the equation reverse.3. Taking advantage of the identity element
for ++, we can restate our property in a more symmetrical way as follows:

rev xs ++ [] = rev' xs []
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Note that the constant [] appears on both sides of the above equation. We can
now apply the following generalization heuristic [41,85]. (That is, we try to solve
a “harder” problem.)

Heuristic: Replace constant by variable

That is, generalize by replacing a constant (or any subexpression) by a
new variable.

Thus we try to prove the more general proposition:

rev xs ++ ys = rev' xs ys

The case ys = [] gives us what we really want to hold. Intuitively, this new
proposition seems to hold. Now let’s prove it formally. Again we try structural
induction on xs.

Base case xs = []:

rev [] ++ ys

= { rev.1 (left to right) }

[] ++ ys

= { append.1 (left to right) }

ys

= { reverse.2 (right to left) }

rev' [] ys

This establishes the base case.

Inductive case xs = (a:as):

Assume rev as ++ ys = rev' as ys for any finite list ys; prove
rev (a:as) ++ ys = rev' (a:as) ys.

rev (a:as) ++ ys

= { rev.2 (left to right) }

(rev as ++ [a]) ++ ys

= { ++ associativity, Note 1 }

rev as ++ ([a] ++ ys)

= { singleton law, Note 2 }

rev as ++ (a:ys)

= { induction hypothesis }

rev' as (a:ys)

= { reverse.3 (right to left) }
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rev' (a:as) ys

This establishes the inductive case.

Notes:

1. We could apply the induction hypothesis here, but it does not seem
profitable. Keeping the expressions in terms of rev and ++ as long as
possible seems better; we know more about those expressions.

2. The singleton law is [x] ++ xs = x:xs for any element x and finite list
xs of the same type. Proof of this is left as an exercise for the reader.

Therefore, we have proved rev xs ++ ys = rev' xs ys and, hence:

rev xs = reverse xs

The key to the performance improvement here is the solution of a “harder”
problem: function rev' does both the reversing and appending of a list while
rev separates the two actions.

25.7 What Next?
This chapter illustrated how to state and prove Haskell “laws” about already
defined functions.

Chapters 26} and 27} on program synthesis illustrate how to use similar reasoning
methods to synthesize (i.e., derive or calculate) function definitions from their
specifications.

25.8 Exercises
This set of exercises uses functions defined in this and previous chapters including
the following:

• Functions map, filter, foldr, foldl, and concatMap are defined in Chap-
ter 15.

• Functional composition, identity combinator id, and function all are
defined in Chapter 16}.

• Functions takeWhile and dropWhile are defined in Chapter 17.

Prove the following properties using the proof methods illustrated in this chapter.

1. Prove for all x of some type and finite lists xs of the same type (i.e., the
singleton law):

[x] ++ xs = (x:xs)

2. Consider the definition for length given in the text of this chapter and
the following definition for len:
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len :: Int -> [a] -> Int
len n [ ] = n -- len.1
len n (_:xs) = len (n+1) xs -- len.2

Prove for any finite list xs: len 0 xs = length xs.

3. Prove for all finite lists xs and ys of the same type:

reverse (xs ++ ys) = reverse ys ++ reverse xs

Hint: The function reverse (calledreverse' in Chapter 14.) uses forward
recursion. Backward recursive definitions are generally easier to use in
inductive proofs. In Chapter 14., we also defined a backward recursive
function rev and proved that rev xs = reverse xs for all finite lists xs.
Thus, you may find it easier to substitute rev for reverse and instead
prove:

rev (xs ++ ys) = rev ys ++ rev xs

4. Prove for all finite lists xs of some type:

reverse (reverse xs) = xs

5. Prove for all natural numbers m and n and all finite lists xs:

drop n (drop m xs) = drop (m+n) xs

6. Consider the rational number package from Chapter 7.. Prove for any
Rat value r that satisfied the interface invariant for the abstract module
RationalRep:

addRat r zeroRat = r = addRat zeroRat r

7. Consider the two definitions for the Fibonacci function in Chapter 9. Prove
for any natural number n:

fib n = fib' n

Hint: First prove, for n ≥ 2:

fib'' n p q = fib'' (n-2) p q + fib'' (n-1) p q

8. Prove that the id function is the identity element for functional composition.
That is, for any function f :: a -> b, prove:

f . id = f = id . f

9. Prove that functional composition is associative. That is, for any function
f :: a -> a, g :: a -> a, and h :: a -> a, prove:

(f . g) . h = f . (g . h)

10. Prove for all finite lists xs and ys of the same type and function f on that
type:

map f (xs ++ ys) = map f xs ++ map f ys
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11. Prove for all finite lists xs and ys of the same type and predicate p on
that type:

filter p (xs ++ ys) = filter p xs ++ filter p ys

12. Prove for all finite lists xs and ys of the same type and all predicates p on
that type:

all p (xs ++ ys) = (all p xs) && (all p ys)

The definition for && is as follows:

(&&) :: Bool -> Bool -> Bool
False && x = False -- second argument not evaluated
True && x = x -- second argument returned

13. Prove for all finite lists xs of some type and predicates p and q on that
type:

filter p (filter q xs) = filter q (filter p xs)

14. Prove for all finite lists xs and ys of the same type and for all functions f
and values a of compatible types:

foldr f a (xs ++ ys) = foldr f (foldr f a ys) xs

15. Prove for all finite lists xs of some type and all functions f and g of
conforming types:

map (f . g) xs = (map f . map g) xs

16. Prove for all finite lists of finite lists xss of some base type and function f
on that type:

map f (concat xss) = concat (map (map f) xss)

17. Prove for all finite lists xs of some type and functions f on that type:

map f xs = foldr ((:) .f) [] xs

18. Prove for all lists xs and predicates p on the same type:

takeWhile p xs ++ dropWhile p xs = xs

19. Prove that, if *** is an associative binary operation of type t -> t with
identity element z (i.e., a monoid), then:

foldr (***) z xs = foldl (***) z xs

20. Consider the Haskell type for the natural numbers given in an exercise in
Chapter 21.

data Nat = Zero | Succ Nat

For the functions defined in that exercise, prove the following:

a. Prove that intToNat and natToInt are inverses of each other.
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b. Prove that Zero is the (right and left) identity element for addNat.

c. Prove for any Nats x and y:

addNat (Succ x) y = addNat x (Succ y)

d. Prove associativity of addition on Nat’s. That is, for any Nats x, y,
and z:

addNat x (addNat y z) = addNat (addNat x y) z

e. Prove commutativity of addition on Nat’s. That is, for any Nats x
and y:

addNat x y = addNat y x
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26 Program Synthesis
26.1 Chapter Introduction
Chapter 25 illustrated how to state and prove Haskell “laws” about already
defined functions.

This chapter (26) illustrates how to use similar reasoning methods to synthesize
(i.e., derive or calculate) function definitions from their specifications.

Chapter 27 applies these program synthesis techniques to a larger set of examples
on text processing.

26.2 Motivation
This chapter deals with program synthesis.

In the proof of a property, we take an existing program and then demonstrate
that it satisfies some property.

In the synthesis of a program, we take a property called a specification and then
synthesize a program that satisfies it [15]. (Program synthesis is called program
derivation in other contexts, such as in the Gries textbook [85] and my Notes on
Program Semantics and Derivation [41].)

Both proof and synthesis require essentially the same reasoning. Often a proof
can be turned into a synthesis by simply reversing a few of the steps, and vice
versa.

26.3 Fast Fibonacci Function
This section is based on Bird and Wadler [15:5.4.5,15:5.5] and Hoogerwoord
[98:4.5].

A (second-order) Fibonacci sequence is the sequence in which the first two ele-
ments are 0 and 1 and each successive element is the sum of the two immediately
preceding elements:

0, 1, 1, 2, 3, 5, 8, 13, ...

As we have seen in Chapter 9, we can take the above informal description and
define a function to compute the nth element of the Fibonacci sequence. The
definition is straightforward. Unfortunately, this algorithm is quite inefficient,
O(fib n).

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n | n >= 2 = fib (n-1) + fib (n-2)
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In Chapter 9, we also developed a more efficient, but less straightforward, version
by using two accumulating parameters. This definition seemed to be “pulled out
of thin air”. Can we synthesize a definition that uses the more efficient algorithm
from the simpler definition above?

Yes, but we use a slightly different approach than we did before. We can improve
the performance of the Fibonacci computation by using a technique called tupling
[98] as we saw in Chapter 20.

The tupling technique can be applied to a set of functions with the same domain
and the same recursive pattern. First, we define a new function whose value is a
tuple, the components of which are the values of the original functions. Then,
we proceed to calculate a recursive definition for the new function.

This technique is similar to the technique of adding accumulating parameters to
define a new function.

Given the definition of fib above, we begin with the specification [15]:

twofib n = (fib n, fib (n+1))

and synthesize a recursive definition by using induction on the natural number
n.

Base case n = 0:

twofib 0

= { specification }

(fib 0, fib (0+1))

= { arithmetic, fib.1, fib.2 }

(0,1)

This gives us a definition for the base case.

Inductive case n = m+1:

Given that there is a definition for twofib m that satisfies the specification

twofib m = (fib m, fib (m+1))

calculate a definition for twofib (m+1) that satisfies the specification.

twofib (m+1)

= { specification }

(fib (m+1), fib ((m+1)+1))

= { arithmetic, fib.3 }

(fib (m+1), fib m + fib (m+1))

= { abstraction }
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(b,a+b)
where (a,b) = (fib m, fib (m+1))

= { induction hypothesis }

(b,a+b)
where (a,b) = twofib m

This gives us a definition for the inductive case.

Bringing the cases together and rewriting twofib (m+1) to get a valid pattern,
we synthesize the following definition:

twofib :: Int -> (Int,Int)
twofib 0 = (0,1)
twofib n | n > 0 = (b,a+b)

where (a,b) = twofib (n-1)

fastfib :: Int -> Int
fastfib n = fst (twofib n)

Above fst is the standard prelude function to extract the first component of a
pair (i.e., a 2-tuple).

The key to the performance improvement is solving a “harder” problem: com-
puting fib n and fib (n+1) at the same time. This allows the values needed
to be “passed forward” to the “next iteration”.

In general, we can approach the synthesis of a function using the following
method.

• Devise a specification for the function in terms of defined functions, data,
etc.

• Assume the specification holds.

• Using proof techniques (as if proving the specification), calculate an ap-
propriate definition for the function.

• As needed, break the synthesis calculation into cases motivated by the
induction “proof” over an appropriate (well-founded) set (e.g., over natural
numbers or finite lists). The inductive cases usually correspond to recursive
legs of the definition.

26.4 Sequence of Fibonacci Numbers
Now let’s consider a function to generate a list of the elements fib 0 through
fib n for some natural number n. A simple backward recursive definition follows:

allfibs :: Int -> [Int]
allfibs 0 = [0] -- allfibs.1
allfibs n | n > 0 = allfibs (n-1) ++ [fib n] -- allfibs.2
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Using fastfib, each fib n calculation is O(n). Each ++ call is also O(n). The
fib and the ++ are “in sequence”, so each call of allfibs is just O(n). However,
there are O(n) recursive calls of allfibs, so the overall complexity is O(nˆ2).

We again attempt to improve the efficiency by tupling We begin with the following
specification for fibs:

fibs n = (fib n, fib (n+1), allfibs n)

We already have definitions for the functions on the right-hand side, fib and
allfibs. Our task now is to synthesize a definition for the left-hand side, fibs.

We proceed by induction on the natural number n and consider two cases.

Base case n = 0:

fibs 0

= { fibs specification }

(fib 0, fib (0+1), allfibs 0)

= { fib.1, fib.2, allfibs.1 }

(0,1,[0])

This gives us a definition for the base case.

Inductive case n = m+1

Given that there is a definition for fibs m that satisfies the specification

fibs m = (fib m, fib (m+1), allfibs m)

calculate a definition for fibs (m+1) that satisfies the specification.

fibs (m+1)

= { fibs specification }

(fib (m+1), fib (m+2), allfibs (m+1))

= { fib.3, allfibs.2 }

(fib (m+1), fib m + fib (m+1), allfibs m ++ [fib (m+1)])

= { abstraction }

(b,a+b,c++[b])
where (a,b,c) = (fib m, fib (m+1), allfibs m)

= { induction hypothesis }

(b,a+b,c++[b])
where (a,b,c) = fibs m

This gives us a definition for the inductive case.

Bringing the cases together, we get the following definitions:
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fibs :: Int -> (Int,Int,[Int])
fibs 0 = (0,1,[0])
fibs n | n > 0 = (b,a+b,c++[b])

where (a,b,c) = fibs (n-1)

allfibs1 :: Int -> [Int]
allfibs1 n = thd3 (fibs n)

Above thd3 is the standard prelude function to extract the third component of
a 3-tuple.

We have eliminated the O(n) fib calculations, but still have an O(n) append
(++) within each of the O(n) recursive calls of fibs. This program is better, but
is still O(nˆ2).

Note that in the c ++ [b] expression there is a single element on the right.
Perhaps we could build this term backwards using cons, an O(1) operation, and
then reverse the final result.

We again attempt to improve the efficiency by tupling. We begin with the
following specification for fibs:

fibs' n = (fib n, fib (n+1), reverse (allfibs n))

For convenience in calculation, we replace reverse by its backward recursive
equivalent rev.

rev :: [a] -> [a]
rev [] = [] -- rev.1
rev (x:xs) = rev xs ++ [x] -- rev.2

We again proceed by induction on n and consider two cases.

Base case n = 0:

fibs' 0

= { fibs' specification }

(fib 0, fib (0+1), rev (allfibs 0))

= { fib.1, fib.2, allfibs.1 }

(0,1, rev [0])

= { rev.2 }

(0,1, rev [] ++ [0])

= { rev.1, append.1 }

(0,1,[0])

This gives us a definition for the base case.

Inductive case n = m+1:
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Given that there is a definition for fibs' m that satisfies the specification

fibs' m = (fib m, fib (m+1), allfibs m)

calculate a definition for fibs' (m+1) that satisfies the specification.

fibs' (m+1)

= { fibs' specification }

(fib (m+1), fib (m+2), rev (allfibs (m+1)))

= { fib.3, allfibs.2 }

(fib (m+1), fib m + fib (m+1), rev (allfibs m ++ [fib (m+1)]))

= { abstraction }

(b, a+b, rev (allfibs m ++ [b]))
where (a,b,c) = (fib m, fib (m+1), rev (allfibs m))

= { induction hypothesis }

(b, a+b, rev (allfibs m ++ [b]))
where (a,b,c) = fibs' m

= { rev (xs ++ [x]) = x : rev xs, Note 1 }

(b, a+b, b : rev (allfibs m))
where (a,b,c) = fibs' m

= { substitution }

(b, a+b, b:c)
where (a,b,c) = fibs' m

This gives us a definition for the inductive case.

Note 1: The proof of rev (xs ++ [x]) = x : rev xs is left as an exercise.

Bringing the cases together, we get the following definition:

fibs' :: Int -> (Int,Int,[Int])
fibs' 0 = (0,1,[0])
fibs' n | n > 0 = (b,a+b,b:c)

where (a,b,c) = fibs' n

allfibs2 :: Int -> [Int]
allfibs2 n = reverse (thd3 (fibs' n))

Function fibs' is O(n). Hence, allfibs2' is O(n).

Are further improvements possible?

Clearly, function fibs' must generate an element of the sequence for each integer
in the range [0..n]. Thus no complexity order improvement is possible.
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However, from our previous experience, we know that it should be possible to
avoid doing a reverse by using a tail recursive auxiliary function to compute the
Fibonacci sequence. The investigation of this possible improvement is left to the
reader.

For an O(log2 n) algorithm to compute fib n, see Kaldewaij’s textbook on
program derivation [107:5.2]. (As in Chapter 9, we assume log2 is a function
that computes the logarithm with base 2.)

26.5 Synthesis of drop from take
Suppose that we have the following definition for the list function take, but no
definition for drop.

take :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take' (n-1) xs

Further suppose that we wish to synthesize a definition for drop that satisfies
the following specification for any natural number n and finite list xs.

take n xs ++ drop n xs = xs

We proved this as a property earlier, given definitions for both take and drop.
The synthesis uses induction on both n and xs and the same cases we used in
the proof.

Base case n = 0:

xs

= { specification, substitution for this case }

take 0 xs ++ drop 0 xs

= { take.1 }

[] ++ drop 0 xs

= { ++ identity }

drop 0 xs

This gives the equation drop 0 xs = xs.

Base case n = m+1:

[]

= { specification, substitution for this case }

take (m+1) [] ++ drop (m+1) []

= { take.2 }
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[] ++ drop (m+1) []

= { ++ identity }

drop (m+1) []

This gives the defining equation drop (m+1) [] = []. Since the value of the
argument (m+1) is not used in the above calculation, we can generalize the
definition to drop _ [] = [].

Inductive case n = m+1, xs = (a:as):

Given that there is a definition for drop m as that satisfies the specification:

take m as ++ drop m as = as

calculate an appropriate definition for drop (m+1) (a:as) that satisfies the
specification.

(a:as)

= { specification, substitution for this case }

take (m+1) (a:as) ++ drop (m+1) (a:as)

= { take.3 }

(a:(take m as)) ++ drop (m+1) (a:as)

= { append.2 }

a:(take m as ++ drop (m+1) (a:as))

Hence, a:(take m as ++ drop (m+1) (a:as)) = (a:as).

a:(take m as ++ drop (m+1) (a:as)) = (a:as)

≡ { axiom of equality of lists (Note 1) }

take m as ++ drop (m+1) (a:as) = as

≡ { m ≥ 0, specification }

take m as ++ drop (m+1) (a:as) = take m as ++ drop m as

≡ { equality of lists (Note 2) }

drop (m+1) (a:as) = drop m as

Because of the induction hypothesis, we know that drop m as is defined. This
gives a definition for this case.

Notes:

0. The symbol ≡ denotes logical equivalence (i.e., if and only if) and is
pronounced “equivales”.

1. (x:xs) = (y:ys) ≡ x = y && xs = ys. In this case x and y both equal
a.
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2. xs ++ ys = xs ++ zs ≡ ys = zs can be proved by induction on xs using
the Note 1 property.

Bringing the cases together, we get the definition that we saw earlier.

drop :: Int -> [a] -> [a]
drop n xs | n <= 0 = xs -- drop.1
drop _ [] = [] -- drop.2
drop n (_:xs) = drop (n-1) xs -- drop.3

26.6 Tail Recursion Theorem
In Chapter 14, we looked at two different definitions of a function to reverse the
elements of a list. Function rev uses a straightforward backward linear recursive
technique and reverse uses a tail recursive auxiliary function. We proved that
these definitions are equivalent.

rev :: [a] -> [a]
rev [] = [] -- rev.1
rev (x:xs) = rev xs ++ [x] -- rev.2

reverse :: [a] -> [a]
reverse xs = rev' xs [] -- reverse.1

where rev' [] ys = ys -- reverse.2
rev' (x:xs) ys = rev' xs (x:ys) -- reverse.3

Function rev' is a generalization of rev. Is there a way to calculate rev' from
rev?

Yes, by using the Tail Recursion Theorem for lists. We develop this theorem in
a more general setting than rev.

The following is based on Hoogerwoord [98:4.7].

For some types X and Y, let function fun be defined as follows:

fun :: X -> Y
fun x | not (b x) = f x -- fun.1

| b x = h x *** fun (g x) -- fun.2

• Functions b, f, g, h, and *** are not defined in terms of fun.

• b :: X -> Bool such that, for any x, b x is defined whenever fun x is
defined.

• g :: X -> X such that, for any x, g x is defined whenever fun x is defined
and b x holds.

• h :: X -> Y such that, for any x, h x is defined whenever fun x is defined
and b x holds.
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• (***) :: Y -> Y -> Y such that operation *** is defined for all elements
of Y and is an associative operation with left identity e.

• f :: X -> Y such that, for any x, f x is defined whenever fun x is defined
and not (b x) holds.

• X with relation ≺ admits induction (i.e., ⟨X,≺⟩ is a well-founded ordering).

• For any x, if fun x is defined and b x holds, then g x ≺ x.

Note that both fun x and the recursive leg h x *** fun (g x) have
the general structure y *** fun z for some expressions y and z (i.e.,
fun x = e *** fun x). Thus we specify a more general function fun' such
that

fun' :: Y -> X -> Y
fun' y x = y *** fun x

and such that fun' is defined for any x ∈ X for which fun x is defined.

Given the above specification, we note that:

fun' e x

= { fun' specification }

e *** fun x

= { e is the left identity for *** }

fun x

We proceed by induction on the type X with ≺. (We are using well-founded
induction, a more general form of induction than we have used before.

We have two cases. The base case is when not (b x) holds for argument x of
fun'. The inductive case is when b x (i.e, g x ≺ x).

Base case not (b x): (That is, x is a minimal element of X under ≺.)

fun' y x

= { fun' specification }

y *** fun x

= { fun.1 }

y *** f x

Inductive case b x: (That is, g x ≺ x.)

Given that there is a definition for fun' y (g x) that satisfies the specification
for any y

fun' y (g x) = y *** fun (g x)

calculate a definition for fun' y x that satisfies the specification.
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fun' y x

= { fun' specification }

y *** fun x

= { fun.2 }

y *** (h x *** fun (g x))

= { *** associativity }

(y *** h x) *** fun (g x)

= { g x ≺ x, induction hypothesis }

fun' (y *** h x) (g x)

Thus we have synthesized the following tail recursive definition for function fun'
and essentially proved the Tail Recursion Theorem shown below.

fun' :: Y -> X -> Y
fun' y x | not (b x) = y *** f x -- fun'.1

| b x = fun' (y *** h x) (g x) -- fun'.2

Note that the first parameter of fun' is an accumulating parameter.

Tail Recursion Theorem: If fun, fun', and e are defined as given above,
then fun x = fun' e x.

Now let’s consider the rev and rev' functions again. First, let’s rewrite the
definitions of rev in a form similar to the definition of fun.

rev :: [a] -> [a]
rev xs | xs == [] = [] -- rev.1

| xs /= [] = rev (tail xs) ++ [head xs] -- rev.2

For rev we substitute the following for the components of the fun definition:

• fun x ← rev xs

• b x ← xs /= []

• g x ← tail xs

• h x ← [head xs]

• l *** r ← r ++ l (Note the flipped operands,)

• f x ← []

• l ≺ r ← (length l) < (length r)

• e ← []

• fun' y x ← rev' xs ys (Note the flipped arguments.)

Thus, by applying the tail recursion theorem, fun' becomes the following:
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rev' :: [a] -> [a] -> [a]
rev' xs ys

| xs == [] = ys -- rev'.1
| xs /= [] = rev' (tail xs) ([head xs]++ys) -- rev'.2

From the Tail Recursion Theorem, we conclude that rev xs = rev' xs [].

Why would we want to convert a backward linear recursive function to a tail
recursive form?

• A tail recursive definition is sometimes more space efficient (as we saw in
Chapter 9).

This is especially the case if the strictness of an accumulating parameter
can be exploited (as we saw in Chapters 9 and 15).

• A tail recursive definition sometimes allows the replacement of an “expen-
sive” operation (requiring many steps) by a less “expensive” one. (For
example, ++ is replaced by cons in the transformation from rev to rev'.)

• A tail recursive definition can be transformed (either by hand or by a
compiler) into an efficient loop.

