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29 Models of Reduction
29.1 Chapter Introduction
TODO:

• Complete introduction and other missing pieces.

• Redraw LaTeX figures so they appear in formats other than LaTeX/PDF.
• Remove or explain any unnecessary redundancies between this chapter and

chapters 8, 9, etc.
• Consider whether to replace the use of Haskell as pseudo-math notation.
• Check section breaks and titles.

29.2 Big-O and Efficiency
We state efficiency (i.e., time complexity or space complexity) of programs in
terms of the “Big-O” notation and asymptotic analysis.

For example, consider the list-reversing functions rev and reverse that we have
looked at several times. We stated that the number of steps required to evaluate
rev xs is, in the worst case, “on the order of” nˆ2 where n denotes the length
of list xs. We let the number of steps be our measure of time and write

T(rev xs) = O(nˆ2)

to mean that the time to evaluate rev xs is bounded by some (mathematical)
function that is proportional to the square of the length of list xs.

Similarly, we write

T(reverse xs) = O(n)

to mean that the time (i.e., number of steps) to evaluate reverse xs is bounded
by some function that is proportional to the length of xs.

Note: These expressions are not really equalities. We write the more precise
expression

T(reverse xs)

on the left-hand side and the less precise expression O(n) on the right-hand side.

For short lists, the performance of rev and reverse are similar. But as the lists
get long, rev requires considerably more steps than reverse.

The Big-O analysis is an asymptotic analysis. That is, it estimates the order
of magnitude of the evaluation time as the size of the input approaches infinity
(i.e., gets large). We often do worst case analyses of time. Such analyses are
usually easier to do than average-case analyses.
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29.3 Reduction
29.3.1 Definition

The terms reduction, simplification, and evaluation all denote the same process:
rewriting an expression in a “simpler” equivalent form. That is, they involve two
kinds of replacements:

• the replacement of a subterm that satisfies the left-hand side of an equation
by the right-hand side with appropriate substitution of arguments for
parameters. (This is sometimes called β-reduction.)

• the replacement of a primitive application (e.g., + or *) by its value. (This
is sometimes called δ-reduction.)

29.3.2 Redexes

The term redex refers to a subterm of an expression that can be reduced.

An expression is said to be in normal form if it cannot be further reduced.

Some expressions cannot be reduced to a value. For example, 1/0 cannot be
reduced; an error message is usually generated if there is an attempt to evaluate
(i.e., reduce) such an expression.

For convenience, we sometimes assign the value ⊥ (pronounced “bottom”) to
such error cases to denote that their values are undefined. Remember that this
value cannot be manipulated within a computer.

Redexes can be selected for reduction in several ways. For instance, the redex
can be selected based on its position within the expression:

• leftmost redex first—where the leftmost reducible subterm in the ex-
pression text is reduced before any other subterms are reduced

• rightmost redex first—where the rightmost reducible subterm in the
expression text is reduced before any other subterms are reduced

The redex can also be selected based on whether or not it is contained within
another redex:

• outermost redex first—where a reducible subterm that is not contained
within any other reducible subterm is reduced before one that is contained
within another

• innermost redex first—where a reducible subterm that contains no
other reducible subterm is reduced before one that contains others

29.3.3 AOR and NOR

The two most often used reduction orders are:
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• applicative order reduction (AOR)—where the leftmost innermost
redex is reduced first

• normal order reduction (NOR)—where the leftmost outermost redex
is reduced first.

To see the difference between AOR and NOR consider the following functions:

fst :: (a,b) -> a
fst (x,y) = x

sqr :: Int -> Int
sqr x = x * x

Now consider the following reductions.

First, reduce the expression with AOR:

fst (sqr 4, sqr 2)

=⇒ { sqr }

fst (4*4, sqr 2)

=⇒ { * }

fst (16, sqr 2)

=⇒ { sqr }

fst (16, 2*2)

=⇒ { * }

fst (16, 4)

=⇒ { fst }

16

Thus AOR requires 5 reductions.

Second, reduce the expression with NOR:

fst (sqr 4, sqr 2)

=⇒ { fst }

sqr 4

=⇒ { sqr }

4*4

=⇒ { * }

16
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Thus NOR requires 3 reductions.

In this example NOR requires fewer steps because it avoids reducing the unneeded
second component of the tuple.

The number of reductions is different, but the result is the same for both reduction
sequences.

In fact, this is always the case. If any reduction terminates (and not all do),
then the resulting value will always be the same.

