
Exploring Languages
with Interpreters

and Functional Programming
Chapter 26

H. Conrad Cunningham

18 March 2022

Contents
26 Program Synthesis 2

26.1 Chapter Introduction . 2
26.2 Motivation . 2
26.3 Fast Fibonacci Function . 2
26.4 Sequence of Fibonacci Numbers 4
26.5 Synthesis of drop from take . 8
26.6 Tail Recursion Theorem . 10
26.7 Finding Better Tail Recursive Algorithms 13
26.8 What Next? . 16
26.9 Exercises . 16
26.10Acknowledgements . 17
26.11Terms and Concepts . 18
26.12References . 18

Copyright (C) 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of March 2022 is a recent
version of Firefox from Mozilla.

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

26 Program Synthesis
26.1 Chapter Introduction
Chapter 25 illustrated how to state and prove Haskell “laws” about already
defined functions.

This chapter (26) illustrates how to use similar reasoning methods to synthesize
(i.e., derive or calculate) function definitions from their specifications.

Chapter 27 applies these program synthesis techniques to a larger set of examples
on text processing.

26.2 Motivation
This chapter deals with program synthesis.

In the proof of a property, we take an existing program and then demonstrate
that it satisfies some property.

In the synthesis of a program, we take a property called a specification and then
synthesize a program that satisfies it [3]. (Program synthesis is called program
derivation in other contexts, such as in the Gries textbook [13] and my Notes on
Program Semantics and Derivation [8].)

Both proof and synthesis require essentially the same reasoning. Often a proof
can be turned into a synthesis by simply reversing a few of the steps, and vice
versa.

26.3 Fast Fibonacci Function
This section is based on Bird and Wadler [3:5.4.5,3:5.5] and Hoogerwoord [15:4.5].

A (second-order) Fibonacci sequence is the sequence in which the first two ele-
ments are 0 and 1 and each successive element is the sum of the two immediately
preceding elements:

0, 1, 1, 2, 3, 5, 8, 13, ...

As we have seen in Chapter 9, we can take the above informal description and
define a function to compute the nth element of the Fibonacci sequence. The
definition is straightforward. Unfortunately, this algorithm is quite inefficient,
O(fib n).

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n | n >= 2 = fib (n-1) + fib (n-2)

In Chapter 9, we also developed a more efficient, but less straightforward, version
by using two accumulating parameters. This definition seemed to be “pulled out

2

of thin air”. Can we synthesize a definition that uses the more efficient algorithm
from the simpler definition above?

Yes, but we use a slightly different approach than we did before. We can improve
the performance of the Fibonacci computation by using a technique called tupling
[15] as we saw in Chapter 20.

The tupling technique can be applied to a set of functions with the same domain
and the same recursive pattern. First, we define a new function whose value is a
tuple, the components of which are the values of the original functions. Then,
we proceed to calculate a recursive definition for the new function.

This technique is similar to the technique of adding accumulating parameters to
define a new function.

Given the definition of fib above, we begin with the specification [3]:

twofib n = (fib n, fib (n+1))

and synthesize a recursive definition by using induction on the natural number
n.

Base case n = 0:

twofib 0

= { specification }

(fib 0, fib (0+1))

= { arithmetic, fib.1, fib.2 }

(0,1)

This gives us a definition for the base case.

Inductive case n = m+1:

Given that there is a definition for twofib m that satisfies the specification

twofib m = (fib m, fib (m+1))

calculate a definition for twofib (m+1) that satisfies the specification.

twofib (m+1)

= { specification }

(fib (m+1), fib ((m+1)+1))

= { arithmetic, fib.3 }

(fib (m+1), fib m + fib (m+1))

= { abstraction }

(b,a+b)
where (a,b) = (fib m, fib (m+1))

3

= { induction hypothesis }

(b,a+b)
where (a,b) = twofib m

This gives us a definition for the inductive case.

