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25 Proving Haskell Laws

25.1 Chapter Introduction
The goal of this chapter is to show how to state and prove Haskell “laws”.

This chapter depends upon the reader understanding Haskell’s polymorphic,
higher-order list programming concepts (e.g., from Chapters 4-5, 8-9, and 13-17),
but it is otherwise independent of other preceding chapters.

The chapter provides useful tools that can be used in stating and formally
proving function and module contracts (Chapters 6, 7, and 22) and type class
laws (Chapter 23). It supports reasoning about program generalization (Chapter
19) and type inference (Chapter 24).

The following two chapters on program synthesis (Chapters 26 and 27) build on
the concepts and techniques introduced by this chapter.

25.2 Referential Transparency Revisited

Referential transparency is probably the most important property of purely
functional programming languages like Haskell.

Chapter 2 defines referential transparency to mean that, within some well-
defined context, a variable (or other symbol) always represents the same value.
This allows one expression to be replaced by an equivalent expression or, more
informally, “equals to be replaced by equals”.

Chapter 8 shows how referential transparency underpins the evaluation (i.e.,
substitution or reduction) model for Haskell and similar functional languages.

In this chapter, we see that referential transparency allows us to state and prove
various “laws” or identities that hold for functions and to use these “laws” to
transform programs into equivalent ones. Referential transparency underlies how
we reason about Haskell programs.

25.3 Stating and Proving Laws

As a purely functional programming language, Haskell supports mathematical
reasoning mostly within the programming language itself. We can state properties
of functions and prove them using a primarily equational, or calculational, style
of proof. The proof style is similar to that of high school trigonometric identities.

25.3.1 Example: ++ associativity and identity element

We have already seen a number of these laws. Again consider the append
operator (++) for finite lists from Chapter 14.

infixr 5 ++



(++) :: [a]l —> [a] —> [a]
[1 ++ xs = X8 -- append.1
(x:x8) ++ ys = x:(xs ++ ys) -—— append.2

The append operator ++: has two useful properties that we have already seen.

Associativity: For any finite lists xs, ys, and zs,
xs ++ (ys ++ z8) = (xs ++ ys) ++ zs.
Identity: For any finite list xs,
[T ++ xs = xs = xs ++ [].

Note: The above means that the append operator ++ and the set of finite lists
form the algebraic structure called a monoid.

How do we prove these properties?

25.3.2 Structural induction proof method

The answer is, of course, induction. But we need a type of induction that allows
us to prove theorems over the set of all finite lists. In fact, we have already been
using this form of induction in the informal arguments that the list-processing
functions terminate.

Induction over the natural numbers is a special case of a more general form
of induction called structural induction. This type of induction is over the
syntactic structure of recursively (inductively) defined objects. Such objects can
be partially ordered by a complexity ordering from the most simple (minimal)
to the more complex.

If we think about the usual axiomization of the natural numbers (i.e., Peano’s
postulates), then we see that 0 is the only simple (minimal) object and that the
successor function ((+) 1) is the only constructor.

In the case of finite lists, the only simple object is the nil list [] and the only
constructor is the cons operator (:).

To prove a proposition P(x) holds for any finite object x, one must prove the
following cases.

Base cases: That P(e) holds for each simple (minimal) object e.

Inductive cases: That, for all object constructors C, if P(x) holds for some
arbitrary object(s) x, then P(C(x)) also holds.

That is, we can assume P(x) holds, then prove that P(C(x)) holds. This
shows that the constructors preserve proposition ‘P.

To prove a proposition P(xs) holds for any finite list xs, the above reduces to
the following cases.

Base case xs = []: That P([]) holds.



Inductive case xs = (a:as). That, if P(as) holds, then P(a:as) also holds.
One, often useful, strategy for discovering proofs of laws is the following:

¢ Determine whether induction is needed to prove the law. Some laws can
be proved directly from the definitions and other previously proved laws.

o Carefully choose the induction variable (or variables).
o Identify the base and inductive cases.

o For each case, use simplification independently on each side of the equation.
Often, it is best to start with the side that is the most complex.

Simplification means to substitute the right-hand side of a definition or
the induction hypothesis for some expression matching the left-hand side.

o Continue simplifying each expression as long as possible.