(Consequence of) Church-Rosser Theorem: If an expression can be reduced
in two different ways to two normal forms, then these normal forms are the same
(except that variables may need to be renamed).

The diamond property for the reduction relation → states that if an expression
E can be reduced to two expressions E1 and E2, then there is an expression N
which can be reached (by repeatedly applying →) from both E1 and E2. We use
the symbol ∗→ to represent the reflexive transitive closure of →. (E ∗→ E1 means
that E can be reduced to E1 by some finite, possibly zero, number of reductions.)

E
�

�	

∗→ @
@R

∗→

E1 E2
@

@R
∗→

�
�	

∗→
N

Some reduction orders may fail to terminate on some expressions. Consider the
following functions:

answer :: Int -> Int
answer n = fst (n+n, loop n)

loop :: Int -> [a\]
loop n = loop (n+1)

First, reduce the expression with AOR:

answer 1

=⇒ { answer }

fst (1+1,loop 1)

=⇒ { + }

fst (2,loop 1)
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=⇒ { loop }

fst (2,loop (1+1))

=⇒ { + }

fst (2,loop 2)

=⇒ { loop }

fst (2,loop (2+1))

=⇒ { + }

fst (2,loop 3)

=⇒ · · · Does not terminate normally

Second, reduce the expression with NOR:

answer 1

=⇒ { answer }

fst (1+1,loop 1)

=⇒ { fst }

1+1

=⇒ { + }

2

Thus NOR requires 3 reductions.

If an expression E has a normal form, then a normal order reduction of E (i.e.,
leftmost outermost) is guaranteed to reach the normal form (except that variables
may need to be renamed).

29.3.4 Concepts related to AOR and NOR

There are several concepts in functional programming languages related to AOR:

• Applicative order reduction (AOR) Reduce leftmost innermost redex
first.

• Eager evaluation Evaluate any expression that can be evaluated regard-
less of whether the result is ever needed. (For example, arguments of
a function are evaluated before the function is called.)

• Strict semantics A function is only defined if all of its arguments are
defined. For example, multiplication is only defined if both of its
operands are defined, 5 * \bot = \bot.
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• Call-by-value parameter passing Evaluate the argument expression
and bind its value to the function’s parameter.

Similarly, there are several concepts in functional programming languages related
to NOR:

• Normal order reduction (NOR) Reduce leftmost outermost redex
first.

• Lazy evaluation Do not evaluate an expression unless its result is needed.

• Nonstrict (lenient) semantics A function may have a value even if
some of its arguments are undefined. (For example, tuple construction
is not strict in either parameter. That is, (⊥,x) ̸= ⊥ and (x,⊥) ̸=
⊥.)

• Call-by-name parameter passing Pass the unevaluated argument ex-
pression to the function; evaluate it upon each reference.

Note that in the absence of side-effects (e.g., when we have referential trans-
parency, call-by-name gives the same result as call-by-value.

In general, call-by-name parameter passing is inefficient. However, a referentially
transparent language can replace call-by-name parameter passing with the
equivalent, but more efficient, call-by-need method.

In the call-by-need method, the unevaluated argument expression is passed to the
function as in call-by-name. The first reference to the corresponding parameter
causes the expression to be evaluated; subsequent references just use the value
computed by the first reference. Thus the expression is only evaluated when
needed and then only once.

Consider the sqr program again.

sqr x = x \* x

First, reduce the expression with AOR:

sqr (4+2)

=⇒ { + }

sqr 6

=⇒ { sqr }

6 * 6

=⇒ { * }

36

Thus AOR requires 3 reductions.

Second, reduce the expression with NOR:
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sqr (4+2)

=⇒ { sqr }

(4+2) * (4+2)

=⇒ { + }

6 * (4+2)

=⇒ { + }

6 * 6

=⇒ { * }

36

Thus NOR requires 4 reductions.

Here NOR is less efficient than AOR. What is the problem?

The argument (4+2) is reduced twice because the parameter appeared twice on
the right-hand side of the definition.

29.3.5 String and graph reduction

The rewriting strategy we have been using so far can be called string reduction
because our model involves the textual replacement of one string by an equivalent
string.

A more efficient alternative is graph reduction. In this technique, the expressions
are represented as (directed acyclic) expression graphs rather than text strings.
The repeated subterms of an expression are represented as shared components
of the expression graph. Once a shared component has been evaluated, it need
not be evaluated again. Thus leftmost outermost (i.e., normal order) graph
reduction is a technique for implementing call-by-need parameter passing.

