
Exploring Languages
with Interpreters

and Functional Programming
Chapter 30

H. Conrad Cunningham

04 April2022

Contents
30 Infinite Data Structures 2

30.1 Chapter Introduction . 2
30.2 Infinite Lists . 2
30.3 Iterate . 3
30.4 Prime Numbers: Sieve of Eratosthenes 4
30.5 Circular Structures . 6
30.6 What Next? . 7
30.7 Chapter Source Code . 7
30.8 Exercises . 7
30.9 Acknowledgements . 7
30.10Terms and Concepts . 7
30.11References . 7

Copyright (C) 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

30 Infinite Data Structures
30.1 Chapter Introduction
One particular benefit of lazy evaluation is that functions in Haskell can manipu-
late “infinite” data structures. Of course, a program cannot actually generate or
store all of an infinite object, but lazy evaluation will allow the object to be built
piece-by-piece as needed and the storage occupied by no-longer-needed pieces to
be reclaimed.

This chapter explores Haskell programming techniques for infinite data structures
such as lists.

TODO: Write Introduction, including goals of chapter.

TODO: - Complete chapter. Improve the writing. - Update and expand discussion
of infinite computations. - Recreate the missing Haskell source code files for this
chapter. Ensure it works for Haskell 2010.

30.2 Infinite Lists
Reference: This section is based, in part, on discussions in the classic Bird and
Wadler textbook [1:7.1] and Wentworth’s tutorial [3].

In Chapter 18 , we looked at generators for infinite arithmetic sequences such
as [1..] and [1,3..]. These infinite lists are encoded in the functions that
generate the sequences. The sequences are only evaluated as far as needed.

For example, take 5 [1..] yields:

[1,2,3,4,5]

Haskell also allows infinite lists of infinite lists to be expressed as shown in
the following example which generates a table of the multiples of the positive
integers.

multiples :: [[Int]]
multiples = [[m*n | m<-[1..]] | n <- [1..]]

Thus multiples represents an infinite list, as shown below (not valid Haskell
code):

[[1, 2, 3, 4, 5, ...],
[2, 4, 6, 8,10, ...],
[3, 6, 9,12,14, ...],
[4, 8,12,16,20, ...],
...

]

However, if we evaluate the expression

take 4 (multiples !! 3)

2

we get the terminating result:

[4,8,12,16]

Note: Remember that the operator xs !! n returns element n of the list xs
(where the head is element 0).

Haskell’s infinite lists are not the same as infinite sets or infinite sequences
in mathematics. Infinite lists in Haskell correspond to infinite computations
whereas infinite sets in mathematics are simply definitions.

In mathematics, set {x2 | x ∈ {1, 2, 3} ∧ x2 < 10} = {1, 4, 9}.

However, in Haskell, the expression

show [x * x | x <- [1..], x * x < 10]

yields:

[1,4,9

This is a computation that never returns a result. Often, we assign this computa-
tion the value 1:4:9:⊥ (where ⊥, pronounced “bottom” represents an undefined
expression).

But the expression

takeWhile (<10) [x * x | x <- [1..]]

yields:

[1,4,9]

30.3 Iterate
Reference: This section is based in part on a discussion in the classic Bird and
Wadler textbook [1:7.2].

In mathematics, the notation fn denotes the function f composed with itself n
times. Thus, f0 = id, f1 = f , f2 = f.f , f3 = f.f.f , · · ·.

A useful function is the function iterate such that (not valid Haskell code):

iterate f x = [x, f x, fˆ2 x, fˆ3 x, ... x]

The Haskell standard Prelude defines iterate recursively as follows:

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

For example, suppose we need the set of all powers of the integers.

We can define a function powertables would expand as follows (not valid Haskell
code):

3

[[1, 2, 4, 8, ...
[1, 3, 9, 27, ...
[1, 4,16, 64, ...
[1, 5,25,125, ...
...

]

Using iterate we can define powertables compactly as follows:

powertables :: [[Int]]
powertables = [iterate (*n) 1 | n <- [2..]]

As another example, suppose we want a function to extract the decimal digits of
a positive integer. We can define digits as follows:

digits :: Int -> [Int]
digits = reverse . map (`mod` 10) . takeWhile (/= 0) . iterate (/10)

Let’s consider how digits 178 evaluates (not actual reduction steps).

digits 178

=⇒

reverse . map (mod10) . takeWhile (/= 0) [178,17,1,0,0,
...]

=⇒

reverse . map (mod10) [178,17,1]

=⇒

reverse [8,7,1]

=⇒

[1,7,8]

30.4 Prime Numbers: Sieve of Eratosthenes
Reference: This is based in part on discussions in the classic Bird and Wadler
textbook [1:7.3] and Wentworth’s tutorial [3, Ch. 9].

The Greek mathematician Eratosthenes described essentially the following pro-
cedure for generating the list of all prime numbers. This algorithm is called the
Sieve of Eratosthenes.

1. Generate the list 2, 3, 4, · · ·

2. Mark the first element p as prime.

3. Delete all multiples of p from the list.

4. Return to step 2.

4

Not only is the 2-3-4 loop infinite, but so are steps 1 and 3 themselves.