Bringing the cases together and rewriting twofib (m+1) to get a valid pattern,
we synthesize the following definition:

twofib :: Int -> (Int,Int)
twofib 0 = (0,1)
twofib n | n > 0 = (b,a+b)

where (a,b) = twofib (n-1)

fastfib :: Int -> Int
fastfib n = fst (twofib n)

Above fst is the standard prelude function to extract the first component of a
pair (i.e., a 2-tuple).

The key to the performance improvement is solving a “harder” problem: com-
puting fib n and fib (n+1) at the same time. This allows the values needed
to be “passed forward” to the “next iteration”.

In general, we can approach the synthesis of a function using the following
method.

• Devise a specification for the function in terms of defined functions, data,
etc.

• Assume the specification holds.

• Using proof techniques (as if proving the specification), calculate an ap-
propriate definition for the function.

• As needed, break the synthesis calculation into cases motivated by the
induction “proof” over an appropriate (well-founded) set (e.g., over natural
numbers or finite lists). The inductive cases usually correspond to recursive
legs of the definition.

26.4 Sequence of Fibonacci Numbers
Now let’s consider a function to generate a list of the elements fib 0 through
fib n for some natural number n. A simple backward recursive definition follows:

allfibs :: Int -> [Int]
allfibs 0 = [0] -- allfibs.1
allfibs n | n > 0 = allfibs (n-1) ++ [fib n] -- allfibs.2

Using fastfib, each fib n calculation is O(n). Each ++ call is also O(n). The
fib and the ++ are “in sequence”, so each call of allfibs is just O(n). However,

4

there are O(n) recursive calls of allfibs, so the overall complexity is O(nˆ2).

We again attempt to improve the efficiency by tupling We begin with the following
specification for fibs:

fibs n = (fib n, fib (n+1), allfibs n)

We already have definitions for the functions on the right-hand side, fib and
allfibs. Our task now is to synthesize a definition for the left-hand side, fibs.

We proceed by induction on the natural number n and consider two cases.

Base case n = 0:

fibs 0

= { fibs specification }

(fib 0, fib (0+1), allfibs 0)

= { fib.1, fib.2, allfibs.1 }

(0,1,[0])

This gives us a definition for the base case.

Inductive case n = m+1

Given that there is a definition for fibs m that satisfies the specification

fibs m = (fib m, fib (m+1), allfibs m)

calculate a definition for fibs (m+1) that satisfies the specification.

fibs (m+1)

= { fibs specification }

(fib (m+1), fib (m+2), allfibs (m+1))

= { fib.3, allfibs.2 }

(fib (m+1), fib m + fib (m+1), allfibs m ++ [fib (m+1)])

= { abstraction }

(b,a+b,c++[b])
where (a,b,c) = (fib m, fib (m+1), allfibs m)

= { induction hypothesis }

(b,a+b,c++[b])
where (a,b,c) = fibs m

This gives us a definition for the inductive case.

Bringing the cases together, we get the following definitions:

5

fibs :: Int -> (Int,Int,[Int])
fibs 0 = (0,1,[0])
fibs n | n > 0 = (b,a+b,c++[b])

where (a,b,c) = fibs (n-1)

allfibs1 :: Int -> [Int]
allfibs1 n = thd3 (fibs n)

Above thd3 is the standard prelude function to extract the third component of
a 3-tuple.

We have eliminated the O(n) fib calculations, but still have an O(n) append
(++) within each of the O(n) recursive calls of fibs. This program is better, but
is still O(nˆ2).

Note that in the c ++ [b] expression there is a single element on the right.
Perhaps we could build this term backwards using cons, an O(1) operation, and
then reverse the final result.

We again attempt to improve the efficiency by tupling. We begin with the
following specification for fibs:

fibs' n = (fib n, fib (n+1), reverse (allfibs n))

For convenience in calculation, we replace reverse by its backward recursive
equivalent rev.

rev :: [a] -> [a]
rev [] = [] -- rev.1
rev (x:xs) = rev xs ++ [x] -- rev.2

We again proceed by induction on n and consider two cases.

Base case n = 0:

fibs' 0

= { fibs' specification }

(fib 0, fib (0+1), rev (allfibs 0))

= { fib.1, fib.2, allfibs.1 }

(0,1, rev [0])

= { rev.2 }

(0,1, rev [] ++ [0])

= { rev.1, append.1 }

(0,1,[0])

This gives us a definition for the base case.