The Haskell interpreter uses a graph reduction technique.

Consider the leftmost outermost graph reduction of the expression sqr (4+2).

sqr

?
+

�
�

�	

@
@
@R

4 2

=⇒ { sqr }

*'
&

$
%- �+

�
�

�	

@
@
@R

4 2
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=⇒ { + }

*'
&

$
%- �6

=⇒ { * }

36

Note: In a graph reduction model, normal order reduction never performs more
reduction steps than applicative order reduction. It may perform fewer. And,
like all outermost reduction techniques, it is guaranteed to terminate if any
reduction sequence terminates.

As we see above, parameters that repeatedly occur on the right-hand side
introduce shared components into the expression graph. A programmer can also
introduce shared components into a function’s expression graph by using where
or let to define new symbols for subexpressions that occur multiple times in the
defining expression. This potentially increases the efficiency of the program .

Consider a program to find the solutions of the following equation:

a ∗ x2 + b ∗ x + c = 0

Using the quadratic formula the two solutions are:
−b±

√
b2−4∗a∗c
2∗a

Expressing this formula as a Haskell program to return the two solutions as a
pair, we get:

roots :: Float -> Float -> Float -> (Float,Float)
roots a b c = ( (-b-d)/e, (-b+d)/e )

where d = sqrt (sqr b - 4 * a * c)
e = 2 * a
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Note the explicit definition of local symbols for the subexpressions that occur
multiple times.

Function sqr is as defined previously and sqrt is a primitive function defined in
the standard prelude.

In one step, the expression roots 1 5 3 reduces to the expression graph shown
on the following page. For clarity, we use the following in the graph:

• tuple-2 denotes the pair forming operator ( , ).

• div denotes division (on Float).

• sub denotes subtraction.

• neg denotes unary negation.

The application roots 1 5 3 reduces to the following expression graph:

(Drawing Not Currently Available)

We use the total number of arguments as the measure of the size of a term or
graph.

Example: sqr 2 + sqr 7 has size 4.

+
�

�
�	

1

sqr

@
@
@R

2

sqr

?
3

2
?

4

7

Example: x * x where x = 7 + 2 has size 4.

*'
&1

$
%2- �+

�
�

�	

3 @
@
@R

4

7 2

Note: This size measure is an indication of the size of the unevaluated expression
that is held at a particular point in the evaluation process. This is a bit different
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from the way we normally think of space complexity in an imperative algorithms
class, that is, the number of “words” required to store the program’s data.

However, this is not as strange as it may first appear. Remember that data
structures such as lists and tuples are themselves expressions built by applying
constructors to simpler data.

29.4 Head Normal Form
Sometimes we need to reduce a term but not all the way to normal form.

Consider the expression head (map sqr [1..7]) and a normal order reduction.

head (map sqr [1..7])

=⇒ { [1..7] }

head (map sqr (1:[2..7]))

=⇒ { map.2 }

head (sqr 1 : map sqr [2..7])

=⇒ { head }

sqr 1

=⇒ { sqr }

1 * 1

=⇒ { * }

1

Note that the expression map sqr [1..7] was reduced but not all the way to
normal form. However, any term that is reduced must be reduced to head normal
form.

A term is in head normal form if:

• it is not a redex

• it cannot become a redex by reducing any of its subterms

If a term is in normal form, then it is in head normal form, but not vice versa.

Any term of form (e1:e2) is in head normal form, because regardless of how far
e1 and e2 are reduced, no reduction rule applies to (e1:e2). The cons operator
is the primitive list constructor; it is not defined in terms of anything else.

However, a term of form (e1:e2) is only in normal form if both e1 and e2 are
in their normal forms.

Similarly, any term of the form (e1,e2) is in head normal form. The tuple
constructor is a primitive operation; it is not defined in terms of anything else.
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However, a term of the form (e1,e2) is in normal form only if both e1 and e2
are.

Whether a term needs to be reduced further than head normal form depends
upon the context.

Example: In the reduction of the expression head (map sqr [1..7]), the term
map sqr [1..7] only needed to be reduced to head normal form, that is, to the
expression sqr 1 : map sqr [2..7].

However, appendChan stdout (show (map sqr [1..7])) exit done would
cause reduction of map sqr [1..7] to normal form.