There is a straightforward translation of this algorithm to Haskell.

primes :: [Int]
primes = map head (iterate sieve [2..])

sieve (p:xs) = [x | x <- xs, x `mod` p /= 0]

Note: This uses an intermediate infinite list of infinite lists; even though it is
evaluated lazily, it is still inefficient.

We can use function primes in various ways, e.g., to find the first 1000 primes
or to find all the primes that are less than 10,000.

take 1000 primes
takeWhile (<10000) primes

Calculations such as these are not trivial if the computation is attempted using
arrays in an “eager” language like Pascal—in particular it is difficult to know
beforehand how large an array to declare for the lists.

However, by separating the concerns, that is, by keeping the computation of the
primes separate from the application of the boundary conditions, the program
becomes quite modular. The same basic computation can support different
boundary conditions in different contexts.

Now let’s transform the primes and sieve definitions to eliminate the infinite
list of infinite lists. First, let’s separate the generation of the infinite list of
positive integers from the application of sieve.

primes = rsieve [2..]

rsieve (p:ps) = map head (iterate sieve (p:ps))

Next, let’s try to transform rsieve into a more efficient definition.

rsieve (p:ps)

= { rsieve }

map head (iterate sieve (p:ps))

= { iterate }

map head ((p:ps) : (iterate sieve (sieve (p:ps))))

= { map.2, head }

p : map head (iterate sieve (sieve (p:ps)))

= { sieve }

p : map head (iterate sieve [x | x <- ps, x `mod` p /= 0])

= { rsieve }

5

p : rsieve [x | x <- ps, x `mod` p /= 0]

This calculation gives us the new definition:

rsieve (p:ps) = p : rsieve [x | x <- ps, x `mod` p /= 0]

This new definition is, of course, equivalent to the original one, but it is slightly
more efficient in that it does not use an infinite list of infinite lists.

30.5 Circular Structures
Reference: This section is based, in part, on discussions in classic Bird and
Wadler textbook [1:7.6] and of Wentworth’s tutorial [3, Ch. 9].

Suppose a program produces a data structure (e.g., a list) as its output. And
further suppose the program feeds that output structure back into the input so
that later elements in the structure depend on earlier elements. These might be
called circular, cyclic, or self-referential structures.

Consider a list consisting of the integer one repeated infinitely:

ones = 1:ones

As an expression graph, ones consists of a cons operator with two children, the
integer 1 on the left and a recursive reference to ones (i.e., a self loop) on the
right. Thus the infinite list ones is represented in a finite amount of space.

Function numsFrom below is a perhaps more useful function. It generates a list
of successive integers beginning with n:

numsFrom :: Int -> [Int]
numsFrom n = n : numsFrom (n+1)

Using numsFrom we can construct an infinite list of the natural number multiples
of an integer m:

multiples :: Int -> [Int]
multiples m = map ((*) m) (numsFrom 0)

Of course, we cannot actually process all the members of one of these infinite
lists. If we want a terminating program, we can only process some finite initial
segment of the list. For example, we might want all of the multiples of 3 that
are at most 2000:

takeWhile ((>=) 2000) (multiples 3)

We can also define a program to generate a list of the Fibonacci numbers in a
circular fashion similar to ones:

fibs :: [Int]
fibs = 0 : 1 : (zipWith (+) fibs (tail fibs))

Proofs involving infinite lists are beyond the current scope of this textbook. See
the Bird and Wadler textbook for more information [1].

6

TODO: Finish Chapter

30.6 What Next?
TODO

30.7 Chapter Source Code
TODO

30.8 Exercises
TODO

30.9 Acknowledgements
In Summer 2018, I adapted and revised this chapter from chapter 15 of my Notes
on Functional Programming with Haskell [2].

These previous notes drew on the presentations in the 1st edition of the Bird and
Wadler textbook [1], Wentworth’s tutorial [3], and other functional programming
sources.

I incorporated this work as new Chapter 30, Infinite Data Structures, in the 2018
version of the textbook Exploring Languages with Interpreters and Functional
Programming and continue to revise it.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

30.10 Terms and Concepts
Infinite data structures, lazy evaluation, infinite sets, infinite sequences, infi-
nite lists, infinite computations, bottom ⊥, iterate, prime numbers, Sieve of
Eratosthenes, separation of concerns, circular/cyclic/self-referential structures.

30.11 References
[1] Richard Bird and Philip Wadler. 1988. Introduction to functional pro-

gramming (First ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

7

[2] H. Conrad Cunningham. 2014. Notes on functional programming with
Haskell. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

[3] E. Peter Wentworth. 1990. Introduction to functional programming using
RUFL. Rhodes University, Department of Computer Science, Graham-
stown, South Africa.

8

https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

	Infinite Data Structures
	Chapter Introduction
	Infinite Lists
	Iterate
	Prime Numbers: Sieve of Eratosthenes
	Circular Structures
	What Next?
	Chapter Source Code
	Exercises
	Acknowledgements
	Terms and Concepts
	References

