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23 Overloading and Type Classes
23.1 Chapter Introduction
Chapter 5introduced the concept of overloading. Chapters 13 and 21 introduced
the related concepts of type classes and instances.

The goals of this chapter (23) and a planned future chapter are to explore these
concepts in more detail.

The concept of type class was introduced into Haskell to handle the problem
of comparisons, but it has had a broader and more profound impact upon the
development of the language than its original purpose. This Haskell feature
has also had a significant impact upon the design of subsequent languages (e.g.,
Scala [12,16] and Rust [7,10,15]) and libraries.

TODO: This chapter, including the Introduction, should be revised after deciding
how to handle issues such as functors, monads, etc.

23.2 Polymorphism in Haskell
Chapter 5 surveyed the different kinds of polymorphism. Haskell implements
two of these kinds:

1. Parametric polymorphism (usually just called “polymorphism” in functional
languages), in which a single function definition is used for all types of
arguments and results.

For example, consider the function length :: [a] -> Int , which returns
the length of any finite list.

2. Overloading, in which the same name refers to different functions depending
upon the type.

For example, consider the (+) function, which can add any supported
number.

Chapter 13 examined parametric polymorphism. Chapter 21 introduced type
classes briefly in the context of algebraic data types. This chapter better motives
type classes and explores them more generally.

23.3 Why Overloading?
Consider testing for membership in a Boolean list, where eqBool is an equality-
testing function for Boolean values.

elemBool :: Bool -> [Bool] -> Bool
elemBool x [] = False
elemBool x (y:ys) = eqBool x y || elemBool x ys

We can define eqBool using pattern matching as follows:
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eqBool :: Bool -> Bool -> Bool
eqBool True False = False
eqBool False True = False
eqBool _ _ = True

The above is not very general. It works for booleans, but what if we want to
handle lists of integers? or of characters? or lists of lists of tuples?

The aspects of elemBool we need to generalize are the type of the input list and
the function that does the comparison for equality.

Thus let’s consider testing for membership of a general list, with the equality
function as a parameter.

elemGen :: (a -> a -> Bool) -> a -> [a] -> Bool
elemGen eqFun x [] = False
elemGen eqFun x (y:ys) = eqFun x y || elemGen eqFun x ys

This allows us to define elemBool in terms of elemGen as follows:

elemBool :: Bool -> [Bool] -> Bool
elemBool = elemGen eqBool

But really the function elemGen is too general for the intended function. Para-
meter eqFun could be any

a -> a -> Bool

function, not just an equality comparison.

Another problem is that equality is a meaningless idea for some data types.
For example, comparing functions for equality is a computationally intractable
problem.

The alternative to the above to make (==) (i.e., equality) an overloaded function.
We can then restrict the polymorphism in elem’s type signature to those types
for which (==) is defined.

We introduce the concept of type classes to to be able to define the group of
types for which an overloaded operator can apply.

We can then restrict the polymorphism of a type signature to a class by using a
context constraint as Eq a => is used below:

elem :: Eq a => a -> [a] -> Bool

We used context constraints in previous chapters. Here we examine how to define
the type classes and associate data types with those classes.

23.4 Defining an Equality Class and Its Instances
We can define class Eq to be the set of types for which we define the (==) (i.e.,
equality) operation.
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For example, we might define the class as follows, giving the type signature(s)
of the associated function(s) (also called the operations or methods of the class).

class Eq a where
(==) :: a -> a -> Bool

A type is made a member or instance of a class by defining the signature
function(s) for the type. For example, we might define Bool as an instance of
Eq as follows:

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

Other types, such as the primitive types Int and Char , can also be defined
as instances of the class. Comparison of primitive data types will often be
implemented as primitive operations built into the computer hardware.

An instance declaration can also be declared with a context constraint, such
as in the equality of lists below. We define equality of a list type in terms of
equality of the element type.

instance Eq a => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False

Above, the == on the left sides of the equations is the operation being defined
for lists. The x == y comparison on the right side is the previously defined
operation on elements of the lists. The xs == ys on the right side is a recursive
call of the equality operation for lists.

Within the class Eq , the (==) function is overloaded. The definition of (==)
given for the types of its actual operands is used in evaluation.

In the Haskell standard prelude, the class definition for Eq includes both the
equality and inequality functions. They may also have default definitions as
follows:

class Eq a where
(==), (/=) :: a -> a -> Bool
-- Minimal complete definition: (==) or (/=)
x /= y = not (x == y)
x == y = not (x /= y)

In the case of class Eq , inequality is defined as the negation of equality and vice
versa.

An instance declaration must override (i.e., redefine) at least one of these
functions (in order to break the circular definition), but the other function may
either be left with its default definition or overridden.
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23.5 Type Class Laws
Of course, our expectation is that any operation (==) defined for an instance of
Eq should implement an “equality” comparison. What does that mean?

In mathematics, we expect equality to be an equivalence relation. That is,
equality comparisons should have the following properties for all values x, y,
and z in the type’s set.