29.5 Pattern Matching
For reduction using equations that involve pattern matching, the leftmost out-
ermost (i.e., normal order) reduction strategy is not, by itself, sufficient to
guarantee that a terminating reduction sequence will be found if one exists.

Consider function zip’.

zip' :: [a] -> [b] -> [(a,b)]
zip' (a:as) (b:bs) = (a,b) : zip' as bs
zip' _ _ = []

Now consider a leftmost outermost (i.e., normal order) reduction of the expression
zip’ (map sqr []) (loop 0), where sqr and loop are as defined previously.

zip’ (map sqr []) (loop 0)

=⇒ { map.1, to determine if first arg matches (a:as) }

zip’ [] (loop 0)

=⇒ { zip’.2 }

[]

Alternatively, consider a rightmost outermost reduction of the same expression.

zip’ (map sqr []) (loop 0)

=⇒ { loop, to determine if second arg matches (b:bs) }

zip’ (map sqr []) (loop (0+1))

=⇒ { + }

zip’ (map sqr []) (loop 1)

=⇒ { loop }

zip’ (map sqr []) (loop (1+1))

=⇒ { + }
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zip’ (map sqr []) (loop 2)

=⇒ · · · Does not terminate normally

Pattern matching should not cause an argument to be reduced unless absolutely
necessary; otherwise nontermination could result.

Pattern-matching reduction rule: Match the patterns left to right. Reduce
a subterm only if required by the pattern.

In zip’ (map sqr []) (loop 0) the first argument must be reduced to head
normal form to determine whether it matches (a:as) for the first leg of the
definition. It is not necessary to reduce the second argument unless the first
argument match is successful.

Note that the second leg of the definition, which uses two anonymous variables
for the patterns, does not require any further reduction to occur in order to
match the patterns.

The expressions

zip' (map sqr [1,2,3]) (map sqr [1,2,3])

and

zip' (map sqr [1,2,\]) []

both require their second arguments to be reduced to head normal form in order
to determine whether the arguments match (b:bs).

Note that the first does match and, hence, enables the first leg of the definition
to be used in the reduction. The second expression does not match and, hence,
disables the first leg from being used. Since the second leg involves anonymous
patterns, it can be used in this case.

• Normal order graph reduction e_{0} =⇒ e_{1} =⇒ e_{2} =⇒ · · · =⇒
e_{n}

• Time = number of reduction steps (n)

• Space = size of the largest expression graph e_{i}

Most lazy functional language implementations more-or-less correspond to graph
reduction.

29.6 Reduction Order and Space
It is always the case that the number of steps in an outermost graph reduction
≤ the number of steps in an innermost reduction of the same expression.

However, sometimes a combination of innermost and outermost reductions can
save on space and, hence, on implementation overhead.
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Consider the following definition of the factorial function. (This was called fact3
in Chapter 4.)

fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)

Now consider a normal order reduction of the expression fact 3.

fact 3

=⇒ { fact.2 }

3 * fact (3-1)

=⇒ { -, to determine pattern match }

3 * fact 2

=⇒ { fact.2 }

3 * (2 * fact (2-1))

=⇒ { -, to determine pattern match }

3 * (2 * fact 1)

=⇒ { fact.2 }

3 * (2 * (1 * fact (1-1))) MAX SPACE!

=⇒ { -, to determine pattern match }

3 * (2 * (1 * fact 0))

=⇒ { fact.1 }

3 * (2 * (1 * 1))

=⇒ { * }

3 * (2 * 1)

=⇒ { * }

3 * 2

=⇒ { * }

6

We define the following measures of the

• Time: Count reduction steps. 10 for this example.

In general, 3 for each n > 0, 1 for n = 0. Thus 3n+1 reductions. O(n).
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• Space: Count arguments in longest expression. 4 binary operations, 1
unary operation, hence size is 9 for this example.

In general, 1 multiplication for each n > 01 plus 1 subtraction and one
application of fact. Thus 2n + 3 arguments. O(n).

Note that function fact is strict in its argument. That is, evaluation of fact
always requires the evaluation of its argument.

Since the value of the argument expression n-1 in the recursive call is eventually
needed (by the pattern match), there is no reason to delay evaluation of the
expression. That is, the expression could be evaluated eagerly instead of lazily.
Thus any work to save this expression for future evaluation would be avoided.

Delaying the computation of an expression incurs overhead in the implementation.
The delayed expression and its calling environment (i.e., the values of variables)
must be packaged so that evaluation can resume correctly when needed. This
packaging—called a closure, suspension, or recipe—requires both space and time
to be set up.

