
Exploring Languages
with Interpreters

and Functional Programming
Chapter 43

H. Conrad Cunningham

27 April 2022

Contents
43 Calculator: Modular Structure 2

43.1 Chapter Introduction . 2
43.2 Module Dependencies . 2
43.3 Values Module . 2
43.4 Environments Module . 3
43.5 Abstract Syntax Module . 5
43.6 Evaluator Module . 5
43.7 Lexical Analysis Module . 6
43.8 Parser Modules . 7
43.9 REPL Modules . 8
43.10Code Improvement Modules . 9
43.11What Next? . 9
43.12Chapter Source Code . 9
43.13Exercises . 10
43.14Acknowledgements . 10
43.15Terms and Concepts . 10
43.16References . 10

Copyright (C) 2017, 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

2

43 Calculator: Modular Structure
43.1 Chapter Introduction
TODO: Write missing pieces and flesh out other sections

43.2 Module Dependencies
An ELI Calculator interpreter consists of seven modules. The dependencies
among modules as shown in Figure 43.1. (The module at the tail of an arrow
depends on the module at the head.)

Figure 43.1: ELI Calculator language module dependencies.

We examine each module in the following sections.

TODO: Some of these are concrete modules intended for direct use by all
implementations. Some are concrete modules intended for use by just ELI
Calculator. Some are “abstract modules” intended to define an interface for
implementation by each language as needed. Some may, in some sense, define
a module role (e.g., same secret) that must be satisfied for all languages, but
which may have a different abstract interface. Etc. This probably should be
clarified for each module after study and thought.

43.3 Values Module
The Values module Values was introduced in Chapter 42. It encapsulates
the definitions and functions that know the specific representation of an ELI
language’s data. Other modules for that language should use its public features
to enable the representation to be changed easily.

The secret of the information-hiding module Values is the specific representation
for the values supported by the language.

3

Values.hs

This module currently supports both the ELI Calculator language and the ELI
Imperative Core language we examine in later chapters. For both languages, the
only type of values supported are integers. Booleans are encoded as integers.

The Values module’s abstract interface includes the following public features:

• Type ValType is the type of the values in the ELI language.

• Constant defaultVal is the default value for ELI language variables when
no value is specified.

Note: A constant is an argumentless function in Haskell.

• Constants falseVal and trueVal are the ELI language’s canonical repre-
sentations for false and true as ValType values, respectively.

• Function boolToVal converts Haskell Bool values False and True to
falseVal and trueVal, respectively.

• Function valToBool v converts ELI language value v to Haskell False
and True appropriately.

falseVal is mapped to Haskell False. Any other value is mapped to
Haskell True; we call these truthy values.

If a language supports types other than integers, then that language will need a
variant of the Values module that redefines ValType accordingly and perhaps
defines additional public functions. However, the redefined module should seek
to preserve the secret and other features of the abstract interface.

The interface also includes the following, which are intended for the exclusive
use of the lexical analysis module to support finite range integers (e.g., a string
representation of an integer that is beyond the range of Int).

• Type NumType is the actual type used to represent integers.

• Function toNumType takes a string of digits numstr and returns an Either
String NumType where Left wraps an error message and Right wraps
numstr interpreted as a NumType value.

TODO: Review how integer constant overflow is handled and seek to encapsulate
the representation better. Also might comment that the knowledge of the value
representation is probably shared between the Values and Lexical Analysis
modules.

The Values module does not depend upon any other modules. All other current
modules depend upon it directly except the user-interface module REPL.

43.4 Environments Module
An environment is a mapping between a name and its value.

4

The Environments module Environments was introduced in Chapter 42. It
encapsulates the definitions and functions that know the specific representation
of an environment for an ELI language. Other modules should use its public
features to enable the representation to be changed easily.

The secret of the information-hiding module Environments is the specific repre-
sentation for the environments used by the language’s interpreter. This module
currently supports both the ELI Calculator and the ELI Imperative Core lan-
guages (defined in future chapters). Given that the “value” is a polymorphic
parameter, it should work for most languages unless the nature of names changes
significantly.

• The ELI Calculator language creates a single global environment consisting
of a set of (Name,ValType) pairs that map variables to their values.

• The ELI Imperative Core language (which also supports function definitions
and function calls) creartes three different environments, all of which are
implemented with the Environments module:

– a global variable environment consisting of a set of (Name,ValType)
pairs (as above)

– a global function definition environment consisting of a set of ‘Name-
function definition pairs

– a local parameter environment like the global variable environment
except holding the values of the parameters for a function call

The Environments module’s abstract interface includes the following public
features.

• Type AnEnv a is the type of an environment whose values have polymorphic
parameter type a.

• Type Name is imported from the Values module and reexported.

• Constructor function newEnv returns a new empty environment.

• Mutator function newBinding adds a new name-value binding to an envi-
ronment.