• A tail recursive definition is usually more general than its backward linear
recursive counterpart. Sometimes we can exploit this generality to syn-
thesize a more efficient definition. (We see an example of this in the next
subsection.)

26.7 Finding Better Tail Recursive Algorithms
This section is adapted from Cohen [34:11.3].

Although the Tail Recursion Theorem is important, the technique we used to
develop it is perhaps even more important. We can sometimes use the technique
to transform one tail recursive definition into another that is more efficient [98].

Consider exponentiation by a natural number power. The operation ** can be
defined recursively in terms of multiplication as follows:

infixr 8 **
(**) :: Int -> Int -> Int
m ** 0 = 1 -- **.1
m ** n | n > 0 = m * (m ** n) -- **.2

For (**) we substitute the following for the components of the fun definition of
the previous subsection:

• fun x ← m ** n

• b x ← n > 0 (Applied only to natural numbers.)

• g x ← n - 1
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• h x ← m

• l *** r ← l * r

• f x ← 1

• l ≺ r ← l < r

• e ← 1

• fun' y x ← exp a m n

Thus, by applying the Tail Recursion Theorem, we define the function exp such
that

exp a m n = a * (m ** n)

and, in particular:

exp 1 m n = m ** n

The resulting function exp is defined as follows (for n >= 0):

exp :: Int -> Int -> Int -> Int
exp a m 0 = a -- exp.1
exp a m n = exp (a*m) m n -- exp.2

In terms of time, this function is no more efficient than the original version;
both require O(n) multiplies. (However, by exploiting the strictness of the first
parameter, exp can be made more space efficient than **. )

Note that exp algorithm converges upon the final result in steps of one. Can
we take advantage of the generality of exp and the arithmetic properties of
exponentiation to find an algorithm that converges in larger steps?

Yes, we can by using the technique that we used to develop the Tail Recursion
Theorem. In particular, let’s try to synthesize an algorithm that converges
logarithmically (in steps of half the distance) instead of linearly.

Speaking operationally, we are looking for a “short cut” to the result. To find
this short cut, we use the “maps” that we have of the “terrain”. That is, we take
advantage of the properties we know about the exponentiation operator.

We thus attempt to find expressions x and y such that

exp x y (n/2) = exp a m n

where “/” represents division on integers.

For the base case where n = 0, this is trivial. We proceed with a calculation to
discover values for x and y that make

exp x y (n/2) = exp a m n

when n > 0 (i.e., in the inductive case). In doing this we can use the specification
for exp (i.e.,exp a m n = a * (m ** n)).
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exp x y (n/2)

= { exp specification }

x * (y ** (n/2))

= { Choose y = m ** 2 (Note 1) }

x * ((m ** 2) ** (n/2))

Note 1: The strategy is to make choices for x and y that make

x * (y ** (n/2))

and

a * (m ** n)

equal. This choice for y is toward getting the m ** n term.

Because we are dealing with integer division, we need to consider two cases
because of truncation.

Subcase even n (for n > 0):

x * ((m ** 2) ** (n/2))

= { arithmetic properties of exponentiation, n even }

x * (m ** n)

= { Choose x = a, toward getting a * (m ** n) }

a * (m ** n)

= { exp specification }

exp a m n

Thus, for even n, we derive:

exp a m n = exp a (m*m) (n/2)

We optimize and replace m ** 2 by m * m.

Subcase odd n (for n > 0): That is, n/2 = (n-1)/2.

x * ((m ** 2) ** ((n-1)/2))

= { arithmetic properties of exponentiation }

x * (m ** (n-1))

= { Choose x = a * m, toward getting a * (m ** n) }

(a * m) * (m ** (n-1))

= { arithmetic properties of exponentiation }

a * (m ** n)
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= { exp specification }

exp a m n

Thus, for odd n, we derive:

exp a m n = exp (a*m) (m*m) (n/2)

To differentiate the logarithmic definition for exponentiation from the linear
one, we rename the former to exp'. We have thus defined exp' as follows (for
n >= 0):

exp' :: Int -> Int -> Int -> Int
exp' a m 0 = a -- exp'.1
exp' a m n

| even n = exp' a (m*m) (n/2) -- exp'.2
| odd n = exp' (a*m) (m*m) ((n-1)/2) -- exp'.3

Above we showed that exp a m n = exp' a m n. However, execution of exp'
converges faster upon the result: O(log2 n) steps rather than O(n)‘.

Note: Multiplication and division of integers by natural number powers of 2,
particularly 21, can be implemented on must current computers by arithmetic
left and right shifts, respectively, which are faster than general multiplication
and division.

26.8 What Next?
Chapter 27 applies the program synthesis techniques developed in this chapter
to a larger set of examples on text processing.

No subsequent chapter depends explicitly upon the program synthesis content
from these chapters. However, if practiced regularly, the techniques explored in
this chapter can enhance a programmer’s ability to solve problems and construct
correct functional programming solutions.

26.9 Exercises
1. The following function computes the integer base 2 logarithm of a positive

integer:

lg :: Int -> Int
lg x | x == 1 = 0

| x > 1 = 1 + lg (x/2)

Using the tail recursion theorem, write a definition for lg that is tail
recursive.

2. Synthesize the recursive definition for ++ from the following specification:

xs ++ ys = foldr (:) ys xs
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3. Using tupling and function fact5 from Chapter 4, synthesize an efficient
function allfacts to generate a list of factorials for natural numbers 0
through parameter n, inclusive.

4. Consider the following recursive definition for natural number multiplica-
tion:

mul :: Int -> Int -> Int
mul m 0 = 0
mul m (n+1) = m + mul m n

This is an O(n) algorithm for computing m * n. Synthesize an alternative
operation that is O(log2 n). Doubling (i.e., n*2) and halving (i.e., n/2
with truncation) operations may be used but not multiplication (*) in
general.

5. Derive a “more general” version of the Tail Recursion Theorem for functions
of the shape

func :: X -> Y
func x | not (b x) = f x - -- func.1 `

| b x = h x *** func (g x) +++ d.x -- func.2

where functions b, f, g, and h are constrained as in the definition of fun in
the Tail Recursion Theorem. Be sure to identify the appropriate constraints
on d, ***, and +++ including the necessary properties of *** and +++.
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to HTML, PDF, and other forms as needed.

26.11 Terms and Concepts
TODO
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27 Text Processing Example
27.1 Chapter Introduction
Chapter 26 illustrates how to synthesize function definitions from their specifica-
tions.

This chapter (27) applies these program synthesis techniques to a larger set of
examples on text processing.

27.2 Text Processing Example
In this section we develop a text processing package similar to the one in Section
4.3 of the Bird and Wadler textbook [15]. The text processing package in
the Haskell standard Prelude is slightly different in its treatment of newline
characters.

A textual document can be viewed in many different ways. At the lowest level,
we can view it as just a character string and define a type synonym as follows:

type Text = String

However, for other purposes, we may want to consider the document as having
more structure (i.e., view it as a sequence of words, lines, paragraphs, pages,
etc). We sometimes want to convert the text from one view to another.

Consider the problem of converting a Text document to the corresponding
sequence of lines. Suppose that in the Text{.haskell document, the newline
characters '\n'{.haskell serve as separators of lines, not themselves part of the
lines. Because each line is a sequence of characters, we define a type synonym
Line as follows:

type Line = String

We want a function lines' that will take a Text document and return the
corresponding sequence of lines in the document. The function has the type
signature:

lines' :: Text -> [Line]

For example, the Haskell expression

lines' "This has\nthree\nlines"

yields:

["This has", "three ", "lines"]

Writing function lines' is not trivial. However, its inverse unlines' is quite
easy. Function unlines' takes a list of Lines, inserts a newline character between
each pair of adjacent lines, and returns the Text document resulting from the
concatenation.
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unlines' :: [Line] -> Text

Let’s see if we can develop lines' from unlines'.

The basic computational pattern for function unlines' is a folding operation.
Because we are dealing with the construction of a list and the list constructors
are nonstrict in their right arguments, a foldr operation seems more appropriate
than a foldl operation.

To use foldr, we need a binary operation that will append two lines with a
newline character inserted between them. The following, a bit more general,
operation insert' will do that for us. The first argument is the element that is
to be inserted between the two list arguments.

insert' :: a -> [a] -> [a] -> [a]
insert' a xs ys = xs ++ [a] ++ ys -- insert.1

Informally, it is easy to see that (insert' a) is an associative operation but
that it has no right (or left) identity element.

Given that (insert' a) has no identity element, there is no obvious “seed”
value to use with fold. Thus we will need to find a different way to express
unlines'.

If we restrict the domain of unlines' to non-nil lists of lines, then we can use
foldr1, a right-folding operation defined over non-empty lists (in the Prelude).
This function does not require an identity element for the operation. Function
foldr1 can be defined as follows:

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

Note: There is a similar function (in the Prelude), foldl1 that takes a non-nil
list and does a left-folding operation.

Thus we can now define unlines' as follows:

unlines' :: [Line] -> Text
unlines' xss = foldr1 (insert' '\n') xss

Given the definition of unlines', we can now specify what we want lines'
to do. It must satisfy the following specification for any non-nil xss of type
[Line]:

lines' (unlines' xss) = xss

That is, lines' is the inverse of unlines' for all non-nil arguments.

The first step in the synthesis of lines' is to guess at a possible structure for
the lines' function definition. Then we will attempt to calculate the unknown
pieces of the definition.
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Because unlines' uses a right-folding operation, it is reasonable to guess that
its inverse will also use a right-folding operation. Thus we speculate that lines'
can be defined as follows, given an appropriately defined operation op and “seed
value” a.

lines' :: Text -> [Line]
lines' = foldr op a

Because of the definition of foldr and type signature of lines', function op
must have the type signature

op :: Char -> [Line] -> [Line]

and a must be the right identity of op and hence have type [Line].

The task now is to find appropriate definitions for op and a.

From what we know about unlines', foldr1, lines', and foldr, we see that
the following identities hold. (These can be proved, but we do not do so here.)

unlines' [xs] = xs -- unlines.1
unlines' ([xs]++xss) =

insert' '\n' xs (unlines' xss) -- unlines.2

lines' [] = a -- lines.1
lines' ([x]++xs) = op x (lines' xs) -- lines.2

Note the names we give each of the above identities (e.g., unlines.1). We use
these equations to justify our steps in the calculations below.

Next, let us calculate the unknown identity element a. The strategy is to
transform a by use of the definition and derived properties for unlines' and
the specification and derived properties for lines' until we arrive at a constant.

a

= { lines.1 (right to left) }

lines' []

= { unlines'.1 (right to left) with xs = [] }

lines' (unlines' [[]])

= { specification of lines' (left to right) }

[[]]

Therefore we define a to be [[]]. Note that because of lines.1, we have also
defined lines' in the case where its argument is [].

Now we proceed to calculate a definition for op. Remember that we assume
xss /= [].
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As above, the strategy is to use what we know about unlines' and what we
have assumed about lines' to calculate appropriate definitions for the unknown
parts of the definition of lines'. We first expand our expression to bring in
unlines'.

op x xss

= { specification for lines' (right to left) }

op x (lines' (unlines' xss))

= { lines.2 (right to left) }

lines' ([x] ++ unlines' xss)

Because there seems no other way to proceed with our calculation, we distinguish
between cases for the variable x. In particular, we consider the case where x is
the line separator and the case where it is not, i.e., x == '\n' and x /= '\n'.

Case x == '\n':

Our strategy is to absorb the '\n' into the unlines', then apply the specification
of lines'.

lines' ("\n" ++ unlines' xss)

= { [] is the identity for ++ }

lines' ([] ++ "\n" ++ unlines' xss)

= { insert.1 (right to left) with a == '\n' }

lines' (insert' '\n' [] (unlines' xss))

= { unlines.2 (right to left) }

lines' (unlines' ([[]] ++ xss))

= { specification of lines' (left to right) }

[[]] ++ xss

Thus op '\n' xss = [[]] ++ xss.

Case x /= '\n':

Our strategy is to absorb the [x] into the unlines', then apply the specification
of lines.

lines' ([x] ++ unlines' xss)

= { Assumption xss /= [], let xss = [ys] ++ yss }

lines' ([x] ++ unlines' ([ys] ++ yss))

= { unlines.2 (left to right) with a = '\n' }

lines' ([x] ++ insert' '\n' ys (unlines' yss))
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= { insert.1 (left to right) }

lines' ([x] ++ (ys ++ "\n" ++ unlines' yss))

= { ++ associativity }

lines' (([x] ++ ys) ++ "\n" ++ unlines' yss)

= { insert.1 (right to left) }

lines' (insert' '\n' ([x]++ys) (unlines' yss))

= { unlines.2 (right to left) }

lines' (unlines' ([[x]++ys] ++ yss))

= { specification of lines' (left to right) }

[[x]++ys] ++ yss

Thus, for x /= '\n' and xss /= []:

op x xss = [[x] ++ head xss] ++ (tail xss)

To generalize op like we did insert' and give it a more appropriate name, we
define op to be breakOn '\n' as follows:

breakOn :: Eq a => a -> a -> [[a]] -> [[a]]
breakOn a x [] = error "breakOn applied to nil"
breakOn a x xss | a == x = [[]] ++ xss

| otherwise = [[x] ++ ys] ++ yss
where (ys:yss) = xss

Thus, we get the following definition for lines':

lines' :: Text -> [Line]
lines' xs = foldr (breakOn '\n') [[]] xs

Let’s review what we have done in this example. We have synthesized lines'
from its specification and the definition for unlines', its inverse. Starting from
a precise, but non-executable specification, and using only equational reasoning,
we have derived an executable definition of the required function.

The technique used is a familiar one in many areas of mathematics:

1. We guessed at a form for the solution.

2. We then calculated the unknowns.

Note: The definition of lines and unlines in the standard Prelude treat
newlines as line terminators instead of line separators. Their definitions follow.

lines :: String -> [String]
lines "" = []
lines s = l : (if null s' then [] else lines (tail s'))

where (l, s') = break ('\n'==) s
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unlines :: [String] -> String
unlines = concat . map (\l -> l ++ "\n")

27.2.1 Word processing

Let’s continue the text processing example from the previous subsection a bit
further. We want to synthesize a function to break a text into a sequence of
words.

For the purposes here, we define a word as any nonempty sequence of characters
not containing a space or newline character. That is, a group of one or more
spaces and newlines separate words. We introduce a type synonym for words.

type Word = String

We want a function words' that breaks a line up into a sequence of words.
Function words' thus has the following type signature:

words' :: Line -> [Word]

For example, expression

words' "Hi there"

yields:

["Hi", "there"]

As in the synthesis of lines', we proceed by defining the “inverse” function
first, then we calculate the definition for words'.

All unwords' needs to do is to insert a space character between adjacent elements
of the sequence of words and return the concatenated result. Following the
development in the previous subsection, we can thus define unwords' as follows.

unwords' :: [Word] -> Line
unwords' xs = foldr1 (insert' ' ') xs

Using calculations similar to those for lines', we derive the inverse of unwords'
to be the following function:

foldr (breakOn' ') [[]]

However, this identifies zero-length words where there are adjacent spaces. We
need to filter those out.

words' :: Line -> [Word]
words' = filter (/= []) . foldr (breakOn' ') [[]]

Note that

words' (unwords' xss) = xss

for all xss of type [Word], but that
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unwords' (words' xs) = xs

for some xs of type Line. The latter is undefined when words' {.haskell} xs
returns []. Where it is defined, adjacent spaces in xs are replaced by a single
space in unwords' (words' xs).

Note: The functions words and unwords in the standard Prelude differ in that
unwords [] = [], which is more complete.

27.2.2 Paragraph processing

Let’s continue the text processing example one step further and synthesize a
function to break a sequence of lines into paragraphs.

For the purposes here, we define a paragraph as any nonempty sequence of
nonempty lines. That is, a group of one or more empty lines separate paragraphs.
As above, we introduce an appropriate type synonym:

type Para = [Line]

We want a function paras' that breaks a sequence of lines into a sequence of
paragraphs:

paras' :: [Line] -> [Para]

For example, expression

paras' ["Line 1.1","Line 1.2","","Line 2.1"]

yields:

[["Line 1.1","Line 1.2"],["Line 2.1"]]

As in the synthesis of lines' and words', we can start with the inverse and
calculate the definition of paras'. The inverse function unparas' takes a
sequence of paragraphs and returns the corresponding sequence of lines with an
empty line inserted between adjacent paragraphs.

unparas' :: [Para] -> [Line]
unparas' = foldr1 (insert' [])

Using calculations similar to those for lines' and words', we can derive the
following definitions:

paras' :: [Line] -> [Para]
paras' = filter (/= []) . foldr (breakOn []) [[]]

The filter (/= []) operation removes all “empty paragraphs” corresponding
to two or more adjacent empty lines.

Note: There are no equivalents of paras' and ‘unparas' in the standard prelude.
As with unwords, unparas' should be redefined so that unparas' [] = [],
which is more complete.
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27.2.3 Other text processing functions

Using the six functions in our text processing package, we can build other useful
functions.

1. Count the lines in a text.

countLines :: Text -> Int
countLines = length . lines'

2. Count the words in a text.

countWords :: Text -> Int
countWords = length . concat . (map words') . lines'

An alternative using a list comprehension is:

countWords xs =
length [ w | l <- lines' xs, w <- words' l]

3. Count the paragraphs in a text.

countParas :: Text -> Int
countParas = length . paras' . lines'

4. Normalize text by removing redundant empty lines and spaces.

The following functions take advantage of the fact that paras' and words'
discard empty paragraphs and words, respectively.

normalize :: Text -> Text
normalize = unparse . parse

parse :: Text -> [[[Word]]]
parse = (map (map words')) . paras' . lines'

unparse :: [[[Word]]] -> Text
unparse = unlines' . unparas' . map (map unwords')

We can also state parse and unparse in terms of list comprehensions.

parse xs =
[ [words' l | l <- p] | p <- paras' (lines' xs) ]

unparse xssss =
unlines' (unparas' [ [unwords' l | l<-p] | p<-xssss])

Section 4.3.5 of the Bird and Wadler textbook [15] goes on to build functions to
fill and left-justify lines of text.
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27.3 What Next?
Chapter 26 illustrates how to synthesize (i.e., derive or calculate) function
definitions from their specifications. This chapter (27) applies these program
synthesis techniques to larger set of examples on text processing.

No subsequent chapter depends explicitly upon the program synthesis content
from these chapters. However, if practiced regularly, the techniques explored in
this chapter can enhance a programmer’s ability to solve problems and construct
correct functional programming solutions.

27.4 Exercises
TODO

27.5 Acknowledgements
In Summer 2018, I adapted and revised this chapter and the next from Chapter
12 of my Notes on Functional Programming with Haskell [42].

These previous notes drew on the presentations in the first edition of the clas-
sic Bird and Wadler textbook [15] and other functional programming sources
[13,14,98,171,178]. They were also influenced by my research, study, and teaching
related to program specification, verification, derivation, and semantics [[28];
[34]; [39]; [40]; [41]; [64]; [65]; [66]; [85]; [86]; [107]; vanGesteren1990].

I incorporated this work as new Chapter 26, Program Synthesis, and new Chapter
27, Text Processing (this chapter), in the 2018 version of the textbook Exploring
Languages with Interpreters and Functional Programming and continue to revise
it.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

27.6 Terms and Concepts
Program synthesis, synthesizing a function from its inverse, text processing, line,
word, paragraph, terminator, separator.
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28 Type Inference
28.1 Chapter Introduction
The goal of this chapter (28) is to show how type inference works. It presents
the topic using an equational reasoning technique.

This chapter depends upon the reader understanding Haskell polymorphic, higher-
order function concepts (e.g., from studying Chapters 13-17), but it is otherwise
independent of other chapters. No subsequent chapter depends explicitly upon
this content.

28.2 Motivation
How can we deduce the type of a Haskell expression?

To get the general idea, let’s look at a few examples.

Note: The discussion here is correct for monomorphic functions, but it is a bit
simplistic for polymorphic functions. However, it should be of assistance in
understanding how types are assigned to Haskell expressions.

28.3 Example: Functional Composition
Expressed in prefix form, functional composition can be defined with the equation:

(.) f g x = f (g x)

We begin the process of type inference by assigning types to the parameter
names and to the function’s defining expression (i.e., its result). We introduce
new type names t1, t2, t3 and t4 for the components of (.) as follows:

f :: t1 -- parameter 1 of (.)
g :: t2 -- parameter 2 of (.)
x :: t3 -- parameter 3 of (.)

f (g x) :: t4 -- defining expression for (.)

The type of (.) is therefore given by:

(.) :: t1 -> t2 -> t3 -> t4

We are not finished because there are certain relationships among the new types
that must be taken into account. To see what these relationships are, we use
the following inference rules.

• Application rule: If f x :: t, then we can deduce x :: t' and
f :: t' -> t for some new type t'.

• Equality rule: If both x :: t and x :: t' for some variable x , then
we can deduce t = t'.

410



• Function rule: If (t -> u) = (t' -> u'), then we can deduce t = t'
and u = u'.

Using the application rule on {.haskell} f (g x) :: t4, we introduce a new
type t5 such that:

g x :: t5
f :: t5 -> t4

Using the application rule for g x :: t5, we introduce another new type t6
such that:

x :: t6
g :: t6 -> t5

Using the equality rule on the two types deduced for each of f, g, and x,
respectively, we get the following identities:

t1 = (t5 -> t4) -- f
t2 = (t6 -> t5) -- g
t3 = t6 -- x

For function (.), we thus deduce the type signature:

(.) :: (t5 -> t4) -> (t6 -> t5) -> t6 -> t4

If we replace the type names by Haskell generic type variables that follow the
usual naming convention, we get:

(.) :: (b -> c) -> (a -> b) -> a -> c

28.4 Example: Multiple Use of Polymorphic Function
(fst)

Now let’s consider the function definition:

f x y = fst x + fst y

Note that the names (+) and fst occur on the right side of the definition, but
do not occur on the left.

From the Haskell Prelude, we can see that:

(+) :: Num a => a -> a -> a
fst :: (a, b) -> a

The Num a context contrains the polymorphism on type variable a.

We must be careful. The two occurrences of the polymorphic function fst in the
definition for f need not bind the type variables a and b to the same concrete
types. For example, consider the expression:

fst (2, True) + fst (1, "hello")
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This expression is well-typed despite the fact that the first occurrence of fst
has the type

Num a => (a,Bool) -> a

and the second occurrence has type

Num a => (a, [Char]) -> a

Furthermore, the two occurrences of the type variable a are not, in general,
required to bind to the same type. (However, as we will see, they do in this
expression because of the addition operation.)

To handle the situation with the multiple applications of fst, we use the following
rule.

• Polymorphic use rule: If a polymorphic function is applied multiple
times in an expression, then the type of each occurrence is determined
independently, with each assigned new type variables.