Furthermore, delayed expressions can aggravate the problem of space leaks.

The implementation of a lazy functional programming language typically allocates
space for data dynamically from a memory heap. When the heap is exhausted,
the implementation searches through its structures to recover space that is no
longer in use. This process is usually called garbage collection.

However, sometimes it is very difficult for a garbage collector to determine
whether or not a particular data structure is still needed. The garbage collector
thus retains some unneeded data. These are called space leaks.

Aside: Picture bits of memory oozing out of the program, lost to the program
forever. Most of these bits collect in the bit bucket under the computer and are
automatically recycled when the interpreter restarts. However, in the past a few of
these bits leaked out into the air, gradually polluting the atmosphere of functional
programming research centers. Although it has not be scientifically verified,
anecdotal evidence suggests that the bits leaked from functional programs, when
exposed to open minds, metamorphose into a powerful intellectual stimulant.
Many imperative programmers have observed that programmers who spend a
few weeks in the vicinity of functional programs seem to develop a permanent
distaste for imperative programs and a strange enhancement of their mental
capacities.

Aside continued: As environmental awareness has grown in the functional
programming community, the implementors of functional languages have begun
to develop new leak-avoiding designs for the language processors and garbage
collectors. Now the amount of space leakage has been reduced considerably.
Although it is still a problem. Of course, in the meantime a large community of
programmers have become addicted to the intellectual stimulation of functional
programming. The number of addicts in the USA is small, but growing. FP
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traffickers have found a number of ways to smuggle their illicit materials into
the country. Some are brought in via the Internet from clandestine archives in
Europe; a number of professors and students are believed to be cultivating a
domestic supply. Some are smuggled from Europe inside strange red-and-white
covered books (but that source is somewhat lacking in the continuity of supply).
Some are believed hidden in Haskell holes; others in a young nerd named Haskell’s
pocket protector. (Haskell is Miranda’s younger brother; she was the first one
who had any comprehension about FP.)

Aside ends: Mercifully.

Now let’s look at a tail recursive definition of factorial.

fact' :: Int -> Int -> Int
fact' f 0 = f
fact' f n = fact' (f*n) (n-1)

Because of the Tail Recursion Theorem, we know that fact’ 1 n = fact n for
any natural n.

Now consider a normal order reduction of the expression fact’ 1 3.

fact’ 1 3

=⇒ { fact’.2 }

fact’ (1 * 3) (3 - 1)

=⇒ { -, to determine pattern match }

fact’ (1 * 3) 2

=⇒ { fact’.2 }

fact’ ((1 * 3) * 2) (2 - 1)

=⇒ { -, to determine pattern match }

fact’ ((1 * 3) * 2) 1

=⇒ { fact’.2 }

fact’ (((1 * 3) * 2) * 1) (1 - 1) MAX SPACE!

=⇒ { -, to determine pattern match }

fact’ (((1 * 3) * 2) * 1) 0

=⇒ { fact’.1 }

((1 * 3) * 2) * 1

=⇒ { * }

(3 * 2) * 1

=⇒ { * }
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6 * 1

=⇒ { 6 }

6

• Time: Count reduction steps. 10 for this example, same as for fact.

In general, 3 for each n > 0, 1 for n = 0. Thus 3*n+1 reductions. O(n).

• Space: Count arguments in longest expression. 4 binary operations, 1
two-argument function, hence size is 10 for this example.

In general, 1 multiplication for each n > 0 plus 1 subtraction and one
application of fact'. Thus 2*n+4 arguments. O(n).

Note that function fact’ is strict in both arguments. The second argument
of fact’ is evaluated immediately because of the pattern matching. The first
argument’s value is eventually needed, but its evaluation is deferred until after
the fact’ recursion has reached its base case.

Perhaps we can improve the space efficiency by forcing the evaluation of the first
argument immediately as well. In particular, we try a combination of outermost
and innermost reduction.

fact’ 1 3

=⇒ { fact’.2 }

fact’ (1 * 3) (3 - 1)

=⇒ { *, innermost }

fact’ 3 (3 - 1)

=⇒ { -, to determine pattern match }

fact’ 3 2

=⇒ { fact’.2 }

fact’ (3 * 2) (2 - 1)

=⇒ { *, innermost }

fact’ 6 (2 - 1)

=⇒ { -, to determine pattern match }

fact’ 6 1

=⇒ { fact’.2 }

fact’ (6 * 1) (1 - 1)

=⇒ { *, innermost }

fact’ 6 (1 - 1)

18



=⇒ { -, to determine pattern match }

fact’ 6 0

=⇒ { fact’.1 }

6

• Time: Count reduction steps. 10 for this example. Same as for previous
two reduction sequences.