Inductive case n = m+1:

6

Given that there is a definition for fibs' m that satisfies the specification

fibs' m = (fib m, fib (m+1), allfibs m)

calculate a definition for fibs' (m+1) that satisfies the specification.

fibs' (m+1)

= { fibs' specification }

(fib (m+1), fib (m+2), rev (allfibs (m+1)))

= { fib.3, allfibs.2 }

(fib (m+1), fib m + fib (m+1), rev (allfibs m ++ [fib (m+1)]))

= { abstraction }

(b, a+b, rev (allfibs m ++ [b]))
where (a,b,c) = (fib m, fib (m+1), rev (allfibs m))

= { induction hypothesis }

(b, a+b, rev (allfibs m ++ [b]))
where (a,b,c) = fibs' m

= { rev (xs ++ [x]) = x : rev xs, Note 1 }

(b, a+b, b : rev (allfibs m))
where (a,b,c) = fibs' m

= { substitution }

(b, a+b, b:c)
where (a,b,c) = fibs' m

This gives us a definition for the inductive case.

Note 1: The proof of rev (xs ++ [x]) = x : rev xs is left as an exercise.

Bringing the cases together, we get the following definition:

fibs' :: Int -> (Int,Int,[Int])
fibs' 0 = (0,1,[0])
fibs' n | n > 0 = (b,a+b,b:c)

where (a,b,c) = fibs' n

allfibs2 :: Int -> [Int]
allfibs2 n = reverse (thd3 (fibs' n))

Function fibs' is O(n). Hence, allfibs2' is O(n).

Are further improvements possible?

Clearly, function fibs' must generate an element of the sequence for each integer
in the range [0..n]. Thus no complexity order improvement is possible.

7

However, from our previous experience, we know that it should be possible to
avoid doing a reverse by using a tail recursive auxiliary function to compute the
Fibonacci sequence. The investigation of this possible improvement is left to the
reader.

For an O(log2(n{.haskell)) algorithm to compute fib n, see Kaldewaij’s textbook
on program derivation [16:5.2].

26.5 Synthesis of drop from take

Suppose that we have the following definition for the list function take, but no
definition for drop.

take :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take' (n-1) xs

Further suppose that we wish to synthesize a definition for drop that satisfies
the following specification for any natural number n and finite list xs.

take n xs ++ drop n xs = xs

We proved this as a property earlier, given definitions for both take and drop.
The synthesis uses induction on both n and xs and the same cases we used in
the proof.

Base case n = 0:

xs

= { specification, substitution for this case }

take 0 xs ++ drop 0 xs

= { take.1 }

[] ++ drop 0 xs

= { ++ identity }

drop 0 xs

This gives the equation drop 0 xs = xs.

Base case n = m+1:

[]

= { specification, substitution for this case }

take (m+1) [] ++ drop (m+1) []

= { take.2 }

[] ++ drop (m+1) []

8

= { ++ identity }

drop (m+1) []

This gives the defining equation drop (m+1) [] = []. Since the value of the
argument (m+1) is not used in the above calculation, we can generalize the
definition to drop _ [] = [].

Inductive case n = m+1, xs = (a:as):

Given that there is a definition for drop m as that satisfies the specification:

take m as ++ drop m as = as

calculate an appropriate definition for drop (m+1) (a:as) that satisfies the
specification.

(a:as)

= { specification, substitution for this case }

take (m+1) (a:as) ++ drop (m+1) (a:as)

= { take.3 }

(a:(take m as)) ++ drop (m+1) (a:as)

= { append.2 }

a:(take m as ++ drop (m+1) (a:as))

Hence, a:(take m as ++ drop (m+1) (a:as)) = (a:as).

a:(take m as ++ drop (m+1) (a:as)) = (a:as)

≡ { axiom of equality of lists (Note 1) }

take m as ++ drop (m+1) (a:as) = as

≡ { m ≥ 0, specification }

take m as ++ drop (m+1) (a:as) = take m as ++ drop m as

≡ { equality of lists (Note 2) }

drop (m+1) (a:as) = drop m as

Because of the induction hypothesis, we know that drop m as is defined. This
gives a definition for this case.

Notes:

0. The symbol ≡ denotes logical equivalence (i.e., if and only if) and is
pronounced “equivales”.

1. (x:xs) = (y:ys) ≡ x = y && xs = ys. In this case x and y both equal
a.

9

2. xs ++ ys = xs ++ zs ≡ ys = zs can be proved by induction on xs using
the Note 1 property.

Bringing the cases together, we get the definition that we saw earlier.

drop :: Int -> [a] -> [a]
drop n xs | n <= 0 = xs -- drop.1
drop _ [] = [] -- drop.2
drop n (_:xs) = drop (n-1) xs -- drop.3

26.6 Tail Recursion Theorem
In Chapter 14, we looked at two different definitions of a function to reverse the
elements of a list. Function rev uses a straightforward backward linear recursive
technique and reverse uses a tail recursive auxiliary function. We proved that
these definitions are equivalent.

rev :: [a] -> [a]
rev [] = [] -- rev.1
rev (x:xs) = rev xs ++ [x] -- rev.2

reverse :: [a] -> [a]
reverse xs = rev' xs [] -- reverse.1

where rev' [] ys = ys -- reverse.2
rev' (x:xs) ys = rev' xs (x:ys) -- reverse.3

Function rev' is a generalization of rev. Is there a way to calculate rev' from
rev?

Yes, by using the Tail Recursion Theorem for lists. We develop this theorem in
a more general setting than rev.

The following is based on Hoogerwoord [15:4.7].

For some types X and Y, let function fun be defined as follows:

fun :: X -> Y
fun x | not (b x) = f x -- fun.1

| b x = h x *** fun (g x) -- fun.2

• Functions b, f, g, h, and *** are not defined in terms of fun.

• b :: X -> Bool such that, for any x, b x is defined whenever fun x is
defined.

• g :: X -> X such that, for any x, g x is defined whenever fun x is defined
and b x holds.

• h :: X -> Y such that, for any x, h x is defined whenever fun x is defined
and b x holds.

10

• (***) :: Y -> Y -> Y such that operation *** is defined for all elements
of Y and is an associative operation with left identity e.

• f :: X -> Y such that, for any x, f x is defined whenever fun x is defined
and not (b x) holds.

• X with relation ≺ admits induction (i.e., ⟨X,≺⟩ is a well-founded ordering).

• For any x, if fun x is defined and b x holds, then g x ≺ x.

Note that both fun x and the recursive leg h x *** fun (g x) have
the general structure y *** fun z for some expressions y and z (i.e.,
fun x = e *** fun x). Thus we specify a more general function fun' such
that

fun' :: Y -> X -> Y
fun' y x = y *** fun x

and such that fun' is defined for any x ∈ X for which fun x is defined.

Given the above specification, we note that:

fun' e x

= { fun' specification }

e *** fun x

= { e is the left identity for *** }

fun x

We proceed by induction on the type X with ≺. (We are using well-founded
induction, a more general form of induction than we have used before.

We have two cases. The base case is when not (b x) holds for argument x of
fun'. The inductive case is when b x (i.e, g x ≺ x).

Base case not (b x): (That is, x is a minimal element of X under ≺.)

fun' y x

= { fun' specification }

y *** fun x

= { fun.1 }

y *** f x

Inductive case b x: (That is, g x ≺ x.)

Given that there is a definition for fun' y (g x) that satisfies the specification
for any y

fun' y (g x) = y *** fun (g x)

calculate a definition for fun' y x that satisfies the specification.

11

fun' y x

= { fun' specification }

y *** fun x

= { fun.2 }

y *** (h x *** fun (g x))

= { *** associativity }

(y *** h x) *** fun (g x)

= { g x ≺ x, induction hypothesis }

fun' (y *** h x) (g x)

Thus we have synthesized the following tail recursive definition for function fun'
and essentially proved the Tail Recursion Theorem shown below.

fun' :: Y -> X -> Y
fun' y x | not (b x) = y *** f x -- fun'.1

| b x = fun' (y *** h x) (g x) -- fun'.2

Note that the first parameter of fun' is an accumulating parameter.

Tail Recursion Theorem: If fun, fun', and e are defined as given above,
then fun x = fun' e x.

Now let’s consider the rev and rev' functions again. First, let’s rewrite the
definitions of rev in a form similar to the definition of fun.

rev :: [a] -> [a]
rev xs | xs == [] = [] -- rev.1

| xs /= [] = rev (tail xs) ++ [head xs] -- rev.2

For rev we substitute the following for the components of the fun definition:

• fun x ← rev xs

• b x ← xs /= []

• g x ← tail xs

• h x ← [head xs]

• l *** r ← r ++ l (Note the flipped operands,)

• f x ← []

• l ≺ r ← (length l) < (length r)

• e ← []

• fun' y x ← rev' xs ys (Note the flipped arguments.)

Thus, by applying the tail recursion theorem, fun' becomes the following:

12

rev' :: [a] -> [a] -> [a]
rev' xs ys

| xs == [] = ys -- rev'.1
| xs /= [] = rev' (tail xs) ([head xs]++ys) -- rev'.2

From the Tail Recursion Theorem, we conclude that rev xs = rev' xs [].

Why would we want to convert a backward linear recursive function to a tail
recursive form?

• A tail recursive definition is sometimes more space efficient (as we saw in
Chapter 9).

This is especially the case if the strictness of an accumulating parameter
can be exploited (as we saw in Chapters 9 and 15).

• A tail recursive definition sometimes allows the replacement of an “expen-
sive” operation (requiring many steps) by a less “expensive” one. (For
example, ++ is replaced by cons in the transformation from rev to rev'.)

• A tail recursive definition can be transformed (either by hand or by a
compiler) into an efficient loop.

• A tail recursive definition is usually more general than its backward linear
recursive counterpart. Sometimes we can exploit this generality to syn-
thesize a more efficient definition. (We see an example of this in the next
subsection.)

26.7 Finding Better Tail Recursive Algorithms
This section is adapted from Cohen [5:11.3].

Although the Tail Recursion Theorem is important, the technique we used to
develop it is perhaps even more important. We can sometimes use the technique
to transform one tail recursive definition into another that is more efficient [15].

Consider exponentiation by a natural number power. The operation ** can be
defined recursively in terms of multiplication as follows:

infixr 8 **
(**) :: Int -> Int -> Int
m ** 0 = 1 -- **.1
m ** n | n > 0 = m * (m ** n) -- **.2

For (**) we substitute the following for the components of the fun definition of
the previous subsection:

• fun x ← m ** n

• b x ← n > 0 (Applied only to natural numbers.)

• g x ← n - 1

13

• h x ← m

• l *** r ← l * r

• f x ← 1

• l ≺ r ← l < r

• e ← 1

• fun' y x ← exp a m n

Thus, by applying the Tail Recursion Theorem, we define the function exp such
that

exp a m n = a * (m ** n)

and, in particular:

exp 1 m n = m ** n

The resulting function exp is defined as follows (for n >= 0):

exp :: Int -> Int -> Int -> Int
exp a m 0 = a -- exp.1
exp a m n = exp (a*m) m n -- exp.2

In terms of time, this function is no more efficient than the original version;
both require O(n) multiplies. (However, by exploiting the strictness of the first
parameter, exp can be made more space efficient than **.)

Note that exp algorithm converges upon the final result in steps of one. Can
we take advantage of the generality of exp and the arithmetic properties of
exponentiation to find an algorithm that converges in larger steps?

Yes, we can by using the technique that we used to develop the Tail Recursion
Theorem. In particular, let’s try to synthesize an algorithm that converges
logarithmically (in steps of half the distance) instead of linearly.

Speaking operationally, we are looking for a “short cut” to the result. To find
this short cut, we use the “maps” that we have of the “terrain”. That is, we take
advantage of the properties we know about the exponentiation operator.