Often we can show that the two sides of an equation are the same or that
simple manipulations (perhaps using previously proved laws) will show
that they are the same.

o If necessary, identify subcases and prove each subcase independently.

A formal proof of a case should, in general, be shown as a calculation that
transforms one side of the equation into the other by substitution of equals for
equals.

This formal proof can be constructed from the calculation suggested in the above

25.3.3 Proving associativity of ++

Now that we have the mathematical machinery we need, let’s prove that ++ is
associative for all finite lists. The following proofs assume that all arguments of
the functions are defined.

Prove: For any finite lists xs, ys, and zs,
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs.

Proof:

There does not seem to be a non-inductive proof, thus we proceed by structural
induction over the finite lists. But on which variable(s)?

By examining the definition of ++, we see that it has two legs differentiated by
the value of the left operand. The right operand is not decomposed. To use this
definition in the proof, we need to consider the left operands of the ++ in the
associative law.

Thus we choose to do the induction on xs, the leftmost operand, and consider
two cases—a base case and an inductive case.

Base case xs = []:



First, we simplify the left-hand side.
[0 ++ (ys ++ zs)
= { append. 1 (left to right), omit outer parentheses }
ys ++ zs
We do not know anything about ys and zs, so we cannot simplify further.
Next, we simplify the right-hand side.
([0 ++ ys) ++ zs
= { append.1 (left to right), omit parentheses around ys }
ys ++ zs
Thus we have simplified the two sides to the same expression.
Of course, a formal proof can be written more elegantly as:
[0 ++ (ys ++ zs)
= { append. 1 (left to right) }
ys ++ zs
= { append. 1 (right to left, applied to left operand) }
([0 ++ ys) ++ zs

Thus the base case is established.

Note the equational style of reasoning. We proved that one expression was equal
to another by beginning with one of the expressions and repeatedly substituting

“equals for equals” until we got the other expression.

Each transformational step was justified by a definition, a known property, or (as
we see later) the induction hypothesis. We normally do not state justifications
like “omit parentheses” or “insert parentheses”. We show these justifications for
these steps in braces in the equational arguments. This style follows the common

practice in the program derivaton community [7,7,13].

In the inductive case, we find it helpful to state both the inductive assumption

and the proof goal explicitly, as we do below.
Inductive case xs = (a:as):

Assume as ++ (ys ++ zs) = (as ++ ys) ++ zs;
prove (a:as) ++ (ys ++ zs) = ((a:as) ++ ys) ++ zs.

First, we simplify the left-hand side.
(a:as) ++ (ys ++ zs)

= { append.2 (left to right) }



a:(as ++ (ys ++ zs))
= { induction hypothesis }
a:((as ++ ys) ++ zs)

We do not know anything further about as, ys, and zs, so we cannot simplify
further.

Next, we simplify the right-hand side.
((a:as) ++ ys) ++ zs
= { append. 2 (left to right, on inner ++) }
(a:(as ++ ys)) ++ zs
= { append. 2 (left to right, on outer ++) }
a:((as ++ ys) ++ zs)
Thus we have simplified the two sides to the same expression.
Again, a formal proof can be written more elegantly as follows.
(a:as) ++ (ys ++ zs)
= { append.2 (left to right) }
a:(as ++ (ys ++ zs))
= { induction hypothesis }
a:((as ++ ys) ++ zs)
= { append. 2 (right to left, on outer ++) }
(a:(as ++ ys)) ++ zs
= { append.2 (right to left, on inner ++) }
((a:as) ++ ys) ++ zs
Thus the inductive case is established.
Therefore, we have proven the ++ associativity property. Q.E.D.

The above proof and the ones that follow assume that the arguments of the
functions are all defined (i.e., not equal to L).

25.3.4 Reviewing proof method

You should practice writing proofs in the “more elegant” form given above. This
end-to-end calculational style is more useful for synthesis of programs.

Reviewing what we have done, we can identify the following guidelines:

e Determine whether induction is really needed.



e Choose the induction variable carefully.
e Be careful with parentheses.

Substitutions, comparisons, and pattern matches must done with the fully
parenthesized forms of definitions, laws, and expressions in mind, that is,
with parentheses around all binary operations, simple objects, and the
entire expression. We often omit “unneeded” parentheses to make the
expression more readable.

e Start with the more complex side of the equation.