• Reflexivity: x == x is True.
• Symmetry: x == y if and only if y == x.
• Transitivity: if x == y and y == z, then x == z.

In addition, x /= y is expected to be equivalent to not (x == y) as defined in
the default method definition.

Thus class Eq has these type class laws that every instance of the class should
satisfy. The developer of the instance should ensure that the laws hold.

As in many circumstances, the reality of computing may differ a bit from
the mathematical ideal. Consider Reflexivity. If x is infinite, then it may be
impossible to implement x == x. Also, this property might not hold for floating
point number representations.

23.6 Another Example Class Visible

TODO: Perbhaps replace this example (which follows Thompson, ed. 2) with a
better one.

We can define another example class Visible, which might denote types whose
values can be displayed as strings. Method toString represents an element of
the type as a String. Method size yields the size of the argument as an Int.

class Visible a where
toString :: a -> String
size :: a -> Int

We can make various data types instances of this class:

instance Visible Char where
toString ch = [ch]
size _ = 1

instance Visible Bool where
toString True = "True"
toString False = "False"
size _ = 1

instance Visible a => Visible [a] where
toString = concat . map toString
size = foldr (+) 1 . map size
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What type class laws should hold for Visible?

There are no constraints on the conversion to strings. However, size must return
an Int, so the “size” of the input argument must be finite and bounded by the
largest value in type Int.

23.7 Class Extension (Inheritance)
Haskell supports the concept of class extension. That is, a new class can be
defined that inherits all the operations of another class and adds additional
operations.

For example, we can derive an ordering class Ord from the class Eq, perhaps as
follows. (The definition in the Prelude may differ from the following.)

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a
-- Minimal complete definition: (<) or (>)
x <= y = x < y || x == y
x < y = y > x
x >= y = x > y || x == y
x > y = y < x
max x y | x >= y = x

| otherwise = y
min x y | x <= y = x

| otherwise = y

With the above, we define Ord as a subclass of Eq; Eq is a superclass of Ord.

The above default method definitions are circular: < is defined in terms of > and
vice versa. So a complete definition of Ord requires that at least one of these be
given an appropriate definition for the type. Method == must, of course, also be
defined appropriately for superclass Eq.

What type class laws should apply to instances of Ord?

Mathematically, we expect an instance of class Ord to implement a total order
on its type set. That is, given the comparison operator (i.e., binary relation) <=,
then the following properties hold for all values x, y, and z in the type’s set.

• Reflexivity: x <= x is True.
• Antisymmetry: x <= y and y <= x, then x == y.
• Transitivity: if x <= y and y <= z, then x <= z.
• Trichotomy (comparability, totality): x <= y or y <= x.

A relation that satisfied the first three properties above is a partial order. The
fourth property requires that all values in the type’s set can be compared by <=.

In addition to the above laws, we expect == (and /=) to satisfy the Eq type class
laws and <, >, >=, max, and min to satisfy the properties (i.e., default method
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definitions) given in the class Ord declaration.

As an example, consider the function isort' (insertion sort), defined in a
previous chapter. It uses class Ord to constrain the list argument to ordered
data items.

isort' :: Ord a => [a] -> [a]
isort' [] = []
isort' (x:xs) = insert' x (isort' xs)

insert' :: Ord a => a -> [a] -> [a]
insert' x [] = [x]
insert' x (y:ys)

| x <= y = x:y:ys
| otherwise = y : insert' x ys

23.8 Multiple Constraints
Haskell also permits classes to be constrained by two or more other classes.

Consider the problem of sorting a list and then displaying the results as a string:

vSort :: (Ord a,Visible a) => [a] -> String
vSort = toString . isort'

To sort the elements, they need to be from an ordered type. To convert the
results to a string, we need them to be from a Visible type.

The multiple contraints can be over two different parts of the signature of a
function. Consider a program that displays the second components of tuples if
the first component is equal to a given value:

vLookupFirst :: (Eq a,Visible b) => [(a,b)] -> a -> String
vLookupFirst xs x = toString (lookupFirst xs x)

lookupFirst :: Eq a => [ (a,b) ] -> a -> [b]
lookupFirst ws x = [ z | (y,z) <- ws, y == x ]

Multiple constraints can occur in an instance declaration, such as might be used
in extending equality to cover pairs:

instance (Eq a,Eq b) => Eq (a,b) where
(x,y) == (z,w) = x == z && y == w

Multiple constraints can also occur in the definition of a class, as might be the
case in definition of an ordered visible class.

class (Ord a,Visible a) => OrdVis a

vSort :: OrdVis a => [a] -> String
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The case where a class extends two or more classes, as above for OrdVis is called
multiple inheritance.

Instances of class OrdVis must satisfy the type class laws for classes Ord and
Visible.

23.9 Built-In Haskell Classes
See Section 6.3 of the Haskell 2010 Language Report [9:6.3] for discussion of the
various classes in the Haskell Prelude library.