• Mutator function setBinding changes the value of an existing name in an
environment.

• Mutator function bindList takes a list of name-value pairs and adds a
new binding for each to an environment.

• Accessor function toList returns an association list equivalent to the
environment.

• Accessor function getBinding returns the value associated with a given
name.

5

Environments.hs

• Query function hasBinding returns True if and only if the given name is
bound in the environment.

The Environments module depends upon the Values module and the Evaluator
module depends upon it.

43.5 Abstract Syntax Module
The Abstract Synax module AbSynCalc module was introduced in Chapter 42.
It centralizes the abstract syntax definition for the ELI Calculator language so
it can be imported where needed.

The abstract syntax consists of algebraic data type definitions. The semantics
of the abstract syntax tree is known by modules that must create (e.g., parser)
and use (e.g., evaluator) the abstract syntax trees.

TODO: Review how the AST semantics is handled to see if it can be better
encapsulated. But remember that too much abstraction may make the pedagog-
ical goals more difficult to achieve (e.g., exercises to add new elements to the
abstract syntax and semantics).

The ELI Calculator Language’s Abstract Syntax module defines and exports the
algebraic data type Expr and implements it as an instance of class Show. Values
of type Expr are the abstract syntax trees for the ELI Calculator language.

The module also exports types ValType and Name that it imports from the
Values module.

The equivalent modules for other languages must define the abstract syntax for
that language using appropriate algebraic data types that are instances of Show.
They should, however, use

The Abstract Syntax module depends upon the Values module and the Evaluator
and Parser modules depend upon it.

43.6 Evaluator Module
The Evaluator module EvalCalc was introduced in Chapter 42. It encapsulates
the definition of the evaluation function (i.e., the semantics) of the ELI Calculator
language.

TODO: Consider how to handle the extensions to the Evaluator module in
Chapter 42 for simplification and differentiation (i.e., ProcessAST module).

The secret of the EvalCalc is the implementation of the semantics of the
language, including the specifics of the environment. Currently, some aspects of
the language semantics are not completely encapsulated within the Evaluator
module; they are shared with the Parser module (which creates the abstract
syntax trees initially).

6

AbSynCalc.hs
EvalCalc.hs

TODO: Explore whether the semantics can be better encapsulated and continue
to meet the pedagogical goals of the interpreter.

The Evaluator module’s abstract interface includes the following public features.

TODO: Perhaps simply call this an “interface” because it is not likely used by
more than one concrete implementation.

• Evaluation function eval takes an ELI Calculator abstract syntax tree
(i.e., an Expr) and returns its value in the environment.

• Type Env defines the environment (i.e., mapping of variable names to their
values) for the ELI Calculator language.

• Constant lastVal is the variable name whose value in the environment is
the result of the most recent expression evaluation.

• Constructor function newEnviron creates a new environment that is empty
except that variable lastVal is set to Values.defaultVal.

• Query function hasNameBinding returns True if and only if the given name
is defined in the environment.

• Mutator function newNameBinding that creates a new variable in the
environment and gives it a value.

• Mutator function setNameBinding that sets an existing variable in the
environment to a new value.

• Accessor function getNameBinding retrieves the value of a variable from
the environment.

• Accessor function showEnviron displays all the variables and their values
in the environment.

• Type EvalErr represents error messages arising from evaluation.

• Types ValType and Name are imported from the Values module and reex-
ported.

• Type Expr is imported from the Abstract Syntax module and reexported.

TODO: Comment on how the above secret should be preserved and might need
to be modified for other ELI languages.

The Evaluator module depends directly upon the Abstract Syntax, Environments,
and Values modules. The language’s user-interface module REPL depends upon
it. However, as noted above, the Evaluator and Parser modules currently share
some aspects of the language semantics.

43.7 Lexical Analysis Module
The Lexical Analyzer module LexCalc is introduced in Chapter 44. It is common
to both the prefix and infix parsers for the ELI Calculator language.

7

LexCalc.hs

The secret of this module is the lexical structure of the concrete language syntax.

The Lexical Analyzer module’s abstract interface consists of the following public
features.

• Algebraic data type Token describes the smallest units of the syntax
processed by the parser, such as identifiers, operator symbols, parentheses,
etc.

• Function showTokens is a convenience function that shows a list of tokens
as a string.

• Function lexx takes a string and returns the corresponding list of lexi-
cal tokens, but it does not distinguish among identifiers, keywords, and
operators.

• Function lexer takes a string and returns the corresponding list of lexical
tokens, distinguishing among identifiers, keywords, and operators.

• Type NumType is imported from the Values module and reexported; it is
the actual type used to represent integers.

• Type Name{.haskell is from the Values module and reexported; it is the
type that represents “names” such as identifiers and operator symbols.

TODO: Consider whether the above should just be an interface rather than
an abstract interface. Also how should the secret and interface be preserved
and modified for other languages. Also consider what I should say below about
the special dependence upon the Values module and any sharing of information
about values.