That gives us more information with which to work.

25.3.5 Proving identity element for ++
Now let’s prove the identity property.

Prove: For any finite list xs,
[1 ++ xs = xs = xs ++ [].

Proof:

The equation [] ++ xs = xs follows directly from append.1. Thus we consider
the equation xs ++ [] = xs, which we prove by structural induction on xs.

Base case xs = []:
0+ [
= { append.1 (left to right) }
d
This establishes the base case.
Inductive case xs = (a:as):
Assume as ++ [] = as; prove (a:as) ++ [] = (a:as).
(a:as) ++ []
= { append. 2 (left to right) }
a:(as ++ [
= { induction hypothesis }
a:as
This establishes the inductive case.

Therefore, we have proved that [] is the identity element for ++. Q.E.D.



25.4 Example: Relating length and ++
Suppose that the list length function is defined as follows (from Chapter 13}).

length :: [a] -> Int
length [] = 0 -- length.1
length (_:xs) 1 + length xs -- length.2

Prove: For all finite lists xs and ys:
length (xs++ys) = length xs + length ys.

Proof:
Because of the way ++ is defined, we choose xs as the induction variable.
Base case xs = []:
length [] + length ys
= { length.1 (left to right) }
0 + length ys
= { 0 is identity for addition }
length ys
= { append.1 (right to left) }
length ([] ++ ys)
This establishes the base case.
Inductive case xs = (a:as):

Assume length (as ++ ys) = length as + length ys;
prove length ((a:as) ++ ys) = length (a:as) + length ys.

length ((a:as) ++ ys)
= { append.?2 (left to right) }
length (a:(as ++ ys))
= { length.2 (left to right) }
1 + length (as ++ ys)
= { induction hypothesis }
1 + (length as + length ys)
= { associativity of addition }
(1 + length as) + length ys
= { length.2 (right to left, value of a arbitrary) }

length (a:as) + length ys



This establishes the inductive case.
Therefore, length (xs ++ ys) = length xs + length ys. Q.E.D.

Note: The proof above uses the associativity and identity properties of integer
addition.

25.5 Example: Relating take and drop

Remember the definitions for the list functions take and drop from Chapter
13}.

take :: Int -> [a] -> [a]

take n _ | n <=0 = [] -- take.1
take _ [] =[] -- take.2
take n (x:xs) = x : take (n-1) xs -- take.3
drop :: Int -> [a] -> [a]

drop n xs | n <= 0 = xs -— drop.1
drop _ [] =[] -- drop.2
drop n (_:xs) = drop (n-1) xs -- drop.3

Prove: For any natural numbers n and finite lists xs,
take n xs ++ drop n xs = xs.

Proof:

Note that both take and drop use both arguments to distinguish the cases.
Thus we must do an induction over all natural numbers n and all finite lists xs.

We would expect four cases to consider, the combinations from n being zero and
nonzero and xs being nil and non-nil. But an examination of the definitions for
the functions reveal that the cases for n = 0 collapse into a single case.

Base case n = 0:
take O xs ++ drop O xs
= { take.1, drop.1 (both left to right) }
[1 ++ xs
= { ++ identity xs }
XS
This establishes the case.
Base case n = m+1, xs = []:
take (m+1) [] ++ drop (m+1) []
= { take.2, drop.2 (both left to right) }
0+ 0

10



= { ++ identity }
(]
This establishes the case.
Inductive case n = m+1, xs = (a:as):

Assume take m as ++ drop m as = as;
prove take (m+1) (a:as) ++ drop (m+1) (a:as) = (a:as).

take (m+1) (a:as) ++ drop (m+1) (a:as)
= { take.3, drop.3 (both left to right) }
(a:(take m as)) ++ drop m as
= { append.?2 (left to right) }
a:(take m as ++ drop m as)
= { induction hypothesis }
(a:as)
This establishes the case.

Therefore, the property is proved. Q.E.D.

25.6 Example: Equivalence of Functions
What do we mean when we say two functions are equivalent?

Usually, we mean that the “same inputs” yield the “same outputs”. For example,
single argument functions f and g are equivalent if f x = g x for all x.