Following the polymorphic use rule, we rewrite the definition of f in the form

f x y = fst1 x + fst2 y

and assume two different instantiations of the generic type of fst:

fst1 :: (u1, u2) -> u1
fst2 :: (v1, v2) -> v1

After making the above transformation, we proceed by assigning types to the
parameters and definition of f, introducing three new types:

x :: t1 -- parameter 1 of f
y :: t2 -- parameter 2 of f

fst1 x + fst2 y :: t3 -- defining expression for f

Thus we have the following type for f:

f :: t1 -> t2 -> t3

Now we can rewrite the defining expression for f fully in prefix form to get:

(+) (fst1 x) (fst2 y)

Then, using the application rule on the above expression, we deduce:

(fst2 y) :: t4
(+) (fst1 x) :: t4 -> t3

Using the application rule on (fst2 y) :: t4, we get:

y :: t5
fst2 :: t5 -> t4

Similarly, using the application rule on (+) (fst1 x) :: t4 -> t3, we get:
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(fst1 x) :: t6
(+) :: t6 -> t4 -> t3

Going further and applying the application rule to (fst1 x) :: t6, we deduce:

x :: t7
fst1 :: t7 -> t6

Now we have introduced types for all the symbols appearing in the definition
of function f. We begin simplification by using the equality rule for x, y, fst1,
fst2, and (+), respectively. We thus deduce the type equations:

t1 = t7 -- x
t2 = t5 -- y

((u1, u2) -> u1) = (t7 -> t6) -- fst1
((v1, v2) -> v1) = (t5 -> t4) -- fst2

(Num a => a -> a -> a) = (t6 -> t4 -> t3) -- (+)

Now, using the function rule on the last three equations above, we derive:

t7 = (u1, u2)
t6 = u1

t5 = (v1, v2)
t4 = v1

t3 = t4 = t6 = v1 = u1 = (Num a => a)

We had assigned type f :: t1 -> t2 -> t3 originally. Substituting from the
above, we deduce the following type:

f :: Num a => (a, u2) -> (a, v2) -> a

Finally, we can replace the type names u2 and v2 by Haskell generic type
variables that follow the usual naming convention. We get the following inferred
type for function f:

f :: Num a => (a, b) -> (a, c) -> a

28.5 Example: Fixpoint (fix)
For this example, consider the definition:

fix f = f (fix f)

To deduce a type for fix, we proceed as before and introduce types for the
parameters and defining expression of f:

f :: t1 -- parameter of fix
f (fix f) :: t2 -- defining expression for fix

Thus, fix has the type:
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fix :: t1 -> t2

Using the application rule on the expression f (fix f), we obtain:

(fix f) :: t3
f :: t3 -> t2

Then using the application rule on the expression fix f, we get:

f :: t4
fix :: t4 -> t3

Using the equality rule on f and fix, we deduce:

t1 = t4 = (t3 -> t2) -- f
(t1 -> t2) = (t4 -> t3) -- fix

Then, using the function rule on the second equation, we obtain the identities:

t1 = t4
t2 = t3

Since fix :: t1 -> t3, we derive the type:

fix :: (t3 -> t3) -> t3

If we replace t3 by a Haskell generic type variable that follows the usual naming
convention, we get the following inferred type for fix:

fix :: (a -> a) -> a

28.6 Example: Incorrect Typing (selfapply)
Finally, let us consider an example in which the typing is wrong. Let us define
selfapply as follows:

selfapply f = f f

Proceeding as in the previous examples, we introduce new types for the parame-
ters and defining expression of f:

f :: t1 -- parameter of selfapply
f f :: t2 -- defining expression for selfapply

Thus we have the type:

selfapply :: t1 -> t2

Using the application rule on f f, we get:

f :: t3
f :: t3 -> t2

But the equality rule for f tells us that:

t1 = t3 = (t3 -> t2)
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or just

t1 = (t1 -> t2)

However, the equation t1 = (t1 -> t2) does not possess a solution for t1 and
the definition of selfapply is thus rejected by the type checker.

28.7 Other Aspects of Type Inference
Haskell function definitions must also conform to the following rules.

• Guard rule: Each guard must be an expression of type Bool.

• Tuple rule: The type of a tuple of elements is the tuple of their respective
types.

28.8 What Next?
This chapter is largely independent of other chapters. No subsequent chapter
depends explicitly upon this content.

28.9 Exercises
TODO

28.10 Acknowledgements
In Spring 2017, I adapted and revised this chapter from my previous HTML
notes on this topic. (These were supplementary notes for a course based on [42].)
I based the previous notes on the presentations in:

• Section 2.8 of the book Introduction to Functional Programming (First
Edition) by Richard Bird and Philip Wadler [15]

• Chapter 9 of the book Haskell: The Craft of Functional Programming
(First Edition) by Simon Thompson [171]

I thank MS student Hongmei Gao for helping me prepare the first version of the
previous notes in Spring 2000.

In Summer 2018, I incorporated this work as new Chapter 24, Type Inference,
in the 2018 version of the textbook Exploring Languages with Interpreters and
Functional Programming and continue to revise it.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.
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In 2022, I reordered the Chapters, making this Chapter 28 (instead of Chapter
24).

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

28.11 Terms and Concepts
Type inference, function, polymorphism, type variable, function composition,
fixpoint, application rule, equality rule, function rule, polymorphic use rule,
guard rule, tuple rule.
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29 Models of Reduction
29.1 Chapter Introduction
TODO:

• Complete introduction and other missing pieces.

• Redraw LaTeX figures so they appear in formats other than LaTeX/PDF.
• Remove or explain any unnecessary redundancies between this chapter and

chapters 8, 9, etc.
• Consider whether to replace the use of Haskell as pseudo-math notation.
• Check section breaks and titles.

29.2 Big-O and Efficiency
We state efficiency (i.e., time complexity or space complexity) of programs in
terms of the “Big-O” notation and asymptotic analysis.

For example, consider the list-reversing functions rev and reverse that we have
looked at several times. We stated that the number of steps required to evaluate
rev xs is, in the worst case, “on the order of” nˆ2 where n denotes the length
of list xs. We let the number of steps be our measure of time and write

T(rev xs) = O(nˆ2)

to mean that the time to evaluate rev xs is bounded by some (mathematical)
function that is proportional to the square of the length of list xs.

Similarly, we write

T(reverse xs) = O(n)

to mean that the time (i.e., number of steps) to evaluate reverse xs is bounded
by some function that is proportional to the length of xs.

Note: These expressions are not really equalities. We write the more precise
expression

T(reverse xs)

on the left-hand side and the less precise expression O(n) on the right-hand side.

For short lists, the performance of rev and reverse are similar. But as the lists
get long, rev requires considerably more steps than reverse.

The Big-O analysis is an asymptotic analysis. That is, it estimates the order
of magnitude of the evaluation time as the size of the input approaches infinity
(i.e., gets large). We often do worst case analyses of time. Such analyses are
usually easier to do than average-case analyses.

417



29.3 Reduction
29.3.1 Definition

The terms reduction, simplification, and evaluation all denote the same process:
rewriting an expression in a “simpler” equivalent form. That is, they involve two
kinds of replacements:

• the replacement of a subterm that satisfies the left-hand side of an equation
by the right-hand side with appropriate substitution of arguments for
parameters. (This is sometimes called β-reduction.)

• the replacement of a primitive application (e.g., + or *) by its value. (This
is sometimes called δ-reduction.)

29.3.2 Redexes

The term redex refers to a subterm of an expression that can be reduced.

An expression is said to be in normal form if it cannot be further reduced.

Some expressions cannot be reduced to a value. For example, 1/0 cannot be
reduced; an error message is usually generated if there is an attempt to evaluate
(i.e., reduce) such an expression.

For convenience, we sometimes assign the value ⊥ (pronounced “bottom”) to
such error cases to denote that their values are undefined. Remember that this
value cannot be manipulated within a computer.

Redexes can be selected for reduction in several ways. For instance, the redex
can be selected based on its position within the expression:

• leftmost redex first—where the leftmost reducible subterm in the ex-
pression text is reduced before any other subterms are reduced

• rightmost redex first—where the rightmost reducible subterm in the
expression text is reduced before any other subterms are reduced

The redex can also be selected based on whether or not it is contained within
another redex:

• outermost redex first—where a reducible subterm that is not contained
within any other reducible subterm is reduced before one that is contained
within another

• innermost redex first—where a reducible subterm that contains no
other reducible subterm is reduced before one that contains others

29.3.3 AOR and NOR

The two most often used reduction orders are:
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• applicative order reduction (AOR)—where the leftmost innermost
redex is reduced first

• normal order reduction (NOR)—where the leftmost outermost redex
is reduced first.

To see the difference between AOR and NOR consider the following functions:

fst :: (a,b) -> a
fst (x,y) = x

sqr :: Int -> Int
sqr x = x * x

Now consider the following reductions.

First, reduce the expression with AOR:

fst (sqr 4, sqr 2)

=⇒ { sqr }

fst (4*4, sqr 2)

=⇒ { * }

fst (16, sqr 2)

=⇒ { sqr }

fst (16, 2*2)

=⇒ { * }

fst (16, 4)

=⇒ { fst }

16

Thus AOR requires 5 reductions.

Second, reduce the expression with NOR:

fst (sqr 4, sqr 2)

=⇒ { fst }

sqr 4

=⇒ { sqr }

4*4

=⇒ { * }

16
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Thus NOR requires 3 reductions.

In this example NOR requires fewer steps because it avoids reducing the unneeded
second component of the tuple.

The number of reductions is different, but the result is the same for both reduction
sequences.

In fact, this is always the case. If any reduction terminates (and not all do),
then the resulting value will always be the same.

(Consequence of) Church-Rosser Theorem: If an expression can be reduced
in two different ways to two normal forms, then these normal forms are the same
(except that variables may need to be renamed).

The diamond property for the reduction relation → states that if an expression
E can be reduced to two expressions E1 and E2, then there is an expression N
which can be reached (by repeatedly applying →) from both E1 and E2. We use
the symbol ∗→ to represent the reflexive transitive closure of →. (E ∗→ E1 means
that E can be reduced to E1 by some finite, possibly zero, number of reductions.)

E
�

�	

∗→ @
@R

∗→

E1 E2
@

@R
∗→

�
�	

∗→
N

Some reduction orders may fail to terminate on some expressions. Consider the
following functions:

answer :: Int -> Int
answer n = fst (n+n, loop n)

loop :: Int -> [a\]
loop n = loop (n+1)

First, reduce the expression with AOR:

answer 1

=⇒ { answer }

fst (1+1,loop 1)

=⇒ { + }

fst (2,loop 1)
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=⇒ { loop }

fst (2,loop (1+1))

=⇒ { + }

fst (2,loop 2)

=⇒ { loop }

fst (2,loop (2+1))

=⇒ { + }

fst (2,loop 3)

=⇒ · · · Does not terminate normally

Second, reduce the expression with NOR:

answer 1

=⇒ { answer }

fst (1+1,loop 1)

=⇒ { fst }

1+1

=⇒ { + }

2

Thus NOR requires 3 reductions.

If an expression E has a normal form, then a normal order reduction of E (i.e.,
leftmost outermost) is guaranteed to reach the normal form (except that variables
may need to be renamed).

29.3.4 Concepts related to AOR and NOR

There are several concepts in functional programming languages related to AOR:

• Applicative order reduction (AOR) Reduce leftmost innermost redex
first.

• Eager evaluation Evaluate any expression that can be evaluated regard-
less of whether the result is ever needed. (For example, arguments of
a function are evaluated before the function is called.)

• Strict semantics A function is only defined if all of its arguments are
defined. For example, multiplication is only defined if both of its
operands are defined, 5 * \bot = \bot.
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• Call-by-value parameter passing Evaluate the argument expression
and bind its value to the function’s parameter.

Similarly, there are several concepts in functional programming languages related
to NOR:

• Normal order reduction (NOR) Reduce leftmost outermost redex
first.

• Lazy evaluation Do not evaluate an expression unless its result is needed.

• Nonstrict (lenient) semantics A function may have a value even if
some of its arguments are undefined. (For example, tuple construction
is not strict in either parameter. That is, (⊥,x) ̸= ⊥ and (x,⊥) ̸=
⊥.)

• Call-by-name parameter passing Pass the unevaluated argument ex-
pression to the function; evaluate it upon each reference.

Note that in the absence of side-effects (e.g., when we have referential trans-
parency, call-by-name gives the same result as call-by-value.

In general, call-by-name parameter passing is inefficient. However, a referentially
transparent language can replace call-by-name parameter passing with the
equivalent, but more efficient, call-by-need method.

In the call-by-need method, the unevaluated argument expression is passed to the
function as in call-by-name. The first reference to the corresponding parameter
causes the expression to be evaluated; subsequent references just use the value
computed by the first reference. Thus the expression is only evaluated when
needed and then only once.

Consider the sqr program again.

sqr x = x \* x

First, reduce the expression with AOR:

sqr (4+2)

=⇒ { + }

sqr 6

=⇒ { sqr }

6 * 6

=⇒ { * }

36

Thus AOR requires 3 reductions.

Second, reduce the expression with NOR:
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sqr (4+2)

=⇒ { sqr }

(4+2) * (4+2)

=⇒ { + }

6 * (4+2)

=⇒ { + }

6 * 6

=⇒ { * }

36

Thus NOR requires 4 reductions.

Here NOR is less efficient than AOR. What is the problem?

The argument (4+2) is reduced twice because the parameter appeared twice on
the right-hand side of the definition.

29.3.5 String and graph reduction

The rewriting strategy we have been using so far can be called string reduction
because our model involves the textual replacement of one string by an equivalent
string.

A more efficient alternative is graph reduction. In this technique, the expressions
are represented as (directed acyclic) expression graphs rather than text strings.
The repeated subterms of an expression are represented as shared components
of the expression graph. Once a shared component has been evaluated, it need
not be evaluated again. Thus leftmost outermost (i.e., normal order) graph
reduction is a technique for implementing call-by-need parameter passing.

The Haskell interpreter uses a graph reduction technique.

Consider the leftmost outermost graph reduction of the expression sqr (4+2).

sqr

?
+

�
�

�	

@
@
@R

4 2

=⇒ { sqr }

*'
&

$
%- �+

�
�

�	

@
@
@R

4 2

423



=⇒ { + }

*'
&

$
%- �6

=⇒ { * }

36

Note: In a graph reduction model, normal order reduction never performs more
reduction steps than applicative order reduction. It may perform fewer. And,
like all outermost reduction techniques, it is guaranteed to terminate if any
reduction sequence terminates.

As we see above, parameters that repeatedly occur on the right-hand side
introduce shared components into the expression graph. A programmer can also
introduce shared components into a function’s expression graph by using where
or let to define new symbols for subexpressions that occur multiple times in the
defining expression. This potentially increases the efficiency of the program .

Consider a program to find the solutions of the following equation:

a ∗ x2 + b ∗ x + c = 0

Using the quadratic formula the two solutions are:
−b±

√
b2−4∗a∗c
2∗a

Expressing this formula as a Haskell program to return the two solutions as a
pair, we get:

roots :: Float -> Float -> Float -> (Float,Float)
roots a b c = ( (-b-d)/e, (-b+d)/e )

where d = sqrt (sqr b - 4 * a * c)
e = 2 * a
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Note the explicit definition of local symbols for the subexpressions that occur
multiple times.

Function sqr is as defined previously and sqrt is a primitive function defined in
the standard prelude.

In one step, the expression roots 1 5 3 reduces to the expression graph shown
on the following page. For clarity, we use the following in the graph:

• tuple-2 denotes the pair forming operator ( , ).

• div denotes division (on Float).

• sub denotes subtraction.

• neg denotes unary negation.

The application roots 1 5 3 reduces to the following expression graph:

(Drawing Not Currently Available)

We use the total number of arguments as the measure of the size of a term or
graph.

Example: sqr 2 + sqr 7 has size 4.

+
�

�
�	

1

sqr

@
@
@R

2

sqr

?
3

2
?

4

7

Example: x * x where x = 7 + 2 has size 4.

*'
&1

$
%2- �+

�
�

�	

3 @
@
@R

4

7 2

Note: This size measure is an indication of the size of the unevaluated expression
that is held at a particular point in the evaluation process. This is a bit different
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from the way we normally think of space complexity in an imperative algorithms
class, that is, the number of “words” required to store the program’s data.

However, this is not as strange as it may first appear. Remember that data
structures such as lists and tuples are themselves expressions built by applying
constructors to simpler data.

29.4 Head Normal Form
Sometimes we need to reduce a term but not all the way to normal form.

Consider the expression head (map sqr [1..7]) and a normal order reduction.

head (map sqr [1..7])

=⇒ { [1..7] }

head (map sqr (1:[2..7]))

=⇒ { map.2 }

head (sqr 1 : map sqr [2..7])

=⇒ { head }

sqr 1

=⇒ { sqr }

1 * 1

=⇒ { * }

1

Note that the expression map sqr [1..7] was reduced but not all the way to
normal form. However, any term that is reduced must be reduced to head normal
form.

A term is in head normal form if:

• it is not a redex

• it cannot become a redex by reducing any of its subterms

If a term is in normal form, then it is in head normal form, but not vice versa.

Any term of form (e1:e2) is in head normal form, because regardless of how far
e1 and e2 are reduced, no reduction rule applies to (e1:e2). The cons operator
is the primitive list constructor; it is not defined in terms of anything else.

However, a term of form (e1:e2) is only in normal form if both e1 and e2 are
in their normal forms.

Similarly, any term of the form (e1,e2) is in head normal form. The tuple
constructor is a primitive operation; it is not defined in terms of anything else.
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However, a term of the form (e1,e2) is in normal form only if both e1 and e2
are.

Whether a term needs to be reduced further than head normal form depends
upon the context.

Example: In the reduction of the expression head (map sqr [1..7]), the term
map sqr [1..7] only needed to be reduced to head normal form, that is, to the
expression sqr 1 : map sqr [2..7].

However, appendChan stdout (show (map sqr [1..7])) exit done would
cause reduction of map sqr [1..7] to normal form.

29.5 Pattern Matching
For reduction using equations that involve pattern matching, the leftmost out-
ermost (i.e., normal order) reduction strategy is not, by itself, sufficient to
guarantee that a terminating reduction sequence will be found if one exists.

Consider function zip’.

zip' :: [a] -> [b] -> [(a,b)]
zip' (a:as) (b:bs) = (a,b) : zip' as bs
zip' _ _ = []

Now consider a leftmost outermost (i.e., normal order) reduction of the expression
zip’ (map sqr []) (loop 0), where sqr and loop are as defined previously.

zip’ (map sqr []) (loop 0)

=⇒ { map.1, to determine if first arg matches (a:as) }

zip’ [] (loop 0)

=⇒ { zip’.2 }

[]

Alternatively, consider a rightmost outermost reduction of the same expression.

zip’ (map sqr []) (loop 0)

=⇒ { loop, to determine if second arg matches (b:bs) }

zip’ (map sqr []) (loop (0+1))

=⇒ { + }

zip’ (map sqr []) (loop 1)

=⇒ { loop }

zip’ (map sqr []) (loop (1+1))

=⇒ { + }
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zip’ (map sqr []) (loop 2)

=⇒ · · · Does not terminate normally

Pattern matching should not cause an argument to be reduced unless absolutely
necessary; otherwise nontermination could result.

Pattern-matching reduction rule: Match the patterns left to right. Reduce
a subterm only if required by the pattern.

In zip’ (map sqr []) (loop 0) the first argument must be reduced to head
normal form to determine whether it matches (a:as) for the first leg of the
definition. It is not necessary to reduce the second argument unless the first
argument match is successful.

Note that the second leg of the definition, which uses two anonymous variables
for the patterns, does not require any further reduction to occur in order to
match the patterns.

The expressions

zip' (map sqr [1,2,3]) (map sqr [1,2,3])

and

zip' (map sqr [1,2,\]) []

both require their second arguments to be reduced to head normal form in order
to determine whether the arguments match (b:bs).

Note that the first does match and, hence, enables the first leg of the definition
to be used in the reduction. The second expression does not match and, hence,
disables the first leg from being used. Since the second leg involves anonymous
patterns, it can be used in this case.

• Normal order graph reduction e_{0} =⇒ e_{1} =⇒ e_{2} =⇒ · · · =⇒
e_{n}

• Time = number of reduction steps (n)

• Space = size of the largest expression graph e_{i}

Most lazy functional language implementations more-or-less correspond to graph
reduction.

29.6 Reduction Order and Space
It is always the case that the number of steps in an outermost graph reduction
≤ the number of steps in an innermost reduction of the same expression.

However, sometimes a combination of innermost and outermost reductions can
save on space and, hence, on implementation overhead.
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Consider the following definition of the factorial function. (This was called fact3
in Chapter 4.)

fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)

Now consider a normal order reduction of the expression fact 3.

fact 3

=⇒ { fact.2 }

3 * fact (3-1)

=⇒ { -, to determine pattern match }

3 * fact 2

=⇒ { fact.2 }

3 * (2 * fact (2-1))

=⇒ { -, to determine pattern match }

3 * (2 * fact 1)

=⇒ { fact.2 }

3 * (2 * (1 * fact (1-1))) MAX SPACE!

=⇒ { -, to determine pattern match }

3 * (2 * (1 * fact 0))

=⇒ { fact.1 }

3 * (2 * (1 * 1))

=⇒ { * }

3 * (2 * 1)

=⇒ { * }

3 * 2

=⇒ { * }

6

We define the following measures of the

• Time: Count reduction steps. 10 for this example.

In general, 3 for each n > 0, 1 for n = 0. Thus 3n+1 reductions. O(n).
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• Space: Count arguments in longest expression. 4 binary operations, 1
unary operation, hence size is 9 for this example.

In general, 1 multiplication for each n > 01 plus 1 subtraction and one
application of fact. Thus 2n + 3 arguments. O(n).

Note that function fact is strict in its argument. That is, evaluation of fact
always requires the evaluation of its argument.

Since the value of the argument expression n-1 in the recursive call is eventually
needed (by the pattern match), there is no reason to delay evaluation of the
expression. That is, the expression could be evaluated eagerly instead of lazily.
Thus any work to save this expression for future evaluation would be avoided.

Delaying the computation of an expression incurs overhead in the implementation.
The delayed expression and its calling environment (i.e., the values of variables)
must be packaged so that evaluation can resume correctly when needed. This
packaging—called a closure, suspension, or recipe—requires both space and time
to be set up.

Furthermore, delayed expressions can aggravate the problem of space leaks.

The implementation of a lazy functional programming language typically allocates
space for data dynamically from a memory heap. When the heap is exhausted,
the implementation searches through its structures to recover space that is no
longer in use. This process is usually called garbage collection.

However, sometimes it is very difficult for a garbage collector to determine
whether or not a particular data structure is still needed. The garbage collector
thus retains some unneeded data. These are called space leaks.

Aside: Picture bits of memory oozing out of the program, lost to the program
forever. Most of these bits collect in the bit bucket under the computer and are
automatically recycled when the interpreter restarts. However, in the past a few of
these bits leaked out into the air, gradually polluting the atmosphere of functional
programming research centers. Although it has not be scientifically verified,
anecdotal evidence suggests that the bits leaked from functional programs, when
exposed to open minds, metamorphose into a powerful intellectual stimulant.
Many imperative programmers have observed that programmers who spend a
few weeks in the vicinity of functional programs seem to develop a permanent
distaste for imperative programs and a strange enhancement of their mental
capacities.

Aside continued: As environmental awareness has grown in the functional
programming community, the implementors of functional languages have begun
to develop new leak-avoiding designs for the language processors and garbage
collectors. Now the amount of space leakage has been reduced considerably.
Although it is still a problem. Of course, in the meantime a large community of
programmers have become addicted to the intellectual stimulation of functional
programming. The number of addicts in the USA is small, but growing. FP
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traffickers have found a number of ways to smuggle their illicit materials into
the country. Some are brought in via the Internet from clandestine archives in
Europe; a number of professors and students are believed to be cultivating a
domestic supply. Some are smuggled from Europe inside strange red-and-white
covered books (but that source is somewhat lacking in the continuity of supply).
Some are believed hidden in Haskell holes; others in a young nerd named Haskell’s
pocket protector. (Haskell is Miranda’s younger brother; she was the first one
who had any comprehension about FP.)

Aside ends: Mercifully.

Now let’s look at a tail recursive definition of factorial.

fact' :: Int -> Int -> Int
fact' f 0 = f
fact' f n = fact' (f*n) (n-1)

Because of the Tail Recursion Theorem, we know that fact’ 1 n = fact n for
any natural n.

Now consider a normal order reduction of the expression fact’ 1 3.

fact’ 1 3

=⇒ { fact’.2 }

fact’ (1 * 3) (3 - 1)

=⇒ { -, to determine pattern match }

fact’ (1 * 3) 2

=⇒ { fact’.2 }

fact’ ((1 * 3) * 2) (2 - 1)

=⇒ { -, to determine pattern match }

fact’ ((1 * 3) * 2) 1

=⇒ { fact’.2 }

fact’ (((1 * 3) * 2) * 1) (1 - 1) MAX SPACE!

=⇒ { -, to determine pattern match }

fact’ (((1 * 3) * 2) * 1) 0

=⇒ { fact’.1 }

((1 * 3) * 2) * 1

=⇒ { * }

(3 * 2) * 1

=⇒ { * }
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6 * 1

=⇒ { 6 }

6

• Time: Count reduction steps. 10 for this example, same as for fact.

In general, 3 for each n > 0, 1 for n = 0. Thus 3*n+1 reductions. O(n).

• Space: Count arguments in longest expression. 4 binary operations, 1
two-argument function, hence size is 10 for this example.

In general, 1 multiplication for each n > 0 plus 1 subtraction and one
application of fact'. Thus 2*n+4 arguments. O(n).

Note that function fact’ is strict in both arguments. The second argument
of fact’ is evaluated immediately because of the pattern matching. The first
argument’s value is eventually needed, but its evaluation is deferred until after
the fact’ recursion has reached its base case.

Perhaps we can improve the space efficiency by forcing the evaluation of the first
argument immediately as well. In particular, we try a combination of outermost
and innermost reduction.

fact’ 1 3

=⇒ { fact’.2 }

fact’ (1 * 3) (3 - 1)

=⇒ { *, innermost }

fact’ 3 (3 - 1)

=⇒ { -, to determine pattern match }

fact’ 3 2

=⇒ { fact’.2 }

fact’ (3 * 2) (2 - 1)

=⇒ { *, innermost }

fact’ 6 (2 - 1)

=⇒ { -, to determine pattern match }

fact’ 6 1

=⇒ { fact’.2 }

fact’ (6 * 1) (1 - 1)

=⇒ { *, innermost }

fact’ 6 (1 - 1)
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=⇒ { -, to determine pattern match }

fact’ 6 0

=⇒ { fact’.1 }

6

• Time: Count reduction steps. 10 for this example. Same as for previous
two reduction sequences.

In general, 3 for each n > 0, 1 for n = 0. Thus 3*n+1 reductions. O(n).

• Space: Count arguments in longest expression.

For any n > 0, the longest expression consists of one multiplication, one
subtraction, and one call of fact'. Thus the size is constantly 6. O(1).

How to decrease space usage and implementation overhead.

1. The compiler could do strictness analysis and automatically force eager
evaluation of arguments that are always required.

This is done by many compilers. It is sometimes a complicated procedure.

2. The language could be extended with a feature that allows the programmer
to express strictness explicitly.

In Haskell, reduction order can be controlled by use of the special function
strict.

A term of the form strict f e is reduced by first reducing expression e to head
normal form, and then applying function f to the result. The term e can be
reduced by normal order reduction, unless, of course, it contains another call of
strict.

The following definition of fact’ gives the mixed reduction order given in the
previous example. That is, it evaluates the first argument eagerly to save space.

fact' :: Int -> Int -> Int
fact' f 0 = f
fact' f n = (strict fact' (f*n)) (n-1)

29.7 Choosing a Fold
Remember that earlier we defined two folding operations. Function foldr is a
backward linear recursive function that folds an operation through a list from
the tail (i.e., right) toward the head. Function foldl is a tail recursive function
that folds an operation through a list from the head (i.e., left) toward the tail.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
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foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

The first duality theorem (as given in the Bird and Wadler textbook [15]) states
the circumstances in which one can replace foldr by foldl and vice versa.

If ⊕ is a associative binary operation of type t -> t with identity element z,
then:

First duality theorem: If ⊕ is a associative binary operation of type t -> t
with identity element z, then:

foldr (⊕) z xs = foldl (⊕) z xs

Thus, often we can use either foldr or foldl to solve a problem. Which is
better?

We discussed this problem before, but now we have the background to understand
it a bit better.

Clearly, eager evaluation of the second argument of foldl, which is used as an
accumulating parameter, can increase the space efficiency of the folding operation.
This optimized operation is called foldl’ in the standard prelude.

foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f z [] = z
foldl' f z (x:xs) = strict (foldl' f) (f z x) xs

Suppose that op is strict in both arguments and can be computed in O(1) time and
O(1) space. (For example, + and * have these characteristics.) If n = length xs,
then both foldr op i xs and foldl op i xs can be computed in O(n) time
and O(n) space.

However, foldl’ op i xs) requires O(n) time and O(1) space. The reasoning
for this is similar to that given for fact’.

Thus, in general, foldl’ is the better choice for this case.

Alternatively, suppose that op is nonstrict in either argument. Then foldr is
usually more efficient than foldl.

As an example, consider operation || (i.e., logical-or). The || operator is strict
in the first argument, but not in the second. That is, True || x = True without
having to evaluate x.

Let xs = [x_1, x_2, x_3, ... x_n] such that (∃i : 1 ≤ i ≤ n :: x_i == True
) ∧ (∀j : 1 ≤< i :: x_i == False ))

Suppose x_i is the minimum i satisfying the above existential.

foldr (||) False xs

=⇒ { many steps }
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x_1 || (x_2 || ( ... || (x_i || ( ... || (x_n || False) ... )

Because of the nonstrict definition of ||, the above can stop after the x_i term
is processed. None of the list to the right of x_i needs to be evaluated.

However, a version which uses foldl must process the entire list.

foldl (||) False xs

=⇒ { many steps }

( ... ( False || x_i) || x_2) || ... ) || x_i) || ... ) || x_n

In this example, foldr is clearly more efficient than foldl.

29.8 What Next?
TODO

29.9 Exercises
TODO

29.10 Acknowledgements
TODO History of chapter in FP class.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

In 2022, I adapted and revised this chapter from Chapter 13 of my Notes on
Functional Programming with Haskell [42]. I had included some some of this
discussion in Chapter 8 in 2016 and later.

These previous notes drew on the presentations in the first edition of the classic
Bird and Wadler textbook [15:6.1–6.3], [73:6], and other functional programming
sources.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

29.11 Terms and Concepts
TODO
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30 Infinite Data Structures
30.1 Chapter Introduction
One particular benefit of lazy evaluation is that functions in Haskell can manipu-
late “infinite” data structures. Of course, a program cannot actually generate or
store all of an infinite object, but lazy evaluation will allow the object to be built
piece-by-piece as needed and the storage occupied by no-longer-needed pieces to
be reclaimed.

This chapter explores Haskell programming techniques for infinite data structures
such as lists.

TODO: Write Introduction, including goals of chapter.

TODO: - Complete chapter. Improve the writing. - Update and expand discussion
of infinite computations. - Recreate the missing Haskell source code files for this
chapter. Ensure it works for Haskell 2010.

30.2 Infinite Lists
Reference: This section is based, in part, on discussions in the classic Bird and
Wadler textbook [15:7.1] and Wentworth’s tutorial [178].

In Chapter 18 , we looked at generators for infinite arithmetic sequences such
as [1..] and [1,3..]. These infinite lists are encoded in the functions that
generate the sequences. The sequences are only evaluated as far as needed.

For example, take 5 [1..] yields:

[1,2,3,4,5]

Haskell also allows infinite lists of infinite lists to be expressed as shown in
the following example which generates a table of the multiples of the positive
integers.

multiples :: [[Int]]
multiples = [ [ m*n | m<-[1..]] | n <- [1..] ]

Thus multiples represents an infinite list, as shown below (not valid Haskell
code):

[ [1, 2, 3, 4, 5, ... ],
[2, 4, 6, 8,10, ... ],
[3, 6, 9,12,14, ... ],
[4, 8,12,16,20, ... ],
...

]

However, if we evaluate the expression

take 4 (multiples !! 3)
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we get the terminating result:

[4,8,12,16]

Note: Remember that the operator xs !! n returns element n of the list xs
(where the head is element 0).

Haskell’s infinite lists are not the same as infinite sets or infinite sequences
in mathematics. Infinite lists in Haskell correspond to infinite computations
whereas infinite sets in mathematics are simply definitions.

In mathematics, set {x2 | x ∈ {1, 2, 3} ∧ x2 < 10} = {1, 4, 9}.

However, in Haskell, the expression

show [ x * x | x <- [1..], x * x < 10 ]

yields:

[1,4,9

This is a computation that never returns a result. Often, we assign this computa-
tion the value 1:4:9:⊥ (where ⊥, pronounced “bottom” represents an undefined
expression).

But the expression

takeWhile (<10) [ x * x | x <- [1..] ]

yields:

[1,4,9]

30.3 Iterate
Reference: This section is based in part on a discussion in the classic Bird and
Wadler textbook [15:7.2].

In mathematics, the notation fn denotes the function f composed with itself n
times. Thus, f0 = id, f1 = f , f2 = f.f , f3 = f.f.f , · · ·.

A useful function is the function iterate such that (not valid Haskell code):

iterate f x = [x, f x, fˆ2 x, fˆ3 x, ... x ]

The Haskell standard Prelude defines iterate recursively as follows:

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

For example, suppose we need the set of all powers of the integers.

We can define a function powertables would expand as follows (not valid Haskell
code):
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[ [1, 2, 4, 8, ...
[1, 3, 9, 27, ...
[1, 4,16, 64, ...
[1, 5,25,125, ...
...

]

Using iterate we can define powertables compactly as follows:

powertables :: [[Int]]
powertables = [ iterate (*n) 1 | n <- [2..]]

As another example, suppose we want a function to extract the decimal digits of
a positive integer. We can define digits as follows:

digits :: Int -> [Int]
digits = reverse . map (`mod` 10) . takeWhile (/= 0) . iterate (/10)

Let’s consider how digits 178 evaluates (not actual reduction steps).

digits 178

=⇒

reverse . map (mod10) . takeWhile (/= 0) [178,17,1,0,0,
...]

=⇒

reverse . map (mod10) [178,17,1]

=⇒

reverse [8,7,1]

=⇒

[1,7,8]

30.4 Prime Numbers: Sieve of Eratosthenes
Reference: This is based in part on discussions in the classic Bird and Wadler
textbook [15:7.3] and Wentworth’s tutorial [178, Ch. 9].

The Greek mathematician Eratosthenes described essentially the following pro-
cedure for generating the list of all prime numbers. This algorithm is called the
Sieve of Eratosthenes.

1. Generate the list 2, 3, 4, · · ·

2. Mark the first element p as prime.

3. Delete all multiples of p from the list.

4. Return to step 2.

438



Not only is the 2-3-4 loop infinite, but so are steps 1 and 3 themselves.

There is a straightforward translation of this algorithm to Haskell.

primes :: [Int]
primes = map head (iterate sieve [2..])

sieve (p:xs) = [x | x <- xs, x `mod` p /= 0 ]

Note: This uses an intermediate infinite list of infinite lists; even though it is
evaluated lazily, it is still inefficient.

We can use function primes in various ways, e.g., to find the first 1000 primes
or to find all the primes that are less than 10,000.

take 1000 primes
takeWhile (<10000) primes

Calculations such as these are not trivial if the computation is attempted using
arrays in an “eager” language like Pascal—in particular it is difficult to know
beforehand how large an array to declare for the lists.

However, by separating the concerns, that is, by keeping the computation of the
primes separate from the application of the boundary conditions, the program
becomes quite modular. The same basic computation can support different
boundary conditions in different contexts.

Now let’s transform the primes and sieve definitions to eliminate the infinite
list of infinite lists. First, let’s separate the generation of the infinite list of
positive integers from the application of sieve.

primes = rsieve [2..]

rsieve (p:ps) = map head (iterate sieve (p:ps))

Next, let’s try to transform rsieve into a more efficient definition.

rsieve (p:ps)

= { rsieve }

map head (iterate sieve (p:ps))

= { iterate }

map head ((p:ps) : (iterate sieve (sieve (p:ps)) ))

= { map.2, head }

p : map head (iterate sieve (sieve (p:ps)) )

= { sieve }

p : map head (iterate sieve [x | x <- ps, x `mod` p /= 0 ])

= { rsieve }
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p : rsieve [x | x <- ps, x `mod` p /= 0 ]

This calculation gives us the new definition:

rsieve (p:ps) = p : rsieve [x | x <- ps, x `mod` p /= 0 ]

This new definition is, of course, equivalent to the original one, but it is slightly
more efficient in that it does not use an infinite list of infinite lists.

30.5 Circular Structures
Reference: This section is based, in part, on discussions in classic Bird and
Wadler textbook [15:7.6] and of Wentworth’s tutorial [178, Ch. 9].

Suppose a program produces a data structure (e.g., a list) as its output. And
further suppose the program feeds that output structure back into the input so
that later elements in the structure depend on earlier elements. These might be
called circular, cyclic, or self-referential structures.

Consider a list consisting of the integer one repeated infinitely:

ones = 1:ones

As an expression graph, ones consists of a cons operator with two children, the
integer 1 on the left and a recursive reference to ones (i.e., a self loop) on the
right. Thus the infinite list ones is represented in a finite amount of space.

Function numsFrom below is a perhaps more useful function. It generates a list
of successive integers beginning with n:

numsFrom :: Int -> [Int]
numsFrom n = n : numsFrom (n+1)

Using numsFrom we can construct an infinite list of the natural number multiples
of an integer m:

multiples :: Int -> [Int]
multiples m = map ((*) m) (numsFrom 0)

Of course, we cannot actually process all the members of one of these infinite
lists. If we want a terminating program, we can only process some finite initial
segment of the list. For example, we might want all of the multiples of 3 that
are at most 2000:

takeWhile ((>=) 2000) (multiples 3)

We can also define a program to generate a list of the Fibonacci numbers in a
circular fashion similar to ones:

fibs :: [Int]
fibs = 0 : 1 : (zipWith (+) fibs (tail fibs))

Proofs involving infinite lists are beyond the current scope of this textbook. See
the Bird and Wadler textbook for more information [15].
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TODO: Finish Chapter

30.6 What Next?
TODO

30.7 Chapter Source Code
TODO

30.8 Exercises
TODO

30.9 Acknowledgements
In Summer 2018, I adapted and revised this chapter from chapter 15 of my Notes
on Functional Programming with Haskell [42].

These previous notes drew on the presentations in the 1st edition of the Bird
and Wadler textbook [15], Wentworth’s tutorial [178], and other functional
programming sources.

I incorporated this work as new Chapter 30, Infinite Data Structures, in the 2018
version of the textbook Exploring Languages with Interpreters and Functional
Programming and continue to revise it.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

30.10 Terms and Concepts
Infinite data structures, lazy evaluation, infinite sets, infinite sequences, infi-
nite lists, infinite computations, bottom ⊥, iterate, prime numbers, Sieve of
Eratosthenes, separation of concerns, circular/cyclic/self-referential structures.
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40 Language Processing
40.1 Chapter Introduction
This is a stub for a future chapter. Only a figure exists so far.

40.2 Compiler Phases
See Figure 40.2

40.3 What Next?
TODO

40.4 Chapter Source Code
TODO if applicable

40.5 Exercises
ODO

40.6 Acknowledgements
TODO

40.7 References
TODO

40.8 Terms and Concepts
TODO
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Figure 40.1: Phases of compilation.
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41 Calculator: Concrete Syntax
41.1 Chapter Introduction
Chapter 40 surveyed the overall language processing pipeline.

Beginning with this chapter, we explore language concepts processing techniques
in the context of a simple case study. The case study uses a language of simple
arithmetic expressions, a language we call the ELI (Exploring Languages with
Interpreters) Calculator language.

• Chapter 41 introduces the formal concepts related to concrete syntax. It
gives two different concrete syntaxes for the ELI Calculator language.

• Chapter 42 introduces the concepts of abstract syntax and language seman-
tics. It represents both concrete syntaxes of the ELI Calculator language
with the same abstract syntax encoded as a Haskell algebraic data type.
It defines the semantics of the language using a Haskell function that
evaluates (i.e., interprets) the abstract syntax expressions.

• Chapter 43 surveys the modular design and implementation of the ELI
Calculator language application.

• Chapter 44 considers lexical analysis and parsing of the concrete syntaxes
to generate the corresponding abstract syntax trees

• Chapter 45 explores the construction of a set of parsing combinators.

• Chapter 46 looks at a simple Stack Virtual Machine with an instruction
set represented as another algebraic data type and how to translate (i.e.,
compile), how to execute the machine, and how to translate the abstract
syntax trees to sequences of instructions.

We will extend the language with other features in later chapters.

TODO: Give chapter’s goals explicitly.

The goals of this chapter are to:

• TODO

41.2 Concrete Syntax
The ELI Calculator language can be represented as human-readable text strings
in forms similar to traditional mathematical and programming notations. The
structure of these textual expressions is called the concrete syntax [193] of the
expressions.

In this case study, we examine two possible concrete syntaxes: a familiar infix
syntax and a (probably less familiar) parenthesized prefix syntax.

But, first, let’s consider how we can describe the syntax of a language.
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41.3 Grammars
We usually describe the syntax of a language using a formal grammar [118,184].

Formally, a formal grammar consists of a tuple (V, T, S, P ), where:

• V is a finite set of variable (or nonterminal) symbols
• T is a finite set of terminal symbols (called the alphabet)
• S ∈ V is the start (or goal) symbol
• P is a finite set of production rules
• V and T are disjoint

Production rules describe how the grammar transforms one sequence of symbols
to another. The rules have the general form

x→ y

where x and y are sequences of symbols from V ∪ T such that x has length of at
least one symbol.

A sentence in a language consists of any finite sequence of symbols that can be
generated from the start symbol of a grammar by a finite sequence of productions
from the grammar.

We call a sequence of productions that generates a sentence a derivation for that
sentence.

Any intermediate sequence of symbols in a derivation is called a sentential form.

The language generated by the grammar is the set of all sentences that can be
generated by the grammar.

41.3.1 Context-free grammars and BNF

To express the syntax of programming languages, we normally restrict ourselves
to the family of context-free grammars (and its subfamilies) [118,184,185] context
free. In a context-free grammar (CFG), the production rules have the form

A→ y

where A ∈ V and y is a sequence of zero or more symbols from V ∪ T . This
means that an occurence of nonterminal A can be replaced by the sequence x.

We often express a grammar using a metalanguage such as the Backus-Naur
Form (BNF) or extended Backus-Naur Form (BNF) [78,186,187].

For example, consider the following BNF description of a grammar for the
unsigned binary integers:

<binary> ::= <digit>
<binary> ::= <digit> <binary>
<digit> ::= '0'
<digit> ::= '1'
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The nonterminals are the symbols shown in angle brackets: <binary> and
<digit>.

The terminals are the symbols shown in single quotes: '0' and '1'.

The production rules are shown with a nonterminal on the left side of the
metasymbol ::= and its replacement sequence of nonterminal and terminal
symbols on the right side.

Unless otherwise noted, the start symbol is the nonterminal on the left side of
the first production rule.

For multiple rules with the same left side, we can use the | metasymbol to write
the alternative right sides concisely. The four rules above can be written as
follows:

<binary> ::= <digit> | <digit> <binary>
<digit> ::= '0' | '1'

We can also use the extended BNF metasymbols:

• { and } to denote that the symbols between the braces are repeated zero
or more times

• [ and ] to denote that the symbols between the brackets are optional (i.e.,
occur at most once)

41.3.2 Derivations

Consider a derivation of the sentence 101 using the grammar for unsigned binary
numbers above.

• Start symbol — <binary>
• Apply rule 2 — <digit> <binary>
• Apply rule 2 — <digit> <digit> <binary>
• Apply rule 3 — <digit> 0 <binary>
• Apply rule 4 — 1 0 <binary>
• Apply rule 1 — 1 0 <digit>
• Apply rule 4 — 1 0 1

This is not the only possible derivation for 101. Let’s consider a second derivation
of 101.

• Start symbol — <binary>
• Apply rule 2 — <digit> <binary>
• Apply rule 4 — 1 <binary>
• Apply rule 2 — 1 <digit> <binary>
• Apply rule 3 — 1 0 <binary>
• Apply rule 1 — 1 0 <digit>
• Apply rule 4 — 1 0 1
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The second derivation applies the same rules the same number of times, but
it applies them in a different order. This case is called the leftmost derivation
because it always replaces the leftmost nonterminal in the sentential form.

Both of the above derivations can be represented by the derivation tree (or parse
tree) [118,193] shown in Figure 41.1. (The numbers below the nodes show the
rules applied.)

41.3.3 Regular grammars

The grammar above for binary numbers is a special case of a context-free
grammar called a right-linear grammar [118,188]. In a right-linear grammar, all
productions are of the forms

A→ xB
A→ x

where A and B are nonterminals and x is a sequence of zero or more terminals.
Similarly, a left-linear grammar [118,188] must have all productions of the form:

A→ Bx
A→ x

A grammar that is either right-linear or left-linear is called a regular grammar
[118,189].

(Note that all productions in a grammar must satisfy either the right- or left-linear
definitions. They cannot be mixed.)

We can recognize sentences in a regular grammar with a simple “machine”
(program)—a deterministic finite automaton (DFA) [118,191].

In general, we must use a more complex “machine”—a pushdown automaton
(PDA)[118,192]—to recognize a context-free grammar.

We leave a more detailed study of regular and context-free grammars to courses
on formal languages, automata, or compiler construction.

Now let’s consider the concrete syntaxes for the ELI Calculator language—first
infix, then prefix.

41.4 Infix syntax
An infix syntax for expressions is a syntax in which most binary operators
appear between their operands as we tend to write them in mathematics and in
programming languages such as Java and Haskell. For example, the following
are intended to be valid infix expressions:

3
-3
x
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Figure 41.1: Derivation (parse) tree for binary number 101.
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1+1
x + 3
(x + y) * (2 + z)

For example, we can present the concrete syntax of our core Calculator language
with the grammar below. Here we just consider expressions made up of decimal
integer constants; variable names; binary operators for addition, subtraction,
multiplication, and division; and parentheses to delimit nested expressions.

We express the upper levels of the infix expression’s syntax with the following
context-free grammar where <expression> is the start symbol.

<expression> ::= <term> { <addop> <term> }
<term> ::= <factor> { <mulop> <factor> }
<factor> ::= <var> | <val>

| '(' <expression> ')'
<val> ::= [ '-' ] <unsigned>
<var> ::= <id>
<addop> ::= '+' | '-'
<mulop> ::= '*' | '/'

Normally we want operators such as multiplication and division to bind more
tightly than addition and subtraction. That is, we want expression x + y * z to
have the same meaning as x + (y * z). To accomplish this in the context-free
grammar, we position <addop> in a higher-level grammar rule than <mulop>.

We can express the lower (lexical) level of the expression’s grammar with the
following production rules:

<id> ::= <firstid> | <firstid> <idseq>
<idseq> ::= <restid> | <restid> <idseq>
<firstid> ::= <alpha> | '_'
<restid> ::= <alpha> | '_' | <digit>
<unsigned> ::= <digit> | <digit> <unsigned>
<digit> ::= any numeric character
<alpha> ::= any alphabetic character

The variables <digit> and <alpha> are essentially terminals. Thus the above
is a regular grammar. (We can also add the rules for recognition of <addop>
and <mulop> and rules for recognition of the terminals (, ), and - to the regular
grammar.)

We assume that identifiers and constants extend as far to the “right” as possible.
That is, an <id> begins with an alphabetic or underscore character and extends
until it is terminated by some character other than an alphabetic, numeric, or
underscore character (e.g., by whitespace or special character). Similarly for
<unsigned>.

Otherwise, the language grammar ignores whitespace characters (e.g., blanks,
tabs, and newlines). The language also supports end of line comments, any
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characters on a line following a -- (double dash).

We can use a parsing program (i.e., a parser) to determine whether a concrete
expression (e.g., 1 + 1) satisfies the grammar and to build a corresponding parse
tree [118,194].

Aside: In a previous section, we use the term derivation tree to refer to a tree
that we construct from the root toward the leaves by applying production rules
from the grammar. We usually call the same tree a parse tree if we construct it
from the leaves (a sentence) toward the root.

Figure 41.2 shows the parse tree for infix expression 1 + 1. It has <expression>
at its root. The children of a node in the parse tree depend upon the grammar
rule application needed to generate the concrete expression. Thus the root
<expression> has either one child—a <term> subtree—or three children—a
<term> subtree, an <addop> subtree, and an <expression> subtree.

If the parsing program returns a boolean result instead of building a parse tree,
we sometimes call it a recognizer program.

41.5 Prefix syntax
An alternative is to use a parenthesized prefix syntax for the expressions. This is
a syntax in which expressions involving operators are of the form

( op operands )

where op denotes some “operator” and operands denotes a sequence of zero or
more expressions that are the arguments of the given operator. This is a syntax
similar to the language Lisp.

In this syntax, the examples from the section on the infix syntax can be expressed
something like:

3
3
x
(+ 1 1)
(+ x 3)
(* (+ x y) (+ 2 z))

We express the upper levels of a prefix expression’s syntax with the following
context-free grammar, where <expression> is the start symbol.

<expression> ::= <var> | <val> | <operexpr>
<var> ::= <id>
<val> ::= [ "-" ] <unsigned>
<operexpr> ::= '(' <operator> <operandseq> ')'
<operandseq> ::= { <expression> }
<operator> ::= '+' | '*' | '-' | '/' | ...
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Figure 41.2: Parse tree for infix 1 + 1.
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We can express the lower (lexical) level of the expression’s grammar with basically
the same regular grammar as with the infix syntax. (We can also add the rule
for recognition of <operator> and for recognition of the terminals (, ), and -
to the regular grammar

The parse tree for prefix expression (+ 1 1) is shown in Figure 41.3,

Because the prefix syntax expresses all operations in a fully parenthesized form,
there is no need to consider the binding powers of operators. This makes parsing
easier.

The prefix also makes extending the language to other operators—and keywords—
much easier. Thus we will primarily use the prefix syntax in this and other cases
studies.

We return to the problem of parsing expressions in a later chapter.

41.6 What Next?
This chapter (41) introduced the formal concepts related to a language’s concrete
syntax. It also introduced the ELI (Exploring Languages with Interpreters)
Calculator language, which is the simple language we use in the following five
chapters.

Chapter 42 examines the concepts of abstract syntax and evaluation, using the
ELI Calculator language as an example.

41.7 Chapter Source Code
TODO if needed

41.8 Exercises
TODO

41.9 Acknowledgements
Chapters 41-46 of this book explore the ELI Calculator language and general
concepts and techniques for language processing. I initially developed the ELI
Calculator language (then called the Expression Language) case study for the
Haskell-based offering of CSci 556, Multiparadigm Programming, in Spring 2017.
I continued this work during Summer and Fall 2017 for the Fall 2017 offering of
CSci 450, Organization of Programming Languages. I based the ELI Calculator
language case study on ideas drawn, in part, from the following:

• the 2016 version of my Scala-based Expression Tree Calculator case study
from my Notes on Scala for Java Programmers [49] (which was itself
adapted from the the tutorial [152])
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Figure 41.3: Parse tree for prefix (+ 1 1).

454



• the Lua-based Expression Language 1 and Imperative Core interpreters I
developed for the Fall 2016 CSci 450 course

• chapters 1, 2, and 4 of Samuel Kamin’s textbook Programming Languages:
An Interpreter-Based Approach [108] and my work to implement three
(Core, Lisp, and Scheme) of Kamin’s interpeters in Lua in 2013

• sections 8.3 and 9.6 of the classic Richard Bird and Philip Wadler’s textbook
Introduction to Functional Programming [15]

• sections 14.2, 16.1, 17.5, and 18.3 of Simon Thompson’s textbook [173]

• chapters 1-4 and 8 of Peter Sestoff’s textbook Programming Language
Concepts [159]

• chapters 21 (Recursive Descent Parser) and 22 (Parser Combinator) of
Martin Fowler and Parsons’s book Domain-Specific Languages [78].

• section 3.2 (Predictive Parsing) of Andrew W. Appel’s textbook Modern
Compiler Implementation in ML [3].

• chapters 6 (Purely Functional State) and 9 (Parser Combinators) from
Paul Chiusano and Runar Bjarnason’s Functional Programming in Scala
[29].

• sections 1.2, 3.3, and 5.1 of Peter Linz’s textbook Formal Languages and
Automata [118]

• the Wikipedia articles on Formal Grammar [184], Linear Grammar {[188]],
Regular Grammar [189], Context-Free Grammar [185], Backus-Naur Form
[186], Extended Backus-Naur Form [187], Parsing [194], Parse Tree [193],
Recursive Descent Parser [196], LL Parser [195], Lexical Analysis [199],
Finite-state Machine [190], Deterministic Finite Automaton [191], Push-
down Automaton [192], Abstract Syntax [197], Abstract Syntax Tree [198],
Stack Machine [200], Reverse Polish Notation [201], Association List [215],
and Associative Array [216].

For the 2017 textbook, I organized this work into three chapters:

10. Expression Language Syntax and Semantics

11. Expression Language Parsing

12. Expression Language Compilation (a partial chapter)

In Summer 2018, I divided the previous Expression Language Syntax and
Semantics chapter into three new chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.

• Previous section 10.2 became new Chapter 41, Calculator Concrete Syntax.

• Previous sections 10.3-5 and 10.7-8 became new Chapter 42, Calculator
Abstract Syntax and Evaluation.

455

https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Linear_grammar
https://en.wikipedia.org/wiki/Regular_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Recursive_descent_parser
https://en.wikipedia.org/wiki/LL_parser
https://en.wikipedia.org/wiki/Lexical_analysis
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Deterministic_finite_automaton
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Association_list
https://en.wikipedia.org/wiki/Associative_array


• Previous sections 10.6 and 10.9 became new Chapter 43, Calculator Modu-
lar Structure, and were expanded.

In Fall 2018, I divided the 2017 Expression Language Parsing chapter into two
new chapters in the 2018 version of the textbook, now titled Exploring Languages
with Interpreters and Functional Programming.

• Previous sections 11.1-11.4 became new Chapter 44, Calculator Parsing.

• Previous sections 11.6-11.7 became new Chapter 45, Parsing Combinators.

• Previous section 11.5 was merged into new Chapter 43, Calculator Modular
Structure.

In Fall 2018, I also renumbered previous chapter 12 to become new Chapter 46.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on the ELIFP textbook. In January 2022, I
began refining the existing content, integrating additional separately developed
materials, reformatting the document (e.g., using CSS), constructing a unified
bibliography (e.g., using citeproc), and improving the build workflow and use of
Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

41.10 Terms and Concepts
Syntax, concrete syntax, formal grammar (variable and terminal symbols, alpha-
bet, start or goal symbol), production rule, sentence, sentential form, language,
context-free grammar, Backus-Naur Form (BNF), derivation, leftmost derivation,
derivation tree, right-lean and right-linear grammar, regular grammar, deter-
ministic finite automaton (DFA), pushdown automaton (PDA), infix and prefix
syntaxes, lexical level, parsing, parser, parse tree, infix and prefix syntax.
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42 Calculator: Abstract Syntax and Evaluation
42.1 Chapter Introduction
Chapter 41 introduced formal concepts related to concrete syntax and gave two
different concrete syntaxes for the ELI Calculator language.

This chapter (42) introduces the concepts related to abstract syntax and language
semantics. It encodes the essential structure of any ELI Calculator expression
as a Haskell algebraic data type and defines the semantics operationally using a
Haskell evaluation function. The abstract syntax also enables the expression to
be transformed in various ways, such as converting it to a simpler expression
while maintaining an equivalent value.

TODO: Rethink statement of goals below.

The goals of this chapter are to:

• explore the concepts of abstract syntax, abstract syntax trees, and expres-
sion evaluation

• define the semantics of the ELI Calculator language by designing its
abstract syntax and an evaluation function

• examine techniques for abstract syntax tree simplification and manipulation

42.2 Abstract Syntax
The abstract syntax of an expression seeks to represent only the essential aspects
of the expression’s structure, ignoring nonessential, representation-dependent
details of the concrete syntax [159,197].

For example, parentheses represent structural details in the concrete syntaxes
given in Chapter 41. This structural information can be represented directly in
the abstract syntax; there is no need for parentheses to appear in the abstract
syntax.

We can represent arithmetic expressions conveniently using a tree data structure,
where the nodes represent operations (e.g., addition) and leaves represent values
(e.g., constants or variables). This representation is called a abstract syntax tree
(AST) for the expression [159,198].

42.2.1 Abstract syntax tree data type

In Haskell, we can represent an abstract syntax trees using algebraic data types.
Such types often enable us to express programs concisely by using pattern
matching.

For the ELI Calculator language, we define the Expr algebraic data type—in
the Abstract Syntax module (AbSynCalc)—to describe the abstract syntax tree.

457

Ch42/../Ch43/AbSynCalc.hs


import Values ( ValType, Name )

data Expr = Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr
| Var Name
| Val ValType

-- deriving Show?

instance Show Expr where
show (Val v) = show v
show (Var n) = n
show (Add l r) = showParExpr "+" [l,r]
show (Sub l r) = showParExpr "-" [l,r]
show (Mul l r) = showParExpr "+" [l,r]
show (Div l r) = showParExpr "/" [l,r]

showParExpr :: String -> [Expr] -> String
showParExpr op es =

"(" ++ op ++ " " ++ showExprList es ++ ")"

showExprList :: [Expr] -> String
showExprList es = Data.List.intercalate " " (map show es)

Above in type Expr, the constructors Add, Sub, Mul, and Div represent the addi-
tion, subtraction, multiplication, and division, respectively, of the two operand
subexpressions, Var represents a variable with a name, and Val represents a
constant value.

Note that this abstract syntax is similar to the (Lisp-like) parenthesized prefix
syntax described in Chapter 41.

We make type Expr an instance of class Show. We do not derive or define an
instance of the Eq class because direct structural equality of trees may not be
how we want to define equality comparisons.

We can thus express the example expressions from the Concrete Syntax chapter
as follows:

Val 3 -- 3
Val (-3) -- -3
Var "x" -- x
Add (Val 1) (Val 1) -- 1+1
Add (Var "x") (Val 3) -- x + 3

-- (x + y) * (2 - z)
Mul (Add (Var "x") (Var "y")) (Sub (Val 2) (Var "z"))

Figures 42.1 and 42.2 show abstract syntax trees for two example expressions

458



above.

Figure 42.1: Abstract syntax tree for 1 + 1 and (+ 1 1)**

In Chapter 44 on parsing, we develop parsers for both the prefix and infix
syntaxes. Both parsers construct abstract syntax trees using the algebraic data
type Expr.

42.2.2 Values and variable names

The ELI Calculator language restricts values to ValType. The Values module
indirectly defines this type synonym to be Int.

The abstract syntax allows a name to be represented by any string (i.e., type
alias Name, which is defined to be String in the Values module). We likely
want to restrict names to follow the usual “identifier” syntax. The parser for
the concrete syntax should enforce this restriction. Or we could define Haskell
functions to parse and construct identifiers, such as the functions below.

import Data.Char ( isAlpha, isAlphaNum )

getId :: String -> (Name,String)
getId [] = ([],[])
getId xs@(x:_)

| isFirstId x = span isRestId xs
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Figure 42.2: Abstract syntax tree for (x + y) * (2 - z) and (* (+ x y) (-
2 z))
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| otherwise = ([],xs)
where

isFirstId c = isAlpha c || c == '_'
isRestId c = isAlphaNum c || c == '_'

identifier :: String -> Maybe Name
identifier xs =

case getId xs of
(xs@(_:_),[]) -> Just xs
otherwise -> Nothing

The getId function takes a string and parses an identifier at the beginning of the
string. A valid identifier must begin with an alphabetic or underscore character
and continue with zero or more alphabetic, numeric, or underscore characters.

The getId function uses the higher order function span to collect the characters
that form the identifier. This function takes a predicate and returns a pair, of
which the first component is the prefix string satisfying the predicate and the
second is the remaining string.

In Chapter 44, we examine how to parse an expression’s concrete syntax to build
an abstract syntax tree.

42.3 Associative Data Structures
In language processing, we often need to associate some key (e.g., a variable
name) with its value. There are several names for this type of data structure—
associative array [215], dictionary, map, symbol table, etc.

As we saw in Chapter 21, an association list is a simple list-based implementation
of this concept [215]. It is a list of pairs in which the first component is the key
(e.g., a string) and the second component is the value associated with the key.

The Prelude function lookup, shown below (and in Chapter 21), searches an
association list for a key and returns a Maybe value. If it finds the key, it wraps
the associated value in a Just; if it does not find the key, it returns a Nothing.

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup _ [] = Nothing
lookup key ((x,y):xys)

| key == x = Just y
| otherwise = lookup key xys

For better performance with larger dictionaries, we can replace an association
list by a more efficient data structure such as a Data.Map.Map. This structure
implements the dictionary structure as a size-balanced tree. It provides a lookup
function with essentially the same interface.

Of course, imperative languages might use a mutable hash table to implement a
dictionary.
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42.4 Semantics
Consider the evaluation of the ELI Calculator language abstract syntax trees as
defined above.

42.4.1 Environments

To evaluate an expression, we must determine the current value of each variable
occurring in the expression. That is, we must evaluate the expression in some
environment that associates the variable names with their values.

For example, consider the expression x + 3. It might be evaluated in an
environment that associates the value 5 with the variable x, written { x -> 5
}. The evaluation of this expression yields the value 8.

The environment { x -> 5 } can be expressed in a number of ways in Haskell.
Here we choose to represent it as a simple association list as follows:

[("x",5)]

This list associates a variable name in the first component with its integer value
in the second component.

Looking up a key in an association list is an O(n) operation where n denotes the
number of key-value pairs.

As noted above, a good alternative to the association list is a Map from the
Data.Map library. It implements the dictionary as an immutable, size-balanced
tree, thus its lookup function is an O(log2 n) operation.

In the ELI Calculator language implementation, we encapsulate the representa-
tion of the environment in the Environments module. This module exports the
following type synonym and functions:

type AnEnv a =[(Name,a)]

newEnv :: AnEnv a
toList :: AnEnv a -> [(Name,a)]
getBinding :: Name -> AnEnv a -> Maybe a
hasBinding :: Name -> AnEnv a -> Bool
newBinding :: Name -> a -> AnEnv a -> AnEnv a
setBinding :: Name -> a -> AnEnv a -> AnEnv a
bindList :: [(Name,a)] -> AnEnv a -> AnEnv a

For the purposes of our evaluation program, we can then define a specific
environment with the type synonym Env in the Evaluator (EvalCalc) module
as follows:

import Values ( ValType, Name, defaultVal )
import AbSynExpr ( Expr(..) )
import Environments ( AnEnv, Name, newEnv, toList, getBinding,
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hasBinding, newBinding, setBinding,
bindList )

type Env = AnEnv ValType

42.4.2 Values of AST nodes

We express the semantics (i.e., meaning) of the various ELI Calculator language
expressions (i.e., nodes of the AST) as follows.

• c evaluates to the constant (NumType) value c.

• Var n evaluates to the value of variable n in the environment, generating
an error if the variable is not defined.

• Add l r evaluates to the sum of the values of the expression trees l and r.

• Sub l r evaluates to the difference between the values of the expression
trees l and r.

• Mul l r evaluates to the product of the values of the expression trees l
and r.

• Div l r evaluates to the quotient of the values of the expression trees l
and r. Division by zero is not defined.

Operations Add, Sub, Mul, and Div are strict. They are undefined if any of their
subexpressions are undefined.

42.4.3 Evaluation function

We can thus define a Haskell evaluation function (i.e., interpreter) for the ELI
Calculator language as follows.

This function in the Evaluator module (EvalCalc) does a post-order traversal of
the abstract syntax tree, first computing the values of the child subexpressions
and then computing the value of of a node. The value is returned wrapped in an
Either, where the Left constructor represents an error message and the Right
constructor a good value.

import Values ( ValType, Name, defaultVal )
import AbSynExpr ( Expr(..) )
import Environments ( AnEnv, Name, newEnv, toList, getBinding,

hasBinding, newBinding, setBinding,
bindList )

type EvalErr = String
type Env = AnEnv ValType

eval :: Expr -> Env -> Either EvalErr ValType
eval (Val v) _ = Right v
eval (Var n) env =
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case getBinding n env of
Nothing -> Left ("Undefined variable " ++ n)
Just i -> Right i

eval (Add l r) env =
case (eval l env, eval r env) of

(Right lv, Right rv) -> Right (lv + rv)
(Left le, Left re ) -> Left (le ++ "\n" ++ re)
(x@(Left le), _ ) -> x
(_, y@(Left le)) -> y

eval (Sub l r) env =
case (eval l env, eval r env) of

(Right lv, Right rv) -> Right (lv - rv)
(Left le, Left re ) -> Left (le ++ "\n" ++ re)
(x@(Left le), _ ) -> x
(_, y@(Left le)) -> y

eval (Mul l r) env =
case (eval l env, eval r env) of

(Right lv, Right rv) -> Right (lv * rv)
(Left le, Left re ) -> Left (le ++ "\n" ++ re)
(x@(Left le), _ ) -> x
(_, y@(Left le)) -> y

eval (Div l r) env =
case (eval l env, eval r env) of

(Right _, Right 0 ) -> Left "Division by 0"
(Right lv, Right rv) -> Right (lv `div` rv)
(Left le, Left re ) -> Left (le ++ "\n" ++ re)
(x@(Left le), _ ) -> x
(_, y@(Left le)) -> y

Consider an example with a simple main function below (that could be added to
the EvalExpr module) that evaluates the example expressions from a previous
section. (See the extended Evaluator module (EvalCalcExt).)

main =
do

let env = [("x",5), ("y",7),("z",1)]
let exp1 = Val 3 -- 3
let exp2 = Var "x" -- x
let exp3 = Add (Val 1) (Val 2) -- 1+2
let exp4 = Add (Var "x") (Val 3) -- x + 3
let exp5 = Mul (Add (Var "x") (Var "y"))

(Add (Val 2) (Var "z")) -- (x + y) * (2 + z)
putStrLn ("Expression: " ++ show exp1)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp1 env))
putStrLn ("Expression: " ++ show exp2)
putStrLn ("Evaluation with x=5, y=7, z=1: "
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++ show (eval exp2 env))
putStrLn ("Expression: " ++ show exp3)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp3 env))
putStrLn ("Expression: " ++ show exp4)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp4 env))
putStrLn ("Expression: " ++ show exp5)
putStrLn ("Evaluation with x=5, y=7, z=1: "

++ show (eval exp5 env))

When main is called, it first computes he values of the various expressions in the
environment { x -> 5, y -> 7 } and then prints their results.

Expression: 3
Evaluation with x=5, y=7, z=1: Right 3
Expression: x
Evaluation with x=5, y=7, z=1: Right 5
Expression: (+ 1 2)
Evaluation with x=5, y=7, z=1: Right 3
Expression: (+ x 3)
Evaluation with x=5, y=7, z=1: Right 8
Expression: (* (+ x y) (+ 2 z))
Evaluation with x=5, y=7, z=1: Right 36

42.5 Simplification
TODO: Should the discussion of Simplification and Differentiation be in the
main line of the chapter or separated into a project (or projects) with exercises?
Simplfication is related to the global

An expression may be more complex than necessary. We can simplify it, perhaps
with the intention of optimizing its evaluation.

An operation whose operands are constants can be simplified by replacing it
by the appropriate constant. For example, Add (Val 3) (Val 4) is the same
semantically as Val 7.

Similarly, we can take advantages of an operation’s identity element
and other mathematical properties to simplify expressions. For example,
Add (Val 0) (Var "x") is the same as Var "x".

We can thus define a skeletal function simplify as follows. As with eval, the
simplify function traverses the abstract syntax tree using a post-order traversal.

simplify :: Expr -> Expr
simplify (Add l r) =

case (simplify l, simplify r) of
(Val 0, rr) -> rr
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(ll, Val 0) -> ll
(Val x, Val y) -> Val (x+y)
(ll, rr) -> Add ll rr

simplify (Mul l r) =
case (simplify l, simplify r) of

(Val 0, rr) -> Val 0
(ll, Val 0) -> Val 0
(Val 1, rr) -> rr
(ll, Val 1) -> ll
(Val x, Val y) -> Val (x*y)
(ll, rr) -> Mul ll rr

simplify t@(Var _) = t
simplify t@(Val _) = t

In an exercise, you are asked to complete the development of this function.

See the incomplete Process AST module (ProcessAST) for the sample code in
this section and the next one.

42.6 Symbolic Differentiation
Suppose that we redefine the Expr type to support double precision floating
point (i.e., Double) values.

Then let’s consider symbolic differentiation of the arithmetic expressions. Think-
ing back to our study of differential calculus, we identify the following rules for
differentiation:

• The derivative of a sum is the sum of the derivatives.

• The derivative of a product of two operands is the sum of the product of
(a) the first operand and the derivative of the second and (b) the second
operand and the derivative of the first.

• The derivative of some variable v is 1 if differentiation is relative to v and
is 0 otherwise.

• The derivative of a constant is 0.

We can directly translate these rules into a skeletal Haskell function that uses
the above data types, as follows:

deriv :: Expr -> Name -> Expr
deriv (Add l r) v = Add (deriv l v) (deriv r v)
deriv (Mul l r) v = Add (Mul l (deriv r v)) (Mul r (deriv l v))
deriv (Var n) v

| v == n = Val 1
deriv _ _ = Val 0

See the incomplete Process AST module (ProcessAST) for the sample code in
this section.
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42.7 What Next?
Chapter 41 presented concrete syntax concepts, illustrating them with two
different concrete syntaxes for the ELI Calculator language.

This chapter (42) presented abstract syntax trees as structures for representing
the essential features of the syntax in a form that can be evaluated directly. The
same abstract syntax can encode either of the two concrete syntaxes for the ELI
Calculator language.

Chapter 44 introduces lexical analysis and parsing as techniques for processing
concrete syntax expressions to generate the equivalent abstract syntax trees.

Before we look at parsing, let’s examine the overall modular structure of the
ELI Calculator language interpreter in Chapter 43.

42.8 Chapter Source Code
This chapter involves several of the ELI Calculator language modules:

• Abstract Syntax module (AbSynCalc)—to describe the abstract syntax
tree.

• Values module

• Environments module.

• Evaluator (EvalCalc) module

• extended Evaluator module (EvalCalcExt).)

It also has the incomplete Process AST module (ProcessAST) related to the
simplification and differentiation discussion and exercises.

42.9 Exercises
1. Extend the abstract syntax tree data type Expr, which is defined in

the Abstract Syntax module (AbSynCalc), to add new operations Neg
(negation), Min (minimum), Max (maximum), and Exp (exponentiation).

data Expr = ...
| Neg Expr
| Min Expr Expr
| Max Expr Expr
| Exp Expr Expr
...

deriving Show

Then extend the eval function, which is defined in the Evaluator mod-
ule (EvalCalc), to add these new operations with the following informal
semantics:
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• Neg e negates the value of expression e. For example, Neg (Val 1)
yields (Val (-1)).

• Min l r yields the smaller value of expression l and expression r.

• Max l r yields the larger value of expression l and r.

• Exp l r raises the value of expression l to a power that is the value
of expression r. It is undefined for a negative exponent value r.

These operations are all strict; they only have values if all their subexpres-
sions also have values.

2. Extend the simplify function to support operations Sub and Div and the
new operations given in the previous exercise.

This function should simplify the abstract syntax tree by evaluating subex-
pressions involving only constants (not evaluating variables) and handling
special values like identity and zero elements.

3. Extend the simplify function from the previous exercise in other ways.
For example, take advantage of mathematical properties such as associativ-
ity ((x + y) + z = x + (y + z)), commutativity (x + 1 = 1 + x), and
idempotence (x min x = x).

4. Extend the abstract syntax tree data type Expr to include the binary oper-
ators Eq (equality) and Lt (less-than comparison), logical unary operator
Not, and the ternary conditional expression If (if-then-else).

data Expr = ...
| Eq Expr Expr
| Lt Expr Expr
| Not Expr
| If Expr Expr Expr
...

deriving Show

Then extend the eval function to implement these new operations.

This extended language does not have Boolean values. We represent “false”
by integer 0 and “true” by a nonzero integer, canonically by 1.

We can express the informal semantics of the new ELI Calculator language
expressions as follows:

• Eq l r yields the value 1 if expressions l and r have the same value;
it yields the value 0 if l and r have different values.

• Lt l r yields the value 1 if the value of expression l is smaller than
the value of expression r; it yields the value 0 if l is greater than or
equal to r.
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• Not i yields 1 if the value of expression i is 0; it yields the value 0 if
i is nonzero.

• If c l r first evaluates expression c. If c has a nonzero value, the
If yields the value of expression l. If c has value 0, the If yields the
value of expression r.

Operations Eq, Lt, and Not are strict for all subexpressions; that is, they
are undefined if any subexpression is undefined.

Operation If is strict in its first subexpression c.

Note: The constants falseVal and trueVal and the functions boolToVal
and valToBool in the Values module may be helpful. (The intention of the
Values module is to keep the representation of the values hidden from the
rest of the interpreter. In particular, these constants and functions these
are to help encapsulate the representation of booleans as the underlying
values.)

5. Extend the abstract syntax tree data type Expr from the previous exercise
(which defines operator If) to include a Switch expression.

data Expr = ...
| Switch Expr Expr [Expr]
...

deriving Show

Then extend the eval function to implement this new operation.

We can express the informal semantics of this new ELI Calculator language
expression as follows:

• Switch n def exs first evaluates expression n. If the value of n is
greater than or equal to 0 and less than length exs, then the Switch
yields the value of the nth expression in list exs (where the first
element is at index 0). Otherwise, the Switch yields the value of the
default expression def.

6. Develop an object-oriented program (e.g., in Java) to carry out the same
functionality as the Expr data type and eval function described in this
chapter. That is, define a class hierarchy that corresponds to the Expr data
type and use the message-passing style to implement the needed classes
and instances.

7. Extend the object-oriented program from the previous exercise to the Neg,
Min, Max, and Exp as described in an earlier exercise.

8. Extend the object-oriented program from the previous exercise to imple-
ment the Eq, Lt, Not, and If as described in another earlier exercise.

9. Extend the object-oriented program above to implement simplification.
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10. For this exercise, redefine the Expr data type above to hold Double con-
stants instead of Int. In addition to Add, Mul, Sub, Div, Neg, Min, Max, and
Exp, extend the data type and eval function to include the trigonometric
operators Sin and Cos for sine and cosine.

11. Using the extended Double version of Expr from the previous exercise,
extend function deriv to support all the operators in the data type.

42.10 Acknowledgements
For the general acknowledgements for the ELI Calculator case study and Chapters
41-46 through Spring 2019, see the Acknowledgements section of Chapter 41.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a unified bibliography
(e.g., using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
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42.11 Terms and Concepts
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43 Calculator: Modular Structure
43.1 Chapter Introduction
TODO: Write missing pieces and flesh out other sections

43.2 Module Dependencies
An ELI Calculator interpreter consists of seven modules. The dependencies
among modules as shown in Figure 43.1. (The module at the tail of an arrow
depends on the module at the head.)

Figure 43.1: ELI Calculator language module dependencies.

We examine each module in the following sections.

TODO: Some of these are concrete modules intended for direct use by all
implementations. Some are concrete modules intended for use by just ELI
Calculator. Some are “abstract modules” intended to define an interface for
implementation by each language as needed. Some may, in some sense, define
a module role (e.g., same secret) that must be satisfied for all languages, but
which may have a different abstract interface. Etc. This probably should be
clarified for each module after study and thought.

43.3 Values Module
The Values module Values was introduced in Chapter 42. It encapsulates
the definitions and functions that know the specific representation of an ELI
language’s data. Other modules for that language should use its public features
to enable the representation to be changed easily.

The secret of the information-hiding module Values is the specific representation
for the values supported by the language.
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This module currently supports both the ELI Calculator language and the ELI
Imperative Core language we examine in later chapters. For both languages, the
only type of values supported are integers. Booleans are encoded as integers.

The Values module’s abstract interface includes the following public features:

• Type ValType is the type of the values in the ELI language.

• Constant defaultVal is the default value for ELI language variables when
no value is specified.

Note: A constant is an argumentless function in Haskell.

• Constants falseVal and trueVal are the ELI language’s canonical repre-
sentations for false and true as ValType values, respectively.

• Function boolToVal converts Haskell Bool values False and True to
falseVal and trueVal, respectively.

• Function valToBool v converts ELI language value v to Haskell False
and True appropriately.

falseVal is mapped to Haskell False. Any other value is mapped to
Haskell True; we call these truthy values.

If a language supports types other than integers, then that language will need a
variant of the Values module that redefines ValType accordingly and perhaps
defines additional public functions. However, the redefined module should seek
to preserve the secret and other features of the abstract interface.

The interface also includes the following, which are intended for the exclusive
use of the lexical analysis module to support finite range integers (e.g., a string
representation of an integer that is beyond the range of Int).

• Type NumType is the actual type used to represent integers.

• Function toNumType takes a string of digits numstr and returns an Either
String NumType where Left wraps an error message and Right wraps
numstr interpreted as a NumType value.

TODO: Review how integer constant overflow is handled and seek to encapsulate
the representation better. Also might comment that the knowledge of the value
representation is probably shared between the Values and Lexical Analysis
modules.

The Values module does not depend upon any other modules. All other current
modules depend upon it directly except the user-interface module REPL.

43.4 Environments Module
An environment is a mapping between a name and its value.
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The Environments module Environments was introduced in Chapter 42. It
encapsulates the definitions and functions that know the specific representation
of an environment for an ELI language. Other modules should use its public
features to enable the representation to be changed easily.

The secret of the information-hiding module Environments is the specific repre-
sentation for the environments used by the language’s interpreter. This module
currently supports both the ELI Calculator and the ELI Imperative Core lan-
guages (defined in future chapters). Given that the “value” is a polymorphic
parameter, it should work for most languages unless the nature of names changes
significantly.

• The ELI Calculator language creates a single global environment consisting
of a set of (Name,ValType) pairs that map variables to their values.

• The ELI Imperative Core language (which also supports function definitions
and function calls) creartes three different environments, all of which are
implemented with the Environments module:

– a global variable environment consisting of a set of (Name,ValType)
pairs (as above)

– a global function definition environment consisting of a set of ‘Name-
function definition pairs

– a local parameter environment like the global variable environment
except holding the values of the parameters for a function call

The Environments module’s abstract interface includes the following public
features.

• Type AnEnv a is the type of an environment whose values have polymorphic
parameter type a.

• Type Name is imported from the Values module and reexported.

• Constructor function newEnv returns a new empty environment.

• Mutator function newBinding adds a new name-value binding to an envi-
ronment.

• Mutator function setBinding changes the value of an existing name in an
environment.

• Mutator function bindList takes a list of name-value pairs and adds a
new binding for each to an environment.

• Accessor function toList returns an association list equivalent to the
environment.

• Accessor function getBinding returns the value associated with a given
name.
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• Query function hasBinding returns True if and only if the given name is
bound in the environment.

The Environments module depends upon the Values module and the Evaluator
module depends upon it.

43.5 Abstract Syntax Module
The Abstract Synax module AbSynCalc module was introduced in Chapter 42.
It centralizes the abstract syntax definition for the ELI Calculator language so
it can be imported where needed.

The abstract syntax consists of algebraic data type definitions. The semantics
of the abstract syntax tree is known by modules that must create (e.g., parser)
and use (e.g., evaluator) the abstract syntax trees.

TODO: Review how the AST semantics is handled to see if it can be better
encapsulated. But remember that too much abstraction may make the pedagog-
ical goals more difficult to achieve (e.g., exercises to add new elements to the
abstract syntax and semantics).

The ELI Calculator Language’s Abstract Syntax module defines and exports the
algebraic data type Expr and implements it as an instance of class Show. Values
of type Expr are the abstract syntax trees for the ELI Calculator language.

The module also exports types ValType and Name that it imports from the
Values module.

The equivalent modules for other languages must define the abstract syntax for
that language using appropriate algebraic data types that are instances of Show.
They should, however, use

The Abstract Syntax module depends upon the Values module and the Evaluator
and Parser modules depend upon it.

43.6 Evaluator Module
The Evaluator module EvalCalc was introduced in Chapter 42. It encapsulates
the definition of the evaluation function (i.e., the semantics) of the ELI Calculator
language.

TODO: Consider how to handle the extensions to the Evaluator module in
Chapter 42 for simplification and differentiation (i.e., ProcessAST module).

The secret of the EvalCalc is the implementation of the semantics of the
language, including the specifics of the environment. Currently, some aspects of
the language semantics are not completely encapsulated within the Evaluator
module; they are shared with the Parser module (which creates the abstract
syntax trees initially).

474

Ch43/AbSynCalc.hs
Ch43/EvalCalc.hs


TODO: Explore whether the semantics can be better encapsulated and continue
to meet the pedagogical goals of the interpreter.

The Evaluator module’s abstract interface includes the following public features.

TODO: Perhaps simply call this an “interface” because it is not likely used by
more than one concrete implementation.

• Evaluation function eval takes an ELI Calculator abstract syntax tree
(i.e., an Expr) and returns its value in the environment.

• Type Env defines the environment (i.e., mapping of variable names to their
values) for the ELI Calculator language.

• Constant lastVal is the variable name whose value in the environment is
the result of the most recent expression evaluation.

• Constructor function newEnviron creates a new environment that is empty
except that variable lastVal is set to Values.defaultVal.

• Query function hasNameBinding returns True if and only if the given name
is defined in the environment.

• Mutator function newNameBinding that creates a new variable in the
environment and gives it a value.

• Mutator function setNameBinding that sets an existing variable in the
environment to a new value.

• Accessor function getNameBinding retrieves the value of a variable from
the environment.

• Accessor function showEnviron displays all the variables and their values
in the environment.

• Type EvalErr represents error messages arising from evaluation.

• Types ValType and Name are imported from the Values module and reex-
ported.

• Type Expr is imported from the Abstract Syntax module and reexported.

TODO: Comment on how the above secret should be preserved and might need
to be modified for other ELI languages.

The Evaluator module depends directly upon the Abstract Syntax, Environments,
and Values modules. The language’s user-interface module REPL depends upon
it. However, as noted above, the Evaluator and Parser modules currently share
some aspects of the language semantics.

43.7 Lexical Analysis Module
The Lexical Analyzer module LexCalc is introduced in Chapter 44. It is common
to both the prefix and infix parsers for the ELI Calculator language.
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The secret of this module is the lexical structure of the concrete language syntax.

The Lexical Analyzer module’s abstract interface consists of the following public
features.

• Algebraic data type Token describes the smallest units of the syntax
processed by the parser, such as identifiers, operator symbols, parentheses,
etc.

• Function showTokens is a convenience function that shows a list of tokens
as a string.

• Function lexx takes a string and returns the corresponding list of lexi-
cal tokens, but it does not distinguish among identifiers, keywords, and
operators.

• Function lexer takes a string and returns the corresponding list of lexical
tokens, distinguishing among identifiers, keywords, and operators.

• Type NumType is imported from the Values module and reexported; it is
the actual type used to represent integers.

• Type Name{.haskell is from the Values module and reexported; it is the
type that represents “names” such as identifiers and operator symbols.

TODO: Consider whether the above should just be an interface rather than
an abstract interface. Also how should the secret and interface be preserved
and modified for other languages. Also consider what I should say below about
the special dependence upon the Values module and any sharing of information
about values.

The Lexical Analyzer module depends upon the Values module and the Parser
module depends upon it.

43.8 Parser Modules
Chapter 44 introduces two alternative implementations of the Parser abstract
module for the ELI Calculator language. These implementations correspond
to the two different concrete syntaxes given in Chapter 41. Both use the same
Lexical Analyzer.

• Module ParsePrefixCalc parses an ELI Calculator language prefix ex-
pression and generates the equivalent abstract syntax tree.

• Module ParseInfixCalc parses an ELI Calculator language infix expres-
sion and generates the equivalent abstract syntax tree,

The secret of the abstract parser module is how the input syntax is recognized
and translated to the abstract syntax.

The Parser abstract module’s abstract interface consists of the following public
features.
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• Function parse takes an input string, parses it according to the corre-
sponding ELI Calculator language concrete syntax and returns an Either
item wrapping the Expr abstract syntax tree (Right) or an error message
(Left).

• Function parseExpression takes a Token list, parses an Expr from the
beginning of the list, and returns a pair consisting of

– an Either wrapping the Expr abstract syntax tree found (Right or
an error message (Right

– the Token list remaining after the Expr.

• Type ParErr is the type of the error messages.

• Function trimComment trims an end-of-line comment from a line of text.

• Function getName takes a string and returns a Just wrapping a Name if it
is a valid identifier or a Nothing if any non-identifier characters occur.

• Function getValue extracts an identifier from the beginning of a string
and returns the identifier and the remaining string.

• Types ValType and Name are imported from the Values module and reex-
ported.

• Type Expr is imported from the Abstract Syntax module and reexported.

TODO: Comment on how the above secret should be preserved and might need
to be modified for other ELI languages.

The Parser module depends directly upon the Lexical Analyzer, Abstract Syntax,
and Values modules. The language’s user-interface module REPL depends upon
it. However, as noted above, the Evaluator and Parser modules currently share
some aspects of the language semantics.

43.9 REPL Modules
A REPL (Read-Evaluate-Print Loop) is a command line user interface with the
following cycle of steps:

1. Read an input from the command line.

If the input is an exit command, exitloop ; else continue.

2. Evaluate the expression after parsing.

3. Print the resulting value.

4. Loop back to step 1.

The secret of the REPL modules is how the user interacts with the interpreter.

The ELI Calculator language interpreter provides two REPL modules:
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• PrefixCalcREPL that uses the Calculator language’s prefix syntax

• InfixCalcREPL that uses the Calculator languages’s infix syntax

In addition to accepting ELI Calculator expressions, they accept the REPL
commands :set, :display, and :quit.

TODO: What about :use? Do I need to elaborate on the commands further?
Probably.

TODO: The REPL functions need to be refactored. Also the issue of the :use
command versus a use expression in the language needs to be reconsidered.

The REPL module depends directly upon the Parser and Evaluator modules.
No other modules depend upon it.

43.10 Code Improvement Modules
TODO: Consider how this should be presented in both Chapter 42 and 43.

In addition, the partially implemented Process AST module includes the skeleton
simplify and deriv functions discussed in Chapter 42.

This module is “wrapper” for the EvalCalc module currently.

43.11 What Next?
TODO

43.12 Chapter Source Code
The ELI Calculator language interpreter includes the following source code
modules:

• Values module Values

• Environments module Environments

• Abstract Synax module AbSynCalc

• Evaluator module EvalCalc

• Lexical Analyzer module LexCalc

• Parser modules

– Prefix parser ParsePrefixCalc

– Infix parser ParseInfixCalc

• REPL modules

– Prefix REPL PrefixCalcREPL

– Infix REPL InfixCalcREPL
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• Skeleton simplify and derivative module ProcessAST

43.13 Exercises
TODO

43.14 Acknowledgements
For the general acknowledgements for the ELI Calculator case study and Chapters
41-46 through Spring 2019, see the Acknowledgements section of Chapter 41.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a unified bibliography
(e.g., using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

43.15 Terms and Concepts
TODO
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44 Calculator: Parsing
44.1 Chapter Introduction
The ELI Calculator language case study examines how we can represent and
process simple arithmetic expressions using Haskell.

In Chapter 41, we described two different concrete syntaxes for expressions
written as text. In Chapter 42, we defined the abstract syntax represented as an
algebraic data type and the language semantics with an evaluation function.

Chapter 40 introduced the general concepts of lexical analysis and parsing. In
this chapter, we design and implement a hand-coded lexical analyzer and two
hand-coded recursive descent parsers for the two concrete syntaxes given in
Chapter 41. The parsers also construct the corresponding abstract syntax trees.

44.2 Parsing
TODO: Add citations for some of the key terms?

A programming language processor uses a parser to determine whether a program
satisfies the grammar for the language’s concrete syntax. The parser typically
constructs some kind of internal representation of the program to enable further
processing.

A common approach to parsing is to divide it into at least two phases:

• A lexical analyzer converts the sequence of characters into a sequence of
low-level syntactic units called tokens. The grammar describing the tokens
is usually a regular grammar, which can be processed efficiently using a
finite state machine.

• A parser converts the sequence of tokens into an initial semantic model (e.g.,
into an abstract syntax tree supported by a symbol table). The grammar
describing the language’s full syntax is typically a context-free grammar,
which requires more complex mechanisms to process.,

If the language has aspects that cannot be described with a context-free grammar,
then additional phases may be needed to handle issues such as checking types of
variables and expressions and ensuring that variables are declared before they
are used.

Of course, regular grammars are context-free grammars, so a separate lexical
analyzer is not required. But use of a separate lexical analyzer often leads to a
simpler parser and better performance.

However, some approaches to parsing, such as the use of parser combinators,
can conveniently handle lexical issues as a part of the parser.

In this chapter, we use the two-stage approach to parsing of the ELI Calculator
language. We define a lexical analyzer and parsers constructed using a technique
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called recursive descent parsing. The parsers construct abstract syntax trees
using the algebraic data type defined in Chapter 42 (i.e., in the Abstract Syntax
module).

Chapter 45 generalizes the recursive descent parsers to a set of parsing combina-
tiors.

44.3 Lexical Analysis
TODO: Lexical analyzer code, etc., probably needs to be updated to reflect
handling of finite integer errors.

In computing science, lexical analysis [199] is typically the process of reading
a sequence of characters from a language text and assembling the characters
into a sequence of lexemes, the smallest meaningful syntactic units. In a natural
language like English, the lexemes are typically the words of the language.

The output of lexical analysis is a sequence of lexical tokens (usually just called
tokens). A token associates a syntactic category with a lexeme. In a natural
language, the syntactic category may be the word’s part of speech (noun, verb,
etc.).

We call the program that carries out the lexical analysis a lexical analyzer, lexer,
tokenizer, or scanner. (However, the latter term actually refers to one phase of
the overall process.)

In a programming language, the syntactic categories of tokens consist of entities
such as identifiers, integer literals, and operators.

The “whitespace” characters such as blanks, tabs, and newlines are usually not
tokens themselves. Instead, they are delimiters which define the boundaries of
the other lexemes. However, in some programming languages, the end of a line
or the indentation at the beginning of a line have implicit structural meaning in
the language.

Consider the ELI Calculator language infix syntax. The character sequence

30 + ( x1 * 2)

includes seven tokens:

• integer literal 30
• addition operator +
• left parenthesis symbol (
• identifier x1
• multiplication operator *
• integer literal 2
• right parenthesis symbol )

Tokenization has two stages—a scanner and an evaluator.
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A scanner processes the character sequence and breaks it into lexeme strings. It
usually recognizes a language corresponding to a regular grammar, one of the
simplest classes of grammars, and is, hence, based on a finite state machine [190].
However, in some cases, a scanner may require more complex grammars and
processors.

A token evaluator determines the syntactic category of the lexeme string and
tags the token with this syntactic information.

Sometimes a lexical analyzer program combines the two stages into the same
algorithm.

44.3.1 Prefix syntax

Now let’s consider a lexical analyzer for the prefix syntax for the ELI Calculator
language.

File LexCalc.hs gives an example Haskell module that implements a lexical
analyzer for this concrete syntax.

The ELI Calculator language’s prefix syntax includes the following syntactic
categories: identifiers, keywords, integer literals, operators, left parenthesis, and
right parenthesis.

The left and right parenthesis characters are the only lexemes in those two
syntactic categories, respectively.

An identifier is the name for variable or other entity. We define an identifier
to begin with an alphabetic or underscore character and include all contiguous
alphabetic, numeric, or underscore characters that follow. It is delimited by a
whitespace or another character not allowed in an identifier.

As a sequence of characters, a keyword is just an identifier in this language, so
the scanner does not distinguish between two categories. The lexical analyzer
subsequently separates out keywords by checking each identifier against the list
of keywords.

An integer literal begins with a numeric character and includes all contiguous
numeric characters that follow. It is delimited by a whitespace or nonnumeric
character.

We plan to extend this language with additional operators. To enable flexible
use of the scanner, we design it to collect all contiguous characters from a list
of supported operator characters. Of course, we exclude alphabetic, numeric,
underscore, parentheses, and similar characters from the list for the prefix ELI
Calculator language.

The lexer subsequently compares each scanned operator against a list of valid
operators to remove invalid operators.
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The language uses keywords in similar ways to operators, so the lexer also
subsequently tags keywords as operators. The current lexical analyzer does not
use the TokKey token category.

