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21 Algebraic Data Types
21.1 Chapter Introduction
The previous chapters have primarily used Haskell’s primitive types along with
tuples, lists, and functions.

The goals of this chapter (21) are to:

• describe how to define and use of Haskell’s (user-defined) algebraic data
types

• introduce improvements in error-handling using Maybe and Either types

• present a few larger programming projects

Algebraic data types enable us to conveniently leverage the power of the type
system to write safe programs. We extensively these in the remainder of this
textbook.

The Haskell source module for this chapter is in file AlgDataTypes.hs.

TODO: It might be better to factor the source code into multiple files.

21.2 Concepts
An algebraic data type [4,27,30] is a type formed by combining other types,
that is, it is a composite data type. The data type is created by an algebra of
operations of two primary kinds:

• a sum operation that constructs values to have one variant among several
possible variants. These sum types are also called tagged, disjoint union,
or variant types.

The combining operation is the alternation operator, which denotes the
choice of one but not both between two alternatives.

• a product operation that combines several values (i.e., fields) together to
construct a single value. These are tuple and record types.

The combining operation is the Cartesian product from set theory.

We can combine sums and products recursively into arbitrarily large structures.

An enumerated type is a sum type in which the constructors take no arguments.
Each constructor corresponds to a single value.

Aside: ADT confusion

Although sometimes the acronym ADT is used for both, an algebraic data type
is a different concept from an abstract data type [14,29].

• We specify an algebraic data type with its syntax (i.e., structure)—with
rules on how to compose and decompose them.
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• We specify an abstract data type with its semantics (i.e., meaning)—with
rules about how the operations behave in relation to one another.

The modules we build with abstract interfaces, contracts, and data ab-
straction, such as the Rational Arithmetic modules from Chapter 7, are
abstract data types.

Perhaps to add to the confusion, in functional programming we sometimes use
an algebraic data type to help define an abstract data type. We do this in
the Carrie’s Candy Bowl project at the end of this chapter. We consider these
techniques more fully in Chapter 22.

21.3 Haskell Algebraic Data Types
21.3.1 Declaring data types

In addition to the built-in data types we have discussed, Haskell also allows the
definition of new data types using declarations of the form:

data Datatype a1 a2 · · · an = Cnstr1 | Cnