
Exploring Languages
with Interpreters

and Functional Programming
Chapter 45

H. Conrad Cunningham

04 April 2022

Contents
45 Parsing Combinators 2

45.1 Chapter Introduction . 2
45.2 Developing Parsing Combinators 2

45.2.1 State actions and combinators 2
45.2.2 Completing a combinator library 3
45.2.3 Adding parse tree generations 5

45.3 Standard libraries for parsing . 5
45.4 Exercises . 5
45.5 Chapter Source Code . 5
45.6 Acknowledgements . 5
45.7 Terms and Concepts . 6
45.8 References . 6

Copyright (C) 2017, 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

45 Parsing Combinators
45.1 Chapter Introduction
TODO

45.2 Developing Parsing Combinators
In Chapter 44, we examined a set of prototype parsing functions and then used
them as patterns for hand-coding of recursive descent parsing functions. We can
benefit by generalizing these functions and collecting them into a library.

45.2.1 State actions and combinators

Consider parseS, one of the prototype parsing functions from a previous section.
It parses the grammar rule S ::= A | B, which has two alternatives.

parseS :: String -> (Bool,String)
parseS xs =

case parseA xs of -- try A
(True, ys) -> (True, ys) -- A succeeds
(False, _) ->

case parseB xs of -- else try B
(True, ys) -> (True, ys) -- B succeeds
(False, _) -> (False, xs) -- both A,B fail

Note that parseS and the other prototype parsing functions have the type:

String -> (Bool,String)

The occurrence of type String in the argument of the function represents the
state of the input before evaluation of the function; the second occurrence of
String represents the state after evaluation. The type Bool represents the result
of the evaluation.

In an imperative program, the state is often left implicit and only the result
type is returned. However, in a purely functional program, we must also make
both the state change explicit.

Functions that have a type similar to parseS are called state actions or state
transitions. We can generalize this parsing state transition as a function type:

type Parser a b = a -> (b,a)

In the case of parseS, we specialize this to:

Parser String Bool

In the case of richer parsing case studies for the prefix and infix parsers, we
specialize this type as:

Parser [Token] (Either ErrMsg Expr)

2

Given the Parser type, we can define a set of combinators that allow us to
combine simpler parsers to construct more complex parsers. These combinators
can pass along the state implicitly, avoiding some tedious and repetitive work.

We can define a combinator parseAlt that generalizes the parseS prototype
function above. It implements a recognizer, so we fix type b to Bool, but leave
type argument a general.

parseAlt :: Parser a Bool -> Parser a Bool -> Parser a Bool
parseAlt p1 p2 =

\xs ->
case p1 xs of

(True, ys) -> (True, ys)
(False, _) ->

case p2 xs of
(True, ys) -> (True, ys)
(False, _) -> (False, xs)

Note the use of the anonymous function in the body. Function parseAlt takes
two Parser values and then returns a Parser value. The Parser function
returned binds in the two component function values. When this function is
applied to the parser input (which is the argument of the anonymous function),
it applies the two component parsers as needed.

We can easily redefine parseS in terms of the parseAlt combinator and simpler
parsers parseA and parseB.

parseS = parseAlt parseA parseB

Given parsing input inp, we can invoke the parser with the expression:

parseS inp

Note that this formulation enables us to handle the passing of state among the
component parsers implicitly, much as we can in an imperative computation.
But it still preserves the nature of purely functional computation.

45.2.2 Completing a combinator library

Now consider the parseA prototype, which implements a two-component se-
quencing rule A ::= C D.

parseA xs =
case parseC xs of -- try C

(True, ys) -> -- then try D
case parseD ys of

(True, zs) -> (True, zs) -- C D succeeds
(False, _) -> (False, xs) -- both C, D fail

(False, _) -> (False,xs) -- C fails

As with parseS, we can generalize parseA as a combinator parseSeq.

3

parseSeq :: Parser a Bool -> Parser a Bool -> Parser a Bool
parseSeq p1 p2 =

\xs ->
case p1 xs of

(True, ys) ->
case p2 ys of

t@(True, zs) -> t
(False, _) -> (False, xs)

(False, _) -> (False, xs)

Thus we can redefine parseA in terms of the parseSeq combinator and simpler
parsers parseC and parseD.

parseA = parseSeq parseC parseD

Similarly, we consider the parseB prototype, which implements a repetition rule
B ::= { E }.

parseB xs =
case parseE xs of -- try E

(True, ys) -> parseB ys -- try again
(False, ys) -> (True,xs) -- stop

As above, we generalize this as combinator parseStar.

parseStar :: Parser a Bool -> Parser a Bool
parseStar p1 =

\xs ->
case p1 xs of

(True, ys) -> parseStar p1 ys
(False, _) -> (True, xs)

We can redefine parseB in terms of combinator parseStar and simpler parser
parseE.

parseB = parseStar parseB

Finally, consider parsing prototype parseC, which implements an optional rule
C ::= [F].

parseC xs =
case parseF xs of -- try F

(True, ys) -> (True,ys)
(False, _) -> (True,xs)

We generalize this pattern as parseOpt, as follows.

parseOpt :: Parser a Bool -> Parser a Bool
parseOpt p1 =

\xs ->
case p1 xs of

4

(True, ys) -> (True, ys)
(False, _) -> (True, xs)

We can thus redefine parseC in terms of simpler parser parseF and combinator
parseOpt.

parseC = parseOpt parseF

In this simple example grammar, function parseD is a simple instance of a
sequence and parseE and parseF are simple parsers for symbols. These can be
directly implemented as basic parsers, as before. However, the technique work if
these are more complex parsers built up from combinators.

For convenience and completeness, we include extended alternative and sequenc-
ing combinators and parsers that always fail or always succeed.

parseAltList :: [Parser a Bool] -> Parser a Bool
parseSeqList :: [Parser a Bool] -> Parser a Bool
parseFail, parseSucceed :: Parser a Bool

The combinators in this library are in the Haskell module ParserComb.hs. A
module that does some testing is TestParserComb.hs.

TODO: Update and document the Parser Combinator library code.

45.2.3 Adding parse tree generations

TODO: Expand this library to allow returns of “parse trees” and error messages.

45.3 Standard libraries for parsing
TODO

There are a number of relatively standard parsing combinator libraries—e.g.,
the library Parsec. Readers who wish to develop other parsers may want to
study that library.

45.4 Exercises
TODO

45.5 Chapter Source Code
TODO

45.6 Acknowledgements
For the general acknowledgements for the ELI Calculator case study and Chapters
41-46 through Spring 2019, see the Acknowledgements section of Chapter 41.

5

ParserComb.hs
TestParserComb.hs

I developed the parsing combinators in this chapter primarily using the approach
of Fowler and Parsons [2], with some influence by Chiusano and Bjarnason [1].
I generalized the concrete parsing functions from Chapter 44 to construct the
combinators.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a unified bibliography
(e.g., using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

45.7 Terms and Concepts
TODO

45.8 References
[1] Paul Chiusano and Runar Bjarnason. 2015. Functional programming in

Scala (First ed.). Manning, Shelter Island, New York, USA.
[2] Martin Fowler and Rebecca Parsons. 2010. Domain specific languages.

Addison-Wesley, Boston, Massachusetts, USA.

6

	Parsing Combinators
	Chapter Introduction
	Developing Parsing Combinators
	State actions and combinators
	Completing a combinator library
	Adding parse tree generations

	Standard libraries for parsing
	Exercises
	Chapter Source Code
	Acknowledgements
	Terms and Concepts
	References