The LexCalc module defines a Token algebraic data type, defined below, to
represent the lexical tokens. The constructors identify the various syntactic
categories.

import Values ( NumType, Name, toNumType )
-- e.g., NumType = Int , Name = String

data Token = TokLeft -- left parenthesis
| TokRight -- right parenthesis
| TokNum NumType -- unsigned integer literal
| TokId Name -- names of variables, etc.
| TokOp Name -- names of primitive functions
| TokKey Name -- keywords (no use currently)
| TokOther String -- other characters

deriving (Show, Eq)

The function lexx, shown below, incorporates the scanner and most of the
lexeme evaluator functionality. It takes a string and returns a list of tokens.

import Data.Char ( isSpace, isDigit, isAlpha, isAlphaNum )

lexx :: String -> [Token]
lexx [] = []
lexx xs@(x:xs')

| isSpace x = lexx xs'
| x == ';' = lexx (dropWhile (/='\n') xs')
| x == '(' = TokLeft : lexx xs'
| x == ')' = TokRight : lexx xs'
| isDigit x = let (num,rest) = span isDigit xs

in (TokNum (convertNumType num)) : lexx rest
| isFirstId x = let (id,rest) = span isRestId xs

in (TokId id) : lexx rest
| isOpChar x = let (op,rest) = span isOpChar xs

in (TokOp op) : lexx rest
| otherwise = (TokOther [x]) : lexx xs'
where

isFirstId c = isAlpha c || c == '_'
isRestId c = isAlphaNum c || c == '_'
isOpChar c = elem c opchars

opchars = "+-*/~<=>!&|@#$%ˆ?:" -- not " ' ` ( ) [ ] { } , . ;

Function lexx pattern matches on the first character of the string and then
collects any additional characters of the token using the higher order function
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Data.Char.span. Function span breaks the string into two part—the prefix
consisting of all contiguous characters that satisfy its predicate and the suffix
beginning with the first character that does not.

Boolean function isOpChar returns True for characters potentially allowed in
operator symbols. These are defined in the string opchars{.haskell{, which
makes this aspect of the scanner relatively easy to modify.

Function lexer, shown below, calls lexx and then carries out the following
transformations on the list of tokens:

• TokId tokens for keywords are transformed into the corresponding TokOp
tokens (as defined in association list keywords {.haskell})

• TokOp tokens for valid operators (as defined in association list opmap) are
transformed if needed and invalid operators are transformed into TokOther
tokens

The lexer does not generate error messages. Instead it tags characters that do
not fit in any lexeme as a TokOther token. The parser can use these as needed
(e.g., to generate error messages).

lexer :: String -> [Token]
lexer xs = markSpecials (lexx xs)

markSpecials :: [Token] -> [Token]
markSpecials ts = map xformTok ts

xformTok :: Token -> Token
xformTok t@(TokId id)

| elem id keywords = TokOp id
| otherwise = t

xformTok t@(TokOp op)
| elem op primitives = t
| otherwise = TokOther op

xformTok t = t

keywords = [] -- none defined currently
primitives = ["+","-","*","/"]

In the above code, the function xformTok transforms any identifier that is a
defined keyword into an operator token, leaves other identifiers and defined prim-
itive operators alone, and marks everything else with the token type TokOther.

44.3.2 Infix syntax

The lexer for the prefix syntax given in the previous subsection can also be used
for the simple infix syntax. However, future extensions of the language may
require differences in the lexers.
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44.4 Recursive Descent Parsing
A recursive descent parser is an approach to parsing languages that has relatively
simple grammars [78,196].

It is a top-down parser, a type of parser that begins with start symbol of the
grammar and seeks to determine the parse tree by working down the levels of
the parse tree toward the program (i.e., sentence).

By contrast, a bottom-up parser first recognizes the low-level syntactic units of
the grammar and builds the parse tree upward from these leaves toward the root
(i.e., start symbol). Bottom-up parsers support a wider range of grammars and
tend to be more efficient for production compilers. However, their development
tends to be less intuitive and more complex. We leave discussion of these parsers
to courses on compiler construction.

A recursive descent parser consists of a set of mutually recursive functions. It
typically includes one hand-coded function for each nonterminal of the grammar
and one clause for each production for that nonterminal.

The recursive descent approach works well when the grammar can be transformed
into an LL(k) (especially LL(1)) grammar [195]. Discussion of these techniques
are left to courses on compiler construction.

For an LL(1) grammar, we can write recursive descent parsers that can avoid
backtracking to an earlier point in the parse to start down another path.

For example, consider a simple grammar with with rules:

S ::= A | B
A ::= C D
B ::= { E } -- zero or more occurrence of E
C ::= [ F ] -- zero or one occurrence of F
D ::= '1' | '@' S
E ::= '3'
F ::= '2'

Consider the nonterminal S, which has alternatives A and B.

• Alternative A can begin with terminal symbols 1, 2, or @.

• Alternaive B can begin with terminal symbol 3 or be empty.

These sets of first symbols are disjoint, so the parser can distinguish among
the alternatives based on the first terminal symbol. (Hence, the grammar is
backtrack-free.)

44.4.1 Constructing recursive descent parsers

A simple recognizer for the grammar above could include functions similar to
those shown below. We consider the five different situations for nonterminals S,
A, B, C, and E.
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In the Haskell code, a parsing function takes a String with the text of the
expression to be processed and returns a tuple (Bool,String) where the first
component indicates whether or not the parser succeeded (i.e., the output of the
parse) and the second component gives the new state of the input.

If the first component is True, then the second component holds the input
remaining after the parse. If the first component is False, then the second
component is the remaining part of the input to be processed after the parser
failed.

Of course, instead of strings, the parser could work on lists of tokens or other
symbols.

1. Alternatives: S ::= A | B

parseS :: String -> (Bool,String) -- A | B
parseS xs =

case parseA xs of -- try A
(True, ys) -> (True, ys) -- A succeeds
(False, _ ) ->

case parseB xs of -- else try B
(True, ys) -> (True, ys) -- B succeeds
(False, _) -> (False, xs) -- both A & B fail

Function parseS succeeds whenever any alternative succeeds. Otherwise,
it continues to check subsequent alternatives. It fails if the final alternative
fails.

If there are more than two alternatives, we can nest each additional
alternative more deeply within the conditional structure. (That is, we
replace the parseB failure case value with a case expression for the third
option. Etc.)

2. Sequencing: A ::= C D

parseA :: String -> (Bool,String) -- C D
parseA xs =

case parseC xs of -- try C
(True, ys) ->

case parseD ys of -- then try D
(True, zs) -> (True, zs) -- C D succeeds
(False, _) -> (False, xs) -- D fails

(False, _ ) -> (False,xs) -- C fails

Function parseA fails whenever any component fails. Otherwise, it contin-
ues to check subsequent components. It succeeds when the final component
succeeds.

If there are more than two components in sequence, we nest each additional
component more deeply within the conditional structure. (That is, we
replace parseD xs with case parseD xs of ....)
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3. Repetition zero or more times: B ::= { E }

parseB :: String -> (Bool,String) -- { E }
parseB xs =

case parseE xs of -- try E
(True, ys) -> parseB ys -- one E, try again
(False, _) -> (True,xs) -- stop, succeeds

Function parseB always succeeds if parseE terminates. However, it may
succeed for zero occurrences of E or for some positive number of occurrences.

4. Optional elements: C ::= [ F ]

parseC :: String -> (Bool,String) -- [ F ]
parseC xs =

case parseF xs of -- try F
(True, ys) -> (True,ys)
(False, _ ) -> (True,xs)

Function parseC always succeeds if parseF terminates. However, it may
succeed for at most one occurrence of F.

5. Base cases to parse low-level syntactic elements: E ::= '3'

parseE :: String -> (Bool,String)
parseE (x:xs') = (x == '3', xs')
parseE xs = (False, xs )

On success in any of these cases, the new input state is the string remaining
after the successful alternative.

On failure, the input state should be left unchanged by any of the functions.

To use the above templates, it may sometimes be necessary to refactor the rules
that involve more than one of the above cases. For example, consider the rule

D ::= '1' | '@' S

which consists of two alternatives, the second of which is itself a sequence. To
see how to apply the templates straightforwardly, we can refactor D to be the
two rules:

D ::= '1' | DS
DS ::= '@' S

In addition to the above parsers for the various rules, we might have a function
parse that calls the top-level parser (parseS) and ensures that all the input is
parsed.

parse :: String -> Bool
parse xs =

case parseS xs of
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(True, []) -> True
(_, _ ) -> False

See file ParserS03.hs for experimental Haskell code for this example recursive
descent parser.

To have a useful parser, the above prototype functions likely need to be modified
to build the intermediate representation and to return appropriate error messages
for unsuccessful parses.

The above prototype functions use Haskell, but a similar technique can be used
with any language that supports recursive function calls.

44.4.2 Prefix syntax

This subsection describes an example recursive descent parser for the ELI
Calculator language’s prefix syntax. The complete code for the ParsePrefixCalc
module is given in the file ParsePrefixCalc.hs.

As given in Chapter 41, the prefix parser embodies the the following grammar:

<expression> ::= <var> | <val> | <operexpr>
<var> ::= <id>
<val> ::= [ '-' ] <unsigned>
<operexpr> ::= '(' <operator> <operandseq> ')'
<operandseq> ::= { <expression> }
<operator> ::= '+' | '*' | '-' | '/' | ...

The ParserPrefixCalc module imports and uses the LexCalc module for lexical
analysis. In particular, it uses the algebraic data type Token, types NumType
and Name, and function lexer.

import Values ( NumType, Name, toNumType )

data Token = TokLeft -- left parenthesis
| TokRight -- right parenthesis
| TokNum NumType -- unsigned integer literal
| TokId Name -- names of variables, etc.
| TokOp Name -- names of primitive functions
| TokKey Name -- keywords
| TokOther String -- other characters

deriving (Show, Eq)

lexer :: String -> [Token]

For the prefix grammar above, the nonterminals <id> and <unsigned> and the
terminals are parsed into their corresponding tokens by the lexical analyzer.

TODO: Update this code and reference. The incomplete module TestPrefix06
(in file TestPrefix06.hs{type=“text/plain”) provides some testing of the prefix
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parser.

The output of the parser is an abstract syntax tree constructed with the algebraic
data type Expr defined in the previous chapter. This is in the Abstract Syntax
module.

import Values ( ValType, Name )

data Expr = Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr
| Var Name
| Val ValType

44.4.2.1 Parse <expression> Now let’s build a recursive descent parser
using the method described in the previous subsection. We begin with the start
symbol <expression>.

The parsing function parseExpression, shown below, implements the following
BNF rule:

<expression> ::= <var> | <val> | <operexpr>

It uses the recursive descent template #1 with three alternatives.

type ParErr = String

parseExpression :: [Token] -> (Either ParErr Expr, [Token])
parseExpression xs =

case parseVar xs of
r@(Right _, _) -> r -- <var>
_ ->

case parseVal xs of
r@(Right _, _) -> r -- <val>
_ ->

case parseOperExpr xs of
r@(Right _, _) -> r -- <operexpr>
(Left m, ts) -> (missingExpr m ts, ts)

missingExpr m ts =
Left ("Missing expression at " ++ (showTokens (pref ts))

++ "..\n..Nested error { " ++ m ++ " }")

Function parseExpression takes a Token list and attempts to parse an
<expression>. If the parse succeeds, the function returns a pair consisting
of the Right value of an Either wrapping the corresponding Expr abstract
syntax tree and the list of input Tokens remaining after the Expr. If the parse
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fails, then the function returns an error in a Left value for theEither and the
unchanged list of input Tokens.

We define an auxiliary function missingExpr to generate an appropriate error
message.

The function parse, shown below, is the primary entry point for the
ParsePrefixCalc module. It first calls the lexical analysis function lexer
(from the module LexCalc) on the input list of characters and then calls the
parsing function parseExpression with the corresponding list of tokens.

If a parsing error occurs or if there are leftover tokens, then the function returns
an appropriate error message.

parse :: String -> Either ParErr Expr
parse xs =

case lexer xs of
[] -> incompleteExpr xs
ts ->

case parseExpression ts of
(ex@(Right _), []) -> ex
(ex@(Left _), _ ) -> ex
(ex, ss) -> extraAtEnd ex ss

incompleteExpr xs =
Left ("Incomplete expression: " ++ xs)

extraAtEnd ex xs =
Left ("Nonspace token(s) \"" ++ (showTokens xs) ++

"\" at end of the expression \"" ++ (show ex) ++ "\"")

44.4.2.2 Parse <var> Function parseVar implements the BNF rule:

<var> ::= <id>

Variable <id> denotes an identifier token recognized by the lexer. So we im-
plement function parseVar as a base case of the recursive descent parser (i.e.,
template #5).

parseVar :: [Token] -> (Either ParErr Expr, [Token])
parseVar ((TokId id):ts) = (Right (Var id),ts)
parseVar ts = (missingVar ts, ts)

missingVar ts =
Left ("Missing variable at " ++ (showTokens (pref ts)))

Function parseVar has the same type signature as parseExpression. It at-
tempts to match an identifier token at the front of the token sequence. If it finds
an identifier, it transforms the token to a Var expression and returns it with the
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remaining token list. Otherwise, it returns an error message and the unchanged
token list.

44.4.2.3 Parse <val> Function parseVal implements the BNF rule:

<val> ::= [ '-' ] <unsigned>

To implement this rule, we can refactor it into two rules that correspond to the
recursive descent template functions:

<val> ::= <optminus> <unsigned>
<optminus> ::= [ '-' ]

Then <val> can be implemented using the sequencing (#2) prototype,
<optminus> using the optional element (#4) prototype, and <unsigned> and -
using base case (#5) prototypes.

However, <unsigned> denotes a numeric token and - denotes a single operator
token. Thus we can easily implement parseVal as a base case of the recursive
descent parser.

parseVal :: [Token] -> (Either ParErr Expr, [Token])
parseVal ((TokNum i):ts) = (Right (Val i), ts)
parseVal ((TokOp "-"):(TokNum i):ts) = (Right (Val (-i)), ts)
parseVal ts = (missingVal ts, ts)

missingVal ts =
Left ("Missing value at " ++ (showTokens (pref ts)))

Function parseVal has the same type signature as parseExpression. It at-
tempts to match a numeric token, which is optionally preceded by a negative
sign, at the front of the token sequence. If it finds this, it transforms the tokens
to a Val expression and returns the expression and the remaining token list.
Otherwise, it returns an error message and the unchanged token list.

44.4.2.4 Parse <operexpr> Function parseOperExpr implements following
BNF rule:

<operexpr> ::= "(" <operator> <operandseq> ")"

It uses a modified version of recursive descent template #2 for sequences of
terms.

parseOperExpr :: [Token] -> (Either ErrMsg Expr, [Token])
parseOperExpr xs@(TokLeft:(TokOp op):ys) = -- ( <operator>

case parseOperandSeq ys of -- <operandseq>
(args, zs) ->

case zs of -- )
(TokRight:zs') -> (makeExpr op args, zs')
zs' -> (missingRParen zs, xs)
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-- ill-formed <operexpr>s
parseOperExpr (TokLeft:ts) = (missingOp ts, ts)
parseOperExpr (TokRight:ts) = (invalidOpExpr ")", ts)
parseOperExpr ((TokOther s):ts) = (invalidOpExpr s, ts)
parseOperExpr ((TokOp op):ts) = (invalidOpExpr op, ts)
parseOperExpr ((TokId s):ts) = (invalidOpExpr s, ts)
parseOperExpr ((TokNum i):ts) = (invalidOpExpr (show i), ts)
parseOperExpr [] = (incompleteExpr, [])

missingRParen ts =
Left ("Missing `)` at " ++ (show (take 3 ts)))

missingOp ts =
Left ("Missing operator at " ++ (show (take 3 ts)))

invalidOpExpr s =
Left ("Invalid operation expression beginning with " ++ s)

incompleteExpr = Left "Incomplete expression"

Function parseOperExpr has the same type signature as parseExpression. It
directly matches against the first two tokens to see whether they are a left
parenthesis and an operator, respectively, rather than calling separate functions
to parse each. If successful, it then parses zero or more operands and examines
the last token to see whether it is a right parenthesis.

If the operator expression is ill-formed, the function returns an appropriate error
message.

The function parseOperExpr delegates the construction of the corresponding
Expr (i.e., abstract syntax tree) to function makeExpr, which we discuss later in
the subsection.

The values yielded by the components of <operexpr> must be handled differently
than the previous components of expressions we have examined. They are not
themselves Expr values.

• ( and ) denote the structure of the expression but do not have any output.

• <operator> does not itself yield a complete Expr. It must be combined
with some number of operands to yield an expression. The number varies
depending upon the particular operator. We pass a string to makeExpr to
denote the operator.

• <operandseq> yields a possibly empty list of Expr values. We pass an
Expr list to makeExpr to denote the operands. <

44.4.2.5 Parse <operandseq> Function parseOperandSeq implements the
BNF rule:

<operandseq> ::= { <expression> }

It uses the recursive descent template #3 for repeated symbols.
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parseOperandSeq :: [Token] -> ([Expr],[Token])
parseOperandSeq xs =

case parseExpression xs of
(Left _, _ ) -> ([],xs)
(Right ex, ys) ->

let (exs,zs) = parseOperandSeq ys
in (ex:exs,zs)

The function parseOperandSeq takes a token list and collects a list of 0 or more
operand Exprs. An empty list means that no operands were found.

44.4.2.6 AST construction (makeExpr) Operators in the current abstract
syntax take a fixed number of operands. Add and Mul each take two operands,
but a negation operator would take one operand and a conditional “if” operation
would take three.

However, the current concrete prefix syntax does not distinguish among the
different operators and the number of operands they require. It allows any
operator in an <operexpr> to have any finite number of operands.

We could, of course, define a grammar that distinguishes among the operators,
but we choose to keep the grammar flexible, thus enabling easy extension. We
handle the operator-operand matching in the makeExpr function using data
structures to define the mapping.

Thus, function makeExpr takes the operator string and a list of operand Exprs
and constructs an appropriate Expr. It uses function arity to determine the
number of operands required for the operator and then calls the appropriate
opConsN function to construct the Expr.

makeExpr :: String -> [Expr] -> Either ErrMsg Expr
makeExpr op exs =

case arity op of
0 -> opCons0 op exs -- not implemented
1 -> opCons1 op exs
2 -> opCons2 op exs
3 -> opCons3 op exs
4 -> opCons4 op exs -- not implemented
5 -> opCons5 op exs -- not implemented
_ -> opConsX op exs -- not implemented

Function arity takes an operator symbol and returns the number of operands
that operator requires. It uses the arityMap association list to map the operator
symbols to the number of arguments expected.

import Data.Maybe

arityMap = [ ("+",2), ("-",2), ("*",2), ("/",2) ]
-- add (operator,arity) pairs as needed
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arity :: String -> Int
arity op = fromMaybe (-1) (lookup op arityMap)

Function opCons2 takes a binary operator string and an operand list with two
elements and returns the corresponding Expr structure wrapped in a Right. An
error is denoted by passing back an error message wrapped in a Left.

assocOpCons2 =
[ ("+",Add), ("-",Sub), ("*",Mul), ("/",Div) ]
-- add new pairs as needed

opCons2 :: String -> [Expr] -> Either ParErr Expr
opCons2 op exs =

case length exs of
2 -> case lookup op assocOpCons2 of

Just c -> Right (c (exs!!0) (exs!!1))
Nothing -> invalidOp op

n -> arityErr op n

invalidOp op =
Left ("Invalid operator '" ++ op ++ "'")

arityErr op n =
Left ("Operator '" ++ op ++ "' incorrectly called with "

++ (show n) ++ " operand(s)")

Currently, the only supported operators are the binary operators +, -, *, and /.
These map to the binary Expr constructors Add, Sub,Mul, and Div. (These are
two-argument functions.)

If we extend the supported operators, then we must extend the definitions
of arityMap and assocOpCons2 and add new definitions for opConsN and
assocOpConsN for other arities N. (We may also need to modify the LexCalc
module and the definition of Expr.)

For now, we respond to unknown operators using function opConsX and return
an appropriate error message. (In the future, this function may be redefined to
support operators with variable numbers of operands.)

opConsX :: String -> [Expr] -> Either ErrMsg Expr
opConsX op exs = unsupportedOp op

unsupportedOp op = Left ("Unsupported operator '" ++ op ++ "'")

44.4.3 Infix syntax

TODO: Update the parser to reflect the grammar change and recursive descent
explanation.

TODO: Describe the recursive descent infix parser in module ParseInfixCalc.hs.
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An incomplete module that does some testing is TestInfix03.hs.

44.5 Exercises
TODO

44.6 Chapter Source Code
TODO

44.7 Acknowledgements
For the general acknowledgements for the ELI Calculator case study and Chapters
41-46 through Spring 2019, see the Acknowledgements section of Chapter 41.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

44.8 Terms and Concepts
TODO
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45 Parsing Combinators
45.1 Chapter Introduction
TODO

45.2 Developing Parsing Combinators
In Chapter 44, we examined a set of prototype parsing functions and then used
them as patterns for hand-coding of recursive descent parsing functions. We can
benefit by generalizing these functions and collecting them into a library.

45.2.1 State actions and combinators

Consider parseS, one of the prototype parsing functions from a previous section.
It parses the grammar rule S ::= A | B, which has two alternatives.

parseS :: String -> (Bool,String)
parseS xs =

case parseA xs of -- try A
(True, ys) -> (True, ys) -- A succeeds
(False, _ ) ->

case parseB xs of -- else try B
(True, ys) -> (True, ys) -- B succeeds
(False, _) -> (False, xs) -- both A,B fail

Note that parseS and the other prototype parsing functions have the type:

String -> (Bool,String)

The occurrence of type String in the argument of the function represents the
state of the input before evaluation of the function; the second occurrence of
String represents the state after evaluation. The type Bool represents the result
of the evaluation.

In an imperative program, the state is often left implicit and only the result
type is returned. However, in a purely functional program, we must also make
both the state change explicit.

Functions that have a type similar to parseS are called state actions or state
transitions. We can generalize this parsing state transition as a function type:

type Parser a b = a -> (b,a)

In the case of parseS, we specialize this to:

Parser String Bool

In the case of richer parsing case studies for the prefix and infix parsers, we
specialize this type as:

Parser [Token] (Either ErrMsg Expr)
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Given the Parser type, we can define a set of combinators that allow us to
combine simpler parsers to construct more complex parsers. These combinators
can pass along the state implicitly, avoiding some tedious and repetitive work.

We can define a combinator parseAlt that generalizes the parseS prototype
function above. It implements a recognizer, so we fix type b to Bool, but leave
type argument a general.

parseAlt :: Parser a Bool -> Parser a Bool -> Parser a Bool
parseAlt p1 p2 =

\xs ->
case p1 xs of

(True, ys) -> (True, ys)
(False, _ ) ->

case p2 xs of
(True, ys) -> (True, ys)
(False, _ ) -> (False, xs)

Note the use of the anonymous function in the body. Function parseAlt takes
two Parser values and then returns a Parser value. The Parser function
returned binds in the two component function values. When this function is
applied to the parser input (which is the argument of the anonymous function),
it applies the two component parsers as needed.

We can easily redefine parseS in terms of the parseAlt combinator and simpler
parsers parseA and parseB.

parseS = parseAlt parseA parseB

Given parsing input inp, we can invoke the parser with the expression:

parseS inp

Note that this formulation enables us to handle the passing of state among the
component parsers implicitly, much as we can in an imperative computation.
But it still preserves the nature of purely functional computation.