The Lexical Analyzer module depends upon the Values module and the Parser
module depends upon it.

43.8 Parser Modules
Chapter 44 introduces two alternative implementations of the Parser abstract
module for the ELI Calculator language. These implementations correspond
to the two different concrete syntaxes given in Chapter 41. Both use the same
Lexical Analyzer.

• Module ParsePrefixCalc parses an ELI Calculator language prefix ex-
pression and generates the equivalent abstract syntax tree.

• Module ParseInfixCalc parses an ELI Calculator language infix expres-
sion and generates the equivalent abstract syntax tree,

The secret of the abstract parser module is how the input syntax is recognized
and translated to the abstract syntax.

The Parser abstract module’s abstract interface consists of the following public
features.

8

ParsePrefixCalc.hs
ParseInfixCalc.hs

• Function parse takes an input string, parses it according to the corre-
sponding ELI Calculator language concrete syntax and returns an Either
item wrapping the Expr abstract syntax tree (Right) or an error message
(Left).

• Function parseExpression takes a Token list, parses an Expr from the
beginning of the list, and returns a pair consisting of

– an Either wrapping the Expr abstract syntax tree found (Right or
an error message (Right

– the Token list remaining after the Expr.

• Type ParErr is the type of the error messages.

• Function trimComment trims an end-of-line comment from a line of text.

• Function getName takes a string and returns a Just wrapping a Name if it
is a valid identifier or a Nothing if any non-identifier characters occur.

• Function getValue extracts an identifier from the beginning of a string
and returns the identifier and the remaining string.

• Types ValType and Name are imported from the Values module and reex-
ported.

• Type Expr is imported from the Abstract Syntax module and reexported.

TODO: Comment on how the above secret should be preserved and might need
to be modified for other ELI languages.

The Parser module depends directly upon the Lexical Analyzer, Abstract Syntax,
and Values modules. The language’s user-interface module REPL depends upon
it. However, as noted above, the Evaluator and Parser modules currently share
some aspects of the language semantics.

43.9 REPL Modules
A REPL (Read-Evaluate-Print Loop) is a command line user interface with the
following cycle of steps:

1. Read an input from the command line.

If the input is an exit command, exitloop ; else continue.

2. Evaluate the expression after parsing.

3. Print the resulting value.

4. Loop back to step 1.

The secret of the REPL modules is how the user interacts with the interpreter.

The ELI Calculator language interpreter provides two REPL modules:

9

• PrefixCalcREPL that uses the Calculator language’s prefix syntax

• InfixCalcREPL that uses the Calculator languages’s infix syntax

In addition to accepting ELI Calculator expressions, they accept the REPL
commands :set, :display, and :quit.

TODO: What about :use? Do I need to elaborate on the commands further?
Probably.

TODO: The REPL functions need to be refactored. Also the issue of the :use
command versus a use expression in the language needs to be reconsidered.

The REPL module depends directly upon the Parser and Evaluator modules.
No other modules depend upon it.

43.10 Code Improvement Modules
TODO: Consider how this should be presented in both Chapter 42 and 43.

In addition, the partially implemented Process AST module includes the skeleton
simplify and deriv functions discussed in Chapter 42.

This module is “wrapper” for the EvalCalc module currently.

43.11 What Next?
TODO

43.12 Chapter Source Code
The ELI Calculator language interpreter includes the following source code
modules:

• Values module Values

• Environments module Environments

• Abstract Synax module AbSynCalc

• Evaluator module EvalCalc

• Lexical Analyzer module LexCalc

• Parser modules

– Prefix parser ParsePrefixCalc

– Infix parser ParseInfixCalc

• REPL modules

– Prefix REPL PrefixCalcREPL

– Infix REPL InfixCalcREPL

10

PrefixCalcREPL.hs
InfixCalcREPL.hs
ProcessAST.hs
Values.hs
Environments.hs
AbSynCalc.hs
EvalCalc.hs
LexCalc.hs
ParsePrefixCalc.hs
ParseInfixCalc.hs
PrefixCalcREPL.hs
InfixCalcREPL.hs

• Skeleton simplify and derivative module ProcessAST

43.13 Exercises
TODO

43.14 Acknowledgements
For the general acknowledgements for the ELI Calculator case study and Chapters
41-46 through Spring 2019, see the Acknowledgements section of Chapter 41.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a unified bibliography
(e.g., using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

43.15 Terms and Concepts
TODO

43.16 References

11

ProcessAST.hs

	Calculator: Modular Structure
	Chapter Introduction
	Module Dependencies
	Values Module
	Environments Module
	Abstract Syntax Module
	Evaluator Module
	Lexical Analysis Module
	Parser Modules
	REPL Modules
	Code Improvement Modules
	What Next?
	Chapter Source Code
	Exercises
	Acknowledgements
	Terms and Concepts
	References