In general, 3 for each n > 0, 1 for n = 0. Thus 3*n+1 reductions. O(n).

• Space: Count arguments in longest expression.

For any n > 0, the longest expression consists of one multiplication, one
subtraction, and one call of fact'. Thus the size is constantly 6. O(1).

How to decrease space usage and implementation overhead.

1. The compiler could do strictness analysis and automatically force eager
evaluation of arguments that are always required.

This is done by many compilers. It is sometimes a complicated procedure.

2. The language could be extended with a feature that allows the programmer
to express strictness explicitly.

In Haskell, reduction order can be controlled by use of the special function
strict.

A term of the form strict f e is reduced by first reducing expression e to head
normal form, and then applying function f to the result. The term e can be
reduced by normal order reduction, unless, of course, it contains another call of
strict.

The following definition of fact’ gives the mixed reduction order given in the
previous example. That is, it evaluates the first argument eagerly to save space.

fact' :: Int -> Int -> Int
fact' f 0 = f
fact' f n = (strict fact' (f*n)) (n-1)

29.7 Choosing a Fold
Remember that earlier we defined two folding operations. Function foldr is a
backward linear recursive function that folds an operation through a list from
the tail (i.e., right) toward the head. Function foldl is a tail recursive function
that folds an operation through a list from the head (i.e., left) toward the tail.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
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foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

The first duality theorem (as given in the Bird and Wadler textbook [1]) states
the circumstances in which one can replace foldr by foldl and vice versa.

If ⊕ is a associative binary operation of type t -> t with identity element z,
then:

First duality theorem: If ⊕ is a associative binary operation of type t -> t
with identity element z, then:

foldr (⊕) z xs = foldl (⊕) z xs

Thus, often we can use either foldr or foldl to solve a problem. Which is
better?

We discussed this problem before, but now we have the background to understand
it a bit better.

Clearly, eager evaluation of the second argument of foldl, which is used as an
accumulating parameter, can increase the space efficiency of the folding operation.
This optimized operation is called foldl’ in the standard prelude.

foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f z [] = z
foldl' f z (x:xs) = strict (foldl' f) (f z x) xs

Suppose that op is strict in both arguments and can be computed in O(1) time and
O(1) space. (For example, + and * have these characteristics.) If n = length xs,
then both foldr op i xs and foldl op i xs can be computed in O(n) time
and O(n) space.

However, foldl’ op i xs) requires O(n) time and O(1) space. The reasoning
for this is similar to that given for fact’.

Thus, in general, foldl’ is the better choice for this case.

Alternatively, suppose that op is nonstrict in either argument. Then foldr is
usually more efficient than foldl.

As an example, consider operation || (i.e., logical-or). The || operator is strict
in the first argument, but not in the second. That is, True || x = True without
having to evaluate x.

Let xs = [x_1, x_2, x_3, ... x_n] such that (∃i : 1 ≤ i ≤ n :: x_i == True
) ∧ (∀j : 1 ≤< i :: x_i == False ))

Suppose x_i is the minimum i satisfying the above existential.

foldr (||) False xs

=⇒ { many steps }
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x_1 || (x_2 || ( ... || (x_i || ( ... || (x_n || False) ... )

Because of the nonstrict definition of ||, the above can stop after the x_i term
is processed. None of the list to the right of x_i needs to be evaluated.

However, a version which uses foldl must process the entire list.

foldl (||) False xs

=⇒ { many steps }

( ... ( False || x_i) || x_2) || ... ) || x_i) || ... ) || x_n

In this example, foldr is clearly more efficient than foldl.

29.8 What Next?
TODO

29.9 Exercises
TODO

29.10 Acknowledgements
TODO History of chapter in FP class.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

In 2022, I adapted and revised this chapter from Chapter 13 of my Notes on
Functional Programming with Haskell [2]. I had included some some of this
discussion in Chapter 8 in 2016 and later.

These previous notes drew on the presentations in the first edition of the classic
Bird and Wadler textbook [1:6.1–6.3], [3:6], and other functional programming
sources.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

29.11 Terms and Concepts
TODO
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