
Exploring Languages
with Interpreters

and Functional Programming
Chapter 28

H. Conrad Cunningham

04 April 2022

Contents
28 Type Inference 2

28.1 Chapter Introduction . 2
28.2 Motivation . 2
28.3 Example: Functional Composition 2
28.4 Example: Multiple Use of Polymorphic Function (fst) 3
28.5 Example: Fixpoint (fix) . 5
28.6 Example: Incorrect Typing (selfapply) 6
28.7 Other Aspects of Type Inference 7
28.8 What Next? . 7
28.9 Exercises . 7
28.10Acknowledgements . 7
28.11Terms and Concepts . 8
28.12References . 8

Copyright (C) 2017, 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

28 Type Inference
28.1 Chapter Introduction
The goal of this chapter (28) is to show how type inference works. It presents
the topic using an equational reasoning technique.

This chapter depends upon the reader understanding Haskell polymorphic, higher-
order function concepts (e.g., from studying Chapters 13-17), but it is otherwise
independent of other chapters. No subsequent chapter depends explicitly upon
this content.

28.2 Motivation
How can we deduce the type of a Haskell expression?

To get the general idea, let’s look at a few examples.

Note: The discussion here is correct for monomorphic functions, but it is a bit
simplistic for polymorphic functions. However, it should be of assistance in
understanding how types are assigned to Haskell expressions.

28.3 Example: Functional Composition
Expressed in prefix form, functional composition can be defined with the equation:

(.) f g x = f (g x)

We begin the process of type inference by assigning types to the parameter
names and to the function’s defining expression (i.e., its result). We introduce
new type names t1, t2, t3 and t4 for the components of (.) as follows:

f :: t1 -- parameter 1 of (.)
g :: t2 -- parameter 2 of (.)
x :: t3 -- parameter 3 of (.)

f (g x) :: t4 -- defining expression for (.)

The type of (.) is therefore given by:

(.) :: t1 -> t2 -> t3 -> t4

We are not finished because there are certain relationships among the new types
that must be taken into account. To see what these relationships are, we use
the following inference rules.

• Application rule: If f x :: t, then we can deduce x :: t' and
f :: t' -> t for some new type t'.

• Equality rule: If both x :: t and x :: t' for some variable x , then
we can deduce t = t'.

2

• Function rule: If (t -> u) = (t' -> u'), then we can deduce t = t'
and u = u'.

Using the application rule on {.haskell} f (g x) :: t4, we introduce a new
type t5 such that:

g x :: t5
f :: t5 -> t4

Using the application rule for g x :: t5, we introduce another new type t6
such that:

x :: t6
g :: t6 -> t5

Using the equality rule on the two types deduced for each of f, g, and x,
respectively, we get the following identities:

t1 = (t5 -> t4) -- f
t2 = (t6 -> t5) -- g
t3 = t6 -- x

For function (.), we thus deduce the type signature:

(.) :: (t5 -> t4) -> (t6 -> t5) -> t6 -> t4

If we replace the type names by Haskell generic type variables that follow the
usual naming convention, we get:

(.) :: (b -> c) -> (a -> b) -> a -> c

28.4 Example: Multiple Use of Polymorphic Function
(fst)

Now let’s consider the function definition:

f x y = fst x + fst y

Note that the names (+) and fst occur on the right side of the definition, but
do not occur on the left.

From the Haskell Prelude, we can see that:

(+) :: Num a => a -> a -> a
fst :: (a, b) -> a

The Num a context contrains the polymorphism on type variable a.

We must be careful. The two occurrences of the polymorphic function fst in the
definition for f need not bind the type variables a and b to the same concrete
types. For example, consider the expression:

fst (2, True) + fst (1, "hello")

3

This expression is well-typed despite the fact that the first occurrence of fst
has the type

Num a => (a,Bool) -> a

and the second occurrence has type

Num a => (a, [Char]) -> a

Furthermore, the two occurrences of the type variable a are not, in general,
required to bind to the same type. (However, as we will see, they do in this
expression because of the addition operation.)

To handle the situation with the multiple applications of fst, we use the following
rule.

• Polymorphic use rule: If a polymorphic function is applied multiple
times in an expression, then the type of each occurrence is determined
independently, with each assigned new type variables.

Following the polymorphic use rule, we rewrite the definition of f in the form

f x y = fst1 x + fst2 y

and assume two different instantiations of the generic type of fst:

fst1 :: (u1, u2) -> u1
fst2 :: (v1, v2) -> v1

After making the above transformation, we proceed by assigning types to the
parameters and definition of f, introducing three new types:

x :: t1 -- parameter 1 of f
y :: t2 -- parameter 2 of f

fst1 x + fst2 y :: t3 -- defining expression for f

Thus we have the following type for f:

f :: t1 -> t2 -> t3

Now we can rewrite the defining expression for f fully in prefix form to get:

(+) (fst1 x) (fst2 y)

Then, using the application rule on the above expression, we deduce:

(fst2 y) :: t4
(+) (fst1 x) :: t4 -> t3

Using the application rule on (fst2 y) :: t4, we get:

y :: t5
fst2 :: t5 -> t4

Similarly, using the application rule on (+) (fst1 x) :: t4 -> t3, we get:

4

(fst1 x) :: t6
(+) :: t6 -> t4 -> t3

Going further and applying the application rule to (fst1 x) :: t6, we deduce:

x :: t7
fst1 :: t7 -> t6

Now we have introduced types for all the symbols appearing in the definition
of function f. We begin simplification by using the equality rule for x, y, fst1,
fst2, and (+), respectively. We thus deduce the type equations:

t1 = t7 -- x
t2 = t5 -- y

((u1, u2) -> u1) = (t7 -> t6) -- fst1
((v1, v2) -> v1) = (t5 -> t4) -- fst2

(Num a => a -> a -> a) = (t6 -> t4 -> t3) -- (+)

Now, using the function rule on the last three equations above, we derive:

t7 = (u1, u2)
t6 = u1

t5 = (v1, v2)
t4 = v1

t3 = t4 = t6 = v1 = u1 = (Num a => a)

We had assigned type f :: t1 -> t2 -> t3 originally. Substituting from the
above, we deduce the following type:

f :: Num a => (a, u2) -> (a, v2) -> a

Finally, we can replace the type names u2 and v2 by Haskell generic type
variables that follow the usual naming convention. We get the following inferred
type for function f:

f :: Num a => (a, b) -> (a, c) -> a

28.5 Example: Fixpoint (fix)
For this example, consider the definition:

fix f = f (fix f)

To deduce a type for fix, we proceed as before and introduce types for the
parameters and defining expression of f:

f :: t1 -- parameter of fix
f (fix f) :: t2 -- defining expression for fix

Thus, fix has the type:

5

fix :: t1 -> t2

Using the application rule on the expression f (fix f), we obtain:

(fix f) :: t3
f :: t3 -> t2

Then using the application rule on the expression fix f, we get:

f :: t4
fix :: t4 -> t3

Using the equality rule on f and fix, we deduce:

t1 = t4 = (t3 -> t2) -- f
(t1 -> t2) = (t4 -> t3) -- fix

Then, using the function rule on the second equation, we obtain the identities:

t1 = t4
t2 = t3

Since fix :: t1 -> t3, we derive the type:

fix :: (t3 -> t3) -> t3

If we replace t3 by a Haskell generic type variable that follows the usual naming
convention, we get the following inferred type for fix:

fix :: (a -> a) -> a

28.6 Example: Incorrect Typing (selfapply)
Finally, let us consider an example in which the typing is wrong. Let us define
selfapply as follows:

selfapply f = f f

Proceeding as in the previous examples, we introduce new types for the parame-
ters and defining expression of f:

f :: t1 -- parameter of selfapply
f f :: t2 -- defining expression for selfapply

Thus we have the type:

selfapply :: t1 -> t2

Using the application rule on f f, we get:

f :: t3
f :: t3 -> t2

But the equality rule for f tells us that:

t1 = t3 = (t3 -> t2)

6

or just

t1 = (t1 -> t2)

However, the equation t1 = (t1 -> t2) does not possess a solution for t1 and
the definition of selfapply is thus rejected by the type checker.

28.7 Other Aspects of Type Inference
Haskell function definitions must also conform to the following rules.

• Guard rule: Each guard must be an expression of type Bool.

• Tuple rule: The type of a tuple of elements is the tuple of their respective
types.

28.8 What Next?
This chapter is largely independent of other chapters. No subsequent chapter
depends explicitly upon this content.

28.9 Exercises
TODO

28.10 Acknowledgements
In Spring 2017, I adapted and revised this chapter from my previous HTML
notes on this topic. (These were supplementary notes for a course based on [2].)
I based the previous notes on the presentations in:

• Section 2.8 of the book Introduction to Functional Programming (First
Edition) by Richard Bird and Philip Wadler [1]

• Chapter 9 of the book Haskell: The Craft of Functional Programming
(First Edition) by Simon Thompson [3]

I thank MS student Hongmei Gao for helping me prepare the first version of the
previous notes in Spring 2000.

In Summer 2018, I incorporated this work as new Chapter 24, Type Inference,
in the 2018 version of the textbook Exploring Languages with Interpreters and
Functional Programming and continue to revise it.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

7

In 2022, I reordered the Chapters, making this Chapter 28 (instead of Chapter
24).

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

28.11 Terms and Concepts
Type inference, function, polymorphism, type variable, function composition,
fixpoint, application rule, equality rule, function rule, polymorphic use rule,
guard rule, tuple rule.

28.12 References
[1] Richard Bird and Philip Wadler. 1988. Introduction to functional pro-

gramming (First ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.
[2] H. Conrad Cunningham. 2014. Notes on functional programming with

Haskell. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

[3] Simon Thompson. 1996. Haskell: The craft of programming (First ed.).
Addison-Wesley, Boston, Massachusetts, USA.

8

https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

	Type Inference
	Chapter Introduction
	Motivation
	Example: Functional Composition
	Example: Multiple Use of Polymorphic Function (fst)
	Example: Fixpoint (fix)
	Example: Incorrect Typing (selfapply)
	Other Aspects of Type Inference
	What Next?
	Exercises
	Acknowledgements
	Terms and Concepts
	References