In Chapter 14. we defined two versions of a function to reverse the elements
of a list. Function rev uses backward recursion and function reverse (called
reverse' in Chapter 14) uses a forward recursive auxiliary function rev'.

rev :: [a] -> [al
rev [] = [] -- rev.1
rev (x:xs) = rev xs ++ [x] -- rev.2
reverse :: [a] -> [a]
reverse xs = rev' xs [] -- reverse. 1
where rev' [] ys = ys -- reverse.2
rev' (x:xs) ys = rev' xs (x:ys) -- reverse.3

To show rev and reverse are equivalent, we must prove that, for all finite lists
XS:

rev Xs = reverse Xs

If we unfold (i.e., simplify) reverse one step, we see that we need to prove:

11



rev xs = rev' xs []
Thus let’s try to prove this by structural induction on xs.
Base case xs = []:

rev []

= { rev.1 (left to right) }

]
= { reverse.?2 (right to left) }
rev' [] []

This establishes the base case.

Inductive case xs = (a:as):

Assume rev as = rev' as []; prove rev (a:as) = rev' (a:as) [].

First, we simplify the left side.
rev (a:as)

= { rev.2 (left to right) }
rev as ++ [a]

Then, we simplify the right side.
rev' (a:as) []

= { reverse.3 (left to right) }
rev' as [a]

Thus we need to show that rev as ++ [a] = rev' as [a]. But we do not
know how to proceed from this point.

Maybe another induction. But that would probably just bring us back to a point
like this again. We are stuck!

Let’s look back at rev xs = rev' xs []. This is difficult to prove directly.
Note the asymmetry, one argument for rev versus two for rev'.

Thus let’s look for a new, more symmetrical, problem that might be easier to
solve. Often it is easier to find a solution to a problem that is symmetrical than
one which is not.

Note the place we got stuck above (proving rev as ++ [a] = rev' as [a])
and also note the equation reverse. 3. Taking advantage of the identity element
for ++, we can restate our property in a more symmetrical way as follows:

rev xs ++ [] = rev' xs []

12



Note that the constant [] appears on both sides of the above equation. We can
now apply the following generalization heuristic [8,13]. (That is, we try to solve
a “harder” problem.)

Heuristic: Replace constant by variable

That is, generalize by replacing a constant (or any subexpression) by a
new variable.

Thus we try to prove the more general proposition:
rev xs ++ ys = rev' xs ys

The case ys = [] gives us what we really want to hold. Intuitively, this new
proposition seems to hold. Now let’s prove it formally. Again we try structural
induction on xs.

Base case xs = []:
rev [] ++ ys

= { rev.1 (left to right) }
[1 ++ ys

= { append.1 (left to right) }
ys

= { reverse.2 (right to left) }

rev'

[1 ys
This establishes the base case.
Inductive case xs = (a:as):

Assume rev as ++ ys = rev' as ys for any finite list ys; prove
rev (a:as) ++ ys = rev' (a:as) ys.

rev (a:as) ++ ys
= { rev.2 (left to right) }
(rev as ++ [a]) ++ ys
= { ++ associativity, Note 1 }
rev as ++ ([a] ++ ys)
= { singleton law, Note 2 }
rev as ++ (a:ys)
= { induction hypothesis }
rev' as (a:ys)

= { reverse.3 (right to left) }

13



rev' (a:as) ys
This establishes the inductive case.
Notes:

1. We could apply the induction hypothesis here, but it does not seem
profitable. Keeping the expressions in terms of rev and ++ as long as
possible seems better; we know more about those expressions.

2. The singleton law is [x] ++ xs = x:xs for any element x and finite list
xs of the same type. Proof of this is left as an exercise for the reader.

Therefore, we have proved rev xs ++ ys = rev' xs ys and, hence:
rev Xs = reverse Xs

The key to the performance improvement here is the solution of a “harder”
problem: function rev' does both the reversing and appending of a list while
rev separates the two actions.

25.7 What Next?

This chapter illustrated how to state and prove Haskell “laws” about already
defined functions.

Chapters 26} and 27} on program synthesis illustrate how to use similar reasoning
methods to synthesize (i.e., derive or calculate) function definitions from their
specifications.