45.2.2 Completing a combinator library

Now consider the parseA prototype, which implements a two-component se-
quencing rule A ::= C D.

parseA xs =
case parseC xs of -- try C

(True, ys) -> -- then try D
case parseD ys of

(True, zs) -> (True, zs) -- C D succeeds
(False, _) -> (False, xs) -- both C, D fail

(False, _ ) -> (False,xs) -- C fails

As with parseS, we can generalize parseA as a combinator parseSeq.
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parseSeq :: Parser a Bool -> Parser a Bool -> Parser a Bool
parseSeq p1 p2 =

\xs ->
case p1 xs of

(True, ys) ->
case p2 ys of

t@(True, zs) -> t
(False, _ ) -> (False, xs)

(False, _ ) -> (False, xs)

Thus we can redefine parseA in terms of the parseSeq combinator and simpler
parsers parseC and parseD.

parseA = parseSeq parseC parseD

Similarly, we consider the parseB prototype, which implements a repetition rule
B ::= { E }.

parseB xs =
case parseE xs of -- try E

(True, ys) -> parseB ys -- try again
(False, ys) -> (True,xs) -- stop

As above, we generalize this as combinator parseStar.

parseStar :: Parser a Bool -> Parser a Bool
parseStar p1 =

\xs ->
case p1 xs of

(True, ys) -> parseStar p1 ys
(False, _ ) -> (True, xs)

We can redefine parseB in terms of combinator parseStar and simpler parser
parseE.

parseB = parseStar parseB

Finally, consider parsing prototype parseC, which implements an optional rule
C ::= [ F ].

parseC xs =
case parseF xs of -- try F

(True, ys) -> (True,ys)
(False, _ ) -> (True,xs)

We generalize this pattern as parseOpt, as follows.

parseOpt :: Parser a Bool -> Parser a Bool
parseOpt p1 =

\xs ->
case p1 xs of
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(True, ys) -> (True, ys)
(False, _ ) -> (True, xs)

We can thus redefine parseC in terms of simpler parser parseF and combinator
parseOpt.

parseC = parseOpt parseF

In this simple example grammar, function parseD is a simple instance of a
sequence and parseE and parseF are simple parsers for symbols. These can be
directly implemented as basic parsers, as before. However, the technique work if
these are more complex parsers built up from combinators.

For convenience and completeness, we include extended alternative and sequenc-
ing combinators and parsers that always fail or always succeed.

parseAltList :: [Parser a Bool] -> Parser a Bool
parseSeqList :: [Parser a Bool] -> Parser a Bool
parseFail, parseSucceed :: Parser a Bool

The combinators in this library are in the Haskell module ParserComb.hs. A
module that does some testing is TestParserComb.hs.

TODO: Update and document the Parser Combinator library code.

45.2.3 Adding parse tree generations

TODO: Expand this library to allow returns of “parse trees” and error messages.

45.3 Standard libraries for parsing
TODO

There are a number of relatively standard parsing combinator libraries—e.g.,
the library Parsec. Readers who wish to develop other parsers may want to
study that library.

45.4 Exercises
TODO

45.5 Chapter Source Code
TODO

45.6 Acknowledgements
For the general acknowledgements for the ELI Calculator case study and Chapters
41-46 through Spring 2019, see the Acknowledgements section of Chapter 41.
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I developed the parsing combinators in this chapter primarily using the approach
of Fowler and Parsons [78], with some influence by Chiusano and Bjarnason [29].
I generalized the concrete parsing functions from Chapter 44 to construct the
combinators.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a unified bibliography
(e.g., using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

45.7 Terms and Concepts
TODO
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46 Calculator: Compilation
46.1 Chapter Introduction
This is a partially developed chapter.

TODO: - Add goals to intro. - Complete and revise the conditional expression
sections as needed (e.g., the compilation subsection does not discuss the handling
of labels/addresses sufficiently) - Consider adding separate compilation units
and linking of units together

46.2 Stack Virtual Machine
Consider a stack virtual machine [[200]} as a means for executing the ELI
Calculator language expressions. The operation of this machine is similar to
the operation of a calculator that uses Reverse Polish Notation [201] (or postfix
notation) such as the calculators from Hewlett-Packard.

46.2.1 Instruction set syntax

Consider a stack-based virtual machine with a symbolic instruction set defined
by the following abstract syntax:

data SInstr = SVal Int
| SVar String
| SPop
| SSwap
| SDup
| SAdd
| SMul

deriving (Show, Eq)

46.2.2 Instruction set semantics

Suppose the state of the virtual machine consists an evaluation stack of values
and a program counter indicating the next instruction to be executed. Further
suppose the above instructions have the following semantics. The machine
executes much like a calculator that uses “reverse Polish notation”.

• SVal i pushes value i onto the top of the evaluation stack.

• SVar v pushes the value of “variable” v from the current environment onto
the top of the evaluation stack. (Here we are simulating a memory with
the environment.)

• SPop removes the top element from the stack. (That is, if the stack from
the top is 10:xs, then the resulting stack is xs.)

• SSwap exchanges the top two elements on the stack. (That is, if the stack
from the top is 10:20:xs, then the resulting stack is 20:10:xs.)
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• SDup pushes another copy of the top element onto the stack. (That is, if
the stack from the top is 10:xs, then the resulting stack is 10:10:xs.)

• SAdd pops the top two elements from the stack, adds the second to the
first, and pushes the result back on top of the stack. (That is, if the stack
from the top is 10:20:xs then the resulting stack is 30:xs.)

• SMul pops the top two elements from the stack, multiplies the second times
the first, and pushes the result back on top of the stack. (That is, if the
stack from the top is 10:20:xs then the resulting stack is 200:xs.)

We extend this instruction set later to provide other operations.

46.2.3 Machine execution

We can define a simple skeletal execution mechanism for the Stack Virtual
Machine as follows. Function execSInstr takes the state, environment, and
instruction and returns the modified state and environment. (This version does
not modify the environment, but a version in the future may do so.)

data SState = SState [Int] Int
deriving (Show, Eq)

execSInstr :: SState -> Env -> SInstr -> (SState, Env)
execSInstr (SState es pc) env (SVal i) =

(SState (i:es) (pc+1), env)
execSInstr (SState es pc) env (SVar v) =

case lookup v env of
Just i -> (SState (i:es) (pc+1), env)
Nothing -> error ("Variable " ++ show v ++ " undefined")

execSInstr (SState es pc) env SPop =
(SState es pc, env) -- REPLACE

execSInstr (SState es pc) env SSwap =
(SState es pc, env) -- REPLACE

execSInstr (SState es pc) env SDup =
(SState es pc, env) -- REPLACE

execSInstr (SState es pc) env SAdd =
case es of

(r:l:xs) -> (SState ((l+r):xs) (pc+1), env)
_ -> error ("Cannot Add. Stack too short: " ++ show es)

execSInstr (SState es pc) env SMul = (SState es pc, env) -- REPLACE

46.2.4 Compilation

We can translate the ELI Calculator language to the instruction set as follows.
We call this process code generation and call the whole process of converting
from source code to the instruction set compilation.

502



We consider compilation of the Calculator langauge to the stack virtual machine
in Exercise Set A.

TODO: Does reference [88] fit here?

46.3 What Next?
TODO

46.4 Chapter Source Code
The source code module for this section is in file SInstr-2.hs.

46.5 Exercise Set A
In this exercise set, we consider the Stack Virtual Machine and translation of
the ELI Calculator language’s abstract syntax trees to equivalent sequences of
instructions.

1. Complete the development of the function execSInstr, adding the code
for the SPop, SSwap, SDup, and SMul instructions.

2. Extend the Stack Virtual Machine instruction set (i.e., SInstr) to support
the extensions to the Expr data type defined in Exercise Set A (i.e., Sub,
Div, Neg, Min, and Max). The operators take top value as their right
operands and the value under that as the left operand.

3. Develop a Haskell function

execSeq :: SState -> Env -> [SInstr] -> (SState, Env)

that executes a sequence of Stack Virtual Machine instructions given the
initial state and environment. (Although the machine in this case study
so far does not modify the environment, allow for the future possibility of
modification. A later exerces may extend the ELI Calculator language to
add assignment statements, imperative loops, and variable and function
declarations.)

Also develop a function exec that executes a sequence of instructions from
an initially empty stack with the given environment and returns the result
on top of the stack after execution. (You may use execSeq.)

exec :: Env -> [SInstr] -> Int

4. Develop a Haskell function

compile :: Expr -> [SInstr]

that translates the extended expression tree from Exercise Set A to a
sequence of Stack Virtual Machine instructions as extended in this exercise
set.
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5. Develop a Haskell function compGo that takes an expression tree, simplifies,
compiles, and executes it using the given environment. You may use the
functions exec and compile from the previous exercises.

compGo :: Env -> Expr -> Int

46.6 Conditional Expressions
Let’s examine how to extend the ELI Calculator language to include comparisons
and conditional expressions.

46.6.1 Extending the Calculator language

TODO: This was introduced as a operator in a previous chapter.

Suppose that we redefine Expr to include binary operators Eq (equality) and Lt
(less-than comparison), logical unary operator Not, and the ternary conditional
expression If (if-then-else).

data Expr = ...
| Eq Expr Expr
| Lt Expr Expr
| Not Expr
| If Expr Expr Expr
...

deriving Show

This extended language does not have Boolean values. We represent “false” by
integer 0 and “true” by a nonzero integer, primarily by 1.

We express the semantics of the various ELI Calculator language expressions as
follows:

• Eq l r evaluates to the value 1 if l and r have the same value and to 0
otherwise.

• Lt l r evaluates to the value 1 if the value of l is smaller then the value
of r and to 0 otherwise.

• Not i evaluates to 1 if i is zero and evaluates to 0 if i is nonzero.

• If c l r first evaluates c; if c is nonzero, the if evaluates to the value of
l; otherwise the if evaluates to the value of r.

46.6.2 Extending the stack virtual machine (UNFINISHED)

TODO: This discussion in the remainder of the Conditional Expression section is
not complete! In particular, the discussion of labels/addresses must be clarified
and expanded—probably changed.
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Suppose we redefine SInstr, the Stack Virtual Machine to include the new
instructions:

data SInstr = ...
| SEq
| SLt
| SLnot
| SLabel String
| SGo String
| SIfZ String
| SIfNZ String
deriving (Show, Eq)

These Stack Virtual Machine instructions execute as follows:

• SEq pops the top two values from the stack; if the values are equal, it
pushes a 1 onto the stack; otherwise, it pushes a 0. (For example, if the
stack from the top is 3:4:xs, the resulting stack is 0:xs.)

• SLt pops the top two values from the stack; if the second value is smaller
than the top value, it pushes a 1 onto the stack; otherwise, it pushes a 0.
(For example, if the stack from the top is 3:4:xs, the resulting stack is
0:xs.)

• SLnot pops the top value from the stack; if the top is 0, it pushes 1 back
onto the stack; if it is nonzero, it pushed 0 back onto the stack. (For
example, if the stack from the top is 0:xs, the resulting stack is 1:xs. If
the stack is 7:xs, then the result is 0:xs.)

• SLabel n does not change the stack. It is a pseudo-instruction to enable a
jump to this point in the program using label n.

• SGo n makes the next instruction to be executed the one labelled n; it does
not change the stack.

• SIfZ n pops the value from the top of the stack; if this value is zero, then
the next instruction executed will be the one labelled n; otherwise the next
instruction is the one following the SIfZ instruction.

• SIfNZ n pops the value from the top of the stack; if this value is nonzero,
then it makes the next instruction executed the one labelled n; otherwise
the next instruction is the one following the SIfNZ instruction.

46.6.3 Extending the compiler (UNFINISHED)

TODO

We can translate the expression

If (Eq (Var "x") (Val 1)) (Val 10) (Val 20)

to a sequence of Stack Virtual Machine instructions such as:
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[ SVar "x", SVal 1, SEq, SIfZ "else", SVal 10, SGo "end",
SLabel "else', SVal 20, SLabel "end" ]

Of course, each If needs a unique set of labels.

46.7 Exercise Set B (UNFINISHED)
TODO

1. Extend the eval function to support the Eq, Lt, Not, and If operators.

2. Extend the simplify function to support the Eq, Lt, Not, and If operators.

3. Extend the data type Expr and the eval function to support the other
comparison operators Ne (not equal), Le (less or equal), Gt (greater than),
and Ge (greater or equal) and the logical operators And and Or.

4. Extend the simplify function to support the comparison operators Ne,
Le, Gt, and Ge and the logical operators And and Or added in the previous
exercise.

5. (UNFINISHED) Extend the execSInstr, execSeq, and exec functions
from Exercise Set C to include the new Stack Virtual Machine instructions.

6. (UNFINISHED) Extend the compile and compileGo functions from Exer-
cise Set C to include support for Eq, Lt, and Not.

7. (UNFINISHED) Extend the compile and compileGo functions from the
previous exercise to include expressions Ne, Le, Gt, Ge, And, Or, and If.
Each of these may need to be translated to a sequence of Stack Virtual
Machine instructions.

46.8 Acknowledgements
For the general acknowledgements for the ELI Calculator case study and Chapters
41-46 through Spring 2019, see the Acknowledgements section of Chapter 41.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a unified bibliography
(e.g., using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

46.9 Terms and Concepts
TODO
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47 Imperative Core Language (Future)
This will likely be more than one chapter.

47.1 Chapter Introduction
TODO

47.2 What Next?
TODO

47.3 Exercises
TODO

47.4 Acknowledgements
TODO

47.5 Terms and Concepts
TBD
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48 Appendix I: Review of Relevant Mathematics
48.1 Chapter Introduction
Students studying from this textbook should already have sufficient familiarity
with the relevant mathematical concepts from the usual prerequisite courses.
However, they may need to relate the mathematics with the programming
constructs in functional programming.

The goal of this chapter is to review the mathematical concepts of functions and
a few other mathematical concepts used in these notes. The concept of function
in functional programming corresponds closely to the mathematical concept of
function.

TODO: Add discussion of logic needed for specification and statement of laws?

TODO: Add appropriate citations.

48.2 Natural Numbers and Ordering
Several of the examples in these notes use natural numbers.

For this study, we consider the set of natural numbers N to consist of 0 and the
positive integers.

Inductively, n ∈ N if and only if one of the following holds

• n = 0
• There exists m ∈ N such that m = S(n)

where S is the successor function, which returns the next element.

Furthermore,

• No element is the successor of more one other natural number.
• 0 is not the successor of any natural number. That is, it is the least (base)

element.

The natural numbers thus form a totally ordered set in conjunction with the
binary relation ≤ (less or equal). That is, the relation ≤ satisfies the following
properties on set N :

• n ≤ n for all n ∈ N (reflexivity)
• m ≤ n and n ≤ m implies m = n (antisymmetry)
• m ≤ n and n ≤ p implies m ≤ p (transitivity)
• Either m ≤ n or n ≤ m for all m, n ∈ N (trichotomy)

It is also a partial ordering because it satisfies the first three properties above.

For all m, n ∈ N , we can define the other ordering relations in terms of =, ̸=,
and ≤ as follows:
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• m < n (less) to mean m ≤ n and m ̸= n. We say that m is smaller (or
simpler) than n.

• m > n (greater) to mean n ≤ m and n ̸= m. We say that m is larger (or
more complex) than n.

• m ≥ n (greater or equal) to mean the same as n ≤ m

48.3 Functions
As we have studied in mathematics courses, a function is a mapping from a set
A into a set B such that each element of A is mapped into a unique element of
B.

• The set A (on which f is defined) is called the domain of f .
• The set of all elements of B into which f maps elements of A is called the

range (or codomain) of f , and is denoted by f(A).

If f is a function from A into B, then we write:

f : A→ B

We also write the equation

f(a) = b

to mean that the value (or result) from applying function f to an element a ∈ A
is an element b ∈ B.

If a function

f : A→ B

and A ⊆ A′, then we say that f is a partial function from A′ to B and a total
function from A to B. That is, there are some elements of A′ on which f may
be undefined.

48.4 Recursive Functions
Informally, a recursive function is a function defined using recursion.

In computing science, recursion is a method in which an “object” is defined in
terms of smaller (or simpler) “objects” of the same type. A recursion is usually
defined in terms of a recurrence relation.

A recurrence relation defines an “object” xn as some combination of zero or more
other “objects” xi for i < n. Here i < n means that i is smaller (or simpler)
than n. If there is no smaller object, then n is a base object.

For example, consider a recursive function to compute the sum s of the first n
natural numbers.

We can define a recurrence relation for s with the following equations:
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s(n) = 0, if n = 0
s(n) = n + s(n− 1), if n ≥ 1

For example, consider s(3),

s(3) = 3+s(2) = 3+(2+s(1)) = 3+(2+(1+s(0))) = 3+(2+(1+0)) =
6

48.5 Mathematical Induction Natural Numbers
We can give two mathematical definitions of factorial, fact and fact’, that are
equivalent for all natural number arguments.

We can define fact using the product operator as follows:

fact(n) =
∏i=n

i=1 i

We can also define the factorial function fact’ with a recursive definition (or
recurrence relation) as follows:

fact’(n) = 1, if n = 0
fact’(n) = n× fact’(n− 1), if n ≥ 1

It is, of course, easy to see that the recurrence relation definition is equivalent
to the previous definition. But how can we prove it?

To prove that the above definitions of the factorial function are equivalent, we
can use mathematical induction over the natural numbers.

Mathematical induction: To prove a logical proposition P (n) holds for any
natural number n, we must show two things:

• For the base case n = 0, show that P (0) holds.
• For the inductive case n = m + 1, show that, if P (m) holds for some

natural number m, then P (m + 1) also holds.

The P (m) assumption is called the induction hypothesis.

Now let’s prove that the two definitions fact and fact’ are equivalent.

Prove For all natural numbers n, fact(n) = fact’(n).

Base case n = 0.

fact(0)

= { definition of fact (left to right) }

(Πi : 1 ≤ i ≤ 0 : i)

= { empty range for Π, 1 is the identity element of × }

1

= { definition of fact’ (first leg, right to left) }
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fact’(0)

Inductive case n = m + 1.
Given induction hypothesis fact(m) = fact’(m), prove fact(m + 1) =fact’(m + 1).

fact’(m + 1)

= { definition of fact (left to right) }

(Πi : 1 ≤ i ≤ m + 1 : i)

= { m + 1 > 0, so m + 1 term exists, split it out }

(m + 1)× (Πi : 1 ≤ i ≤ m : i)

= { definition of fact (right to left) }

(m + 1)× fact(m)

= { induction hypothesis }

(m + 1)× fact’(m)

= { m + 1 > 0, definition of fact’ (second leg, right to left) }

fact’(m + 1)

Therefore, we have proved fact(n) = fact’(n) for all natural numbers n. QED

In the inductive step above, we explicitly state the induction hypothesis and
assertion we wish to prove in terms of a different variable name (m instead of
n) than the original statement. This helps to avoid the confusion in use of the
induction hypothesis that sometimes arises.

We use an equational style of reasoning. To prove that an equation holds, we
begin with one side and prove that it is equal to the other side. We repeatedly
“substitute equals for equal” until we get the other expression.

Each transformational step is justified by a definition, a known property of
arithmetic, or the induction hypothesis.

The structure of this inductive argument closely matches the structure of the
recursive definition of fact’.

What does this have to do with functional programming? Many of the functions
we will define in these notes have a recursive structure similar to fact’. The
proofs and program derivations that we do will resemble the inductive argument
above.

Recursion, induction, and iteration are all manifestations of the same phenome-
non.

48.6 Operations
A function
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⊕ : (A×A)→ A

is called a binary operation on A. We usually write binary operations in infix
form:

a ⊕ a’

We often call a two-argument function of the form

⊕ : (A×B)→ C

a binary operation as well. We can write this two argument function in the
equivalent curried form:

⊕ : A→ (B → C)

The curried form shows a multiple-paramenter function in a form where the
function takes the arguments one at a time, returning the resulting function
with one fewer arguments.

Let ⊕ be a binary operation on some set A and x, y, and z be elements of A.
We can define the following kinds of properties.

• Operation ⊕ is closed on A if and only if x⊕ y ∈ A for any x, y ∈ A. That
is, the operation is a total function on its domain.

• Operation ⊕ is associative if and only if (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) for
x, y, z ∈ A.

• Operation ⊕ is commutative (also called symmetric) if and only if x⊕ y =
y ⊕ x for x, y ∈ A.

• An element e of set A is

– a left identity of ⊕ if and only if e⊕ x = x for any x ∈ A
– a right identity of ⊕ if and only if x⊕ e = x for any x ∈ A
– an identity of ⊕ if and only if it is both a left and a right identity.

An identity of an operation is called a unit of the operation.

• An element z of set A is

– a left zero of ⊕ if and only if z ⊕ x = z for any x ∈ A
– a right zero of ⊕ if and only if x⊕ z = z for any x ∈ A
– a zero of ⊕ if and only if it is both a right and a left zero

• If e is the identity of ⊕ and x⊕ y = e for some x and y, then

– x is a left inverse of y
– y is a right inverse of x.

Elements x and y are inverses of each other if x⊕ y = e = y ⊕ x.

• An element x of set A is idempotent if x⊕ x = x.
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If all elements of A are idempotent with respect to ⊕, then ⊕ is called
idempotent.

For example, the addition operation + on natural numbers is closed, associative,
and commutative and has the identity element 0. It has neither a left or right
zero element and the only element with a left or right inverse is 0. If we consider
the set of all integers, then all elements also have inverses.

Also, the multiplication operation * on natural numbers (or on all integers) is
closed, associative, and commutative and has identity element 1 and zero element
0. Only value 1 has a left or right inverse.

However, the subtraction operation on natural numbers is not closed, associative,
or commutative and has neither a left nor right zero. The value 0 is subtraction’s
right identity, but subtraction has no left identity. Each element is its own right
and left inverse. If we consider all integers, then the operation is also closed.

Also, the “logical and” and “logical or” operations are idempotent with respect
to the set of Booleans.

48.7 Algebraic Structures
An algebraic structure consists of a set of values, a set of one or more operations
on those values, and properties (or “laws”) of the operation on the set. We can
characterize algebraic structures by the operations and their properties on the
set of values.

If we focus on a binary operation ⊕ on a set A, then we can define various
algebraic structures based on their properties.

• If ⊕ is closed on A, then then ⊕ and A form a magma.

• A magma in which ⊕ is an associative operation forms a semigroup.

• A semigroup in which ⊕ has an identity element forms a monoid.

• A monoid in which every element of A has an inverse forms a group.

• A monoid in which ⊕ is commutative forms a commutative monoid (or
Abelian monoid).

• A group in which ⊕ is commutative forms an Abelian group.

For example, addition on natural numbers forms a commutative monoid and on
integers forms an Abelian group.

Note: Above we describe a few common group-like algebraic structures, that is,
algebras with one operation and one set. If we consider two operations on one
set (e.g. ⊕ on ⊗), then we have various ring-like algebraic structures. By adding
other operations, we have various other kinds of algebraic structures. If we
consider more than one set, then we moved from a single-sorted (or first-order)
algebra to a many-sorted algebra.
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48.8 Exercises
TODO: Add

48.9 Acknowledgements
I adapted and revised much of this work in Summer and Fall 2016 from Chapter
2 of my Notes on Functional Programming with Haskell [42].

In Summer and Fall 2017, I continued to develop this material as a part of
Chapter 1, Fundamentals, of my 2017 Haskell-based programming languages
textbook.

In Spring and Summer 2018, I reorganized and expanded the previous Fundamen-
tals chapter into four chapters for the 2018 version of the textbook, now titled
Exploring Languages with Interpreters and Functional Programming. These are
Chapter 1, Evolution of Programming Languages; Chapter 2, Programming
Paradigms; Chapter 3, Object-based Paradigms; and Chapter 80, Review of
Relevant Mathematics (this background chapter).

In Spring 2019, I expanded the discussion of algebraic structures a bit.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a unified bibliography
(e.g., using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

48.10 Terms and Concepts
TODO: Add
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