23.10 Comparison to Other Languages
Let’s compare Haskell concept of type class with the class concept in familiar
object-oriented languages such as Java and C++.

• In Haskell, a class is a collection of types. In Java and C++, class and
type are similar concepts.

For example, Java’s static type system treats the collection of objects
defined with a class construct as a (nominal) type. A class can be used
to implement a type. However, it is possible to implement classes whose
instances can behave in ways outside the discipline of the type (i.e., not
satisfy the Liskov Substitution Principle [8,19]).

• Haskell classes are similar in concept to Java and C++ abstract classes
except that Haskell classes have no data fields. (There is no multiple
inheritance from classes in Java, of course.)

• Haskell classes are similar in concept to Java interfaces. Haskell classes
can give default method definitions, a feature that was only added in Java
8 and beyond.

• Instances of Haskell classes are types, not objects. They are somewhat like
concrete Java or C++ classes that extend abstract classes or concrete Java
classes that implement Java interfaces.

• Haskell separates the definition of a type from the definition of the methods
associated with that type. A class in Java or C++ usually defines both a
data structure (the member variables) and the functions associated with
the structure (the methods). In Haskell, these definitions are separated.

• The methods defined by a Haskell class correspond to the instance methods
in Java or virtual functions in a C++ class. Each instance of a class
provides its own definition for each method; class defaults correspond
to default definitions for a virtual function in the base class. Of course,
Haskell class instances do not have implicit receiver object or mutable data
fields.
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• Methods of Haskell classes are bound statically at compile time, not
dynamically bound at runtime as in Java.

• C++ and Java attach identifying information to the runtime representation
of an object. In Haskell, such information is attached logically instead of
physically to values through the type system.

• Haskell does not support the C++ overloading style in which functions
with different types share a common name.

• The type of a Haskell object cannot be implicitly coerced; there is no
universal base class such as Java’s Object which values can be projected
into or out of.

• There is no access control (such as public or private class constituents)
built into the Haskell class system. Instead, the module system must be
used to hide or reveal components of a class. In that sense, it is similar to
the object-oriented language Component Pascal [1,18] (which is a variant
of Oberon-2 [11]) and to the imperative systems programming language
Rust [[7]; McNamara2021; [15]].

Type classes first appeared in Haskell, but similar concepts have been imple-
mented in more recently designed languages.

• The imperative systems programming language Rust [[7]; McNamara2021;
[15] supports traits, a limited form of type classes.

• The object-functional hybrid language Scala[12,16] has implicit classes and
parameters, which enable a type enrichment programming idiom similar
to type classes.

• The functional language PureScript [5,13] supports Haskell-like type classes.

• The dependently typed functional language Idris [2,3] supports interfaces,
which are, in some ways, a generalization of Haskell’s ty.pe classes.

• Functional JavaScript libraries such as Ramda [14] have type class-like
features.

23.11 What Next?
This chapter (23) motivated and explored the concepts of overloading, type
classes, and instances in Haskell and compared them to features in other lan-
guages.

Chapter 24 further explores the profound impact of type classes on Haskell.

23.12 Chapter Source Code
The source code for this chapter is in file TypeClassMod.hs.
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23.13 Exercises
TODO

23.14 Acknowledgements
In Spring 2017, I adapted and revised this chapter from my previous notes on
this topic [4]. I based the previous notes, in part, on the presentations in:

• Chapter 12 of the Second edition of Simon Thompson’s textbook Haskell:
The Craft of Functional Programming [17]

• Section 5 of A Gentle Introduction to Haskell Version 98 [6]

For new content on Haskell typeclass laws, I read the discussions of typeclass
laws on:

• Typeclassopedia [26]

• StackOverflow

• Reddit

I also reviewed the mathematical definitions of equality, equivalence relations,
and total orders on sites as Wolfram MathWorld [23,24,and 25] and Wikipedia
[20–22].

In Summer and Fall 2017, I continued to develop this work as Chapter 9,
Overloading and Type Classes, of my 2017 Haskell-based programming languages
textbook.

In Summer 2018, I divided the Overloading and Type Classes chapter into two
chapters in the 2018 version of the textbook, now titled Exploring Languages
with Interpreters and Functional Programming. Most of the existing content
became Chapter 23, Overloading and Type Classes. I moved the planned content
on advanced type class topics (functors, monads) to a planned future chaper.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

23.15 Terms and Concepts
Polymorphism in Haskell (parametric polymorphism, overloading); Haskell type
system concepts (type classes, overloading, instances, signatures, methods, de-
fault definitions, context constraints, class extension, inheritance, subclass,
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superclass, overriding, multiple inheritance, class laws) versus related Java/C++
type system concepts (abstract and concrete classes, objects, inheritance, in-
terfaces); mathematical concepts (equivalence relation, reflexivity, symmetry,
antisymmetry, transitivity, trichotomy, total and partial orders).
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