25.8 Exercises

This set of exercises uses functions defined in this and previous chapters including
the following:

e Functions map, filter, foldr, foldl, and concatMap are defined in Chap-
ter 15.

e Functional composition, identity combinator id, and function all are
defined in Chapter 16}.

o Functions takeWhile and dropWhile are defined in Chapter 17.
Prove the following properties using the proof methods illustrated in this chapter.

1. Prove for all x of some type and finite lists xs of the same type (i.e., the
singleton law):

[x] ++ xs = (x:xs)

2. Consider the definition for length given in the text of this chapter and
the following definition for len:

14



10.

len :: Int -> [a] -> Int
lenn [ ] =n -- len.1
len n (_:xs) len (n+1) xs -- len.2

Prove for any finite list xs: 1len 0 xs = length xs.
Prove for all finite lists xs and ys of the same type:
reverse (xs ++ ys) = reverse ys ++ reverse xs

Hint: The function reverse (calledreverse' in Chapter 14.) uses forward
recursion. Backward recursive definitions are generally easier to use in
inductive proofs. In Chapter 14., we also defined a backward recursive
function rev and proved that rev xs = reverse xs for all finite lists xs.
Thus, you may find it easier to substitute rev for reverse and instead
prove:

rev (xs ++ ys) = rev ys ++ rev xs

Prove for all finite lists xs of some type:
reverse (reverse xs) = Xs

Prove for all natural numbers m and n and all finite lists xs:
drop n (drop m xs) = drop (m+n) xs

Consider the rational number package from Chapter 7.. Prove for any
Rat value r that satisfied the interface invariant for the abstract module
RationalRep:

addRat r zeroRat = r = addRat zeroRat r

. Consider the two definitions for the Fibonacci function in Chapter 9. Prove

for any natural number n:
fibn = f£fib' n
Hint: First prove, for n > 2:
fib'' np q = fib'' (@2) p q + £fib'' (m-1) p q

Prove that the id function is the identity element for functional composition.
That is, for any function £ :: a -> b, prove:

f.id = £ = id . f

Prove that functional composition is associative. That is, for any function
f::a->ag::a->aandh :: a -> a, prove:

(f.g .h = f.(g.h

Prove for all finite lists xs and ys of the same type and function £ on that
type:

map f (xs ++ ys) = map f xs ++ map f ys

15



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Prove for all finite lists xs and ys of the same type and predicate p on
that type:

filter p (xs ++ ys) = filter p xs ++ filter p ys

Prove for all finite lists xs and ys of the same type and all predicates p on
that type:

all p (xs ++ ys) = (all p xs) && (all p ys)
The definition for && is as follows:

(&%) :: Bool -> Bool -> Bool
False && x = False -- second argument not evaluated
True && x = x -- second argument returned

Prove for all finite lists xs of some type and predicates p and q on that
type:
filter p (filter q xs) = filter q (filter p xs)

Prove for all finite lists xs and ys of the same type and for all functions £
and values a of compatible types:

foldr f a (xs ++ ys) = foldr f (foldr f a ys) xs

Prove for all finite lists xs of some type and all functions f and g of
conforming types:

map (f . g) xs = (map f . map g) xs

Prove for all finite lists of finite lists xss of some base type and function £
on that type:

map f (concat xss) = concat (map (map f) xss)

Prove for all finite lists xs of some type and functions £ on that type:
map £ xs = foldr ((:) .f) [] xs

Prove for all lists xs and predicates p on the same type:
takeWhile p xs ++ dropWhile p xs = xs

Prove that, if *** is an associative binary operation of type t -> t with
identity element z (i.e., a monoid), then:

foldr (#*%) z xs = foldl (¥**x) z xs

Consider the Haskell type for the natural numbers given in an exercise in
Chapter 21.

data Nat = Zero | Succ Nat
For the functions defined in that exercise, prove the following:

a. Prove that intToNat and natToInt are inverses of each other.

16



b. Prove that Zero is the (right and left) identity element for addNat.

c. Prove for any Nats x and y:

addNat (Succ x) y = addNat x (Succ y)
d. Prove associativity of addition on Nat’s. That is, for any Nats x, y,
and z:
addNat x (addNat y z) = addNat (addNat x y) z
e. Prove commutativity of addition on Nat’s. That is, for any Nats x
and y:
addNat x y = addNat y x
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