We thus attempt to find expressions x and y such that

exp x y (n/2) = exp a m n

where “/” represents division on integers.

For the base case where n = 0, this is trivial. We proceed with a calculation to
discover values for x and y that make

exp x y (n/2) = exp a m n

when n > 0 (i.e., in the inductive case). In doing this we can use the specification
for exp (i.e.,exp a m n = a * (m ** n)).

14

exp x y (n/2)

= { exp specification }

x * (y ** (n/2))

= { Choose y = m ** 2 (Note 1) }

x * ((m ** 2) ** (n/2))

Note 1: The strategy is to make choices for x and y that make

x * (y ** (n/2))

and

a * (m ** n)

equal. This choice for y is toward getting the m ** n term.

Because we are dealing with integer division, we need to consider two cases
because of truncation.

Subcase even n (for n > 0):

x * ((m ** 2) ** (n/2))

= { arithmetic properties of exponentiation, n even }

x * (m ** n)

= { Choose x = a, toward getting a * (m ** n) }

a * (m ** n)

= { exp specification }

exp a m n

Thus, for even n, we derive:

exp a m n = exp a (m*m) (n/2)

We optimize and replace m ** 2 by m * m.

Subcase odd n (for n > 0): That is, n/2 = (n-1)/2.

x * ((m ** 2) ** ((n-1)/2))

= { arithmetic properties of exponentiation }

x * (m ** (n-1))

= { Choose x = a * m, toward getting a * (m ** n) }

(a * m) * (m ** (n-1))

= { arithmetic properties of exponentiation }

a * (m ** n)

15

= { exp specification }

exp a m n

Thus, for odd n, we derive:

exp a m n = exp (a*m) (m*m) (n/2)

To differentiate the logarithmic definition for exponentiation from the linear
one, we rename the former to exp'. We have thus defined exp' as follows (for
n >= 0):

exp' :: Int -> Int -> Int -> Int
exp' a m 0 = a -- exp'.1
exp' a m n

| even n = exp' a (m*m) (n/2) -- exp'.2
| odd n = exp' (a*m) (m*m) ((n-1)/2) -- exp'.3

Above we showed that exp a m n = exp' a m n. However, execution of exp'
converges faster upon the result: O(log2(n)) steps rather than O(n)‘.

Note: Multiplication and division of integers by natural number powers of 2,
particularly 21, can be implemented on must current computers by arithmetic
left and right shifts, respectively, which are faster than general multiplication
and division.

26.8 What Next?
Chapter 27 applies the program synthesis techniques developed in this chapter
to a larger set of examples on text processing.

No subsequent chapter depends explicitly upon the program synthesis content
from these chapters. However, if practiced regularly, the techniques explored in
this chapter can enhance a programmer’s ability to solve problems and construct
correct functional programming solutions.

26.9 Exercises
1. The following function computes the integer base 2 logarithm of a positive

integer:

lg :: Int -> Int
lg x | x == 1 = 0

| x > 1 = 1 + lg (x/2)

Using the tail recursion theorem, write a definition for lg that is tail
recursive.

2. Synthesize the recursive definition for ++ from the following specification:

xs ++ ys = foldr (:) ys xs

16

3. Using tupling and function fact5 from Chapter 4, synthesize an efficient
function allfacts to generate a list of factorials for natural numbers 0
through parameter n, inclusive.

4. Consider the following recursive definition for natural number multiplica-
tion:

mul :: Int -> Int -> Int
mul m 0 = 0
mul m (n+1) = m + mul m n

This is an O(n) algorithm for computing m * n. Synthesize an alternative
operation that is O(log2(n)). Doubling (i.e., n*2) and halving (i.e., n/2
with truncation) operations may be used but not multiplication (*) in
general.

5. Derive a “more general” version of the Tail Recursion Theorem for functions
of the shape

func :: X -> Y
func x | not (b x) = f x - -- func.1 `

| b x = h x *** func (g x) +++ d.x -- func.2

where functions b, f, g, and h are constrained as in the definition of fun in
the Tail Recursion Theorem. Be sure to identify the appropriate constraints
on d, ***, and +++ including the necessary properties of *** and +++.

26.10 Acknowledgements
In Summer 2018, I adapted and revised this chapter and the next from Chapter
12 of my Notes on Functional Programming with Haskell [9].

These previous notes drew on the presentations in the first edition of the clas-
sic Bird and Wadler textbook [3] and other functional programming sources
[1,2,15,17,18]. They were also influenced by my research, study, and teaching
related to program specification, verification, derivation, and semantics [[4]; [5];
[6]; [7]; [8]; [10]; [11]; [12]; [13]; [14]; [16]; vanGesteren1990].

I incorporated this work as new Chapter 26, Program Synthesis (this chapter),
and new Chapter 27, Text Processing, in the 2018 version of the textbook
Exploring Languages with Interpreters and Functional Programming and continue
to revise it.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document

17

to HTML, PDF, and other forms as needed.

26.11 Terms and Concepts
TODO

26.12 References
[1] Richard Bird. 1998. Introduction to functional programming using Haskell

(Second ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.
[2] Richard Bird. 2015. Thinking functionall with Haskell (First ed.). Cam-

bridge University Press, Cambridge, UK.
[3] Richard Bird and Philip Wadler. 1988. Introduction to functional pro-

gramming (First ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.
[4] K. Mani Chandy and Jayadev Misra. 1988. Parallel program design: A

foundation. Addison Wesley, Boston, Massachusetts, USA.
[5] Edward Cohen. 1990. Programming in the 1990’s: An introduction to

the calculation of programs. Springer, New York, New York, USA.
[6] H. Conrad Cunningham. 1989. The shared dataspace approach to

concurrent computation: The Swarm programming model, notation, and
logic. PhD thesis. Washington University, Department of Computer
Science, St. Louis, Missouri, USA.

[7] H. Conrad Cunningham. 2006. A programmer’s introduction to predicate
logic. University of Mississippi, Department of Computer and Information
Science, University, Mississippi, USA. Retrieved from https://john.cs.ol
emiss.edu/~hcc/csci450/notes/haskell_notes.pdf

[8] H. Conrad Cunningham. 2006. Notes on program semantics and de-
rivation. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/reports/umcis-1994-02.pdf

[9] H. Conrad Cunningham. 2014. Notes on functional programming with
Haskell. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

[10] Edsger W. Dijkstra. 1976. Updating a sequential file. In A discipline
of programming. Prentice Hall, Englewood Cliffs, New Jersey, USA,
117--122.

[11] Edsger W. Dijkstra and Wim H. J. Feijen. 1988. A method of programming.
Addison-Wesley, TBD.

[12] Edsger W. Dijkstra and Carel S. Scholten. 1990. Predicate calculus and
program semantics. Springer, New York, New York, USA.

[13] David Gries. 1981. Science of programming. Springer, New York, New
York, USA.

18

https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/reports/umcis-1994-02.pdf
https://john.cs.olemiss.edu/~hcc/reports/umcis-1994-02.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

[14] David Gries and Fred B. Schneider. 2013. A logical approach to discrete
math. Springer, New York, New York, USA.

[15] Robert R. Hoogerwoord. 1989. The design of functional programs: A
calculational approach. PhD thesis. Eindhoven Technical University,
Eindhoven, The Netherlands.

[16] Anne Kaldewaij. 1990. Programming: The derivation of algorithms.
Prentice Hall, New York, New York, USA.

[17] Simon Thompson. 1996. Haskell: The craft of programming (First ed.).
Addison-Wesley, Boston, Massachusetts, USA.

[18] E. Peter Wentworth. 1990. Introduction to functional programming using
RUFL. Rhodes University, Department of Computer Science, Graham-
stown, South Africa.

19

	Program Synthesis
	Chapter Introduction
	Motivation
	Fast Fibonacci Function
	Sequence of Fibonacci Numbers
	Synthesis of drop from take
	Tail Recursion Theorem
	Finding Better Tail Recursive Algorithms
	What Next?
	Exercises
	Acknowledgements
	Terms and Concepts
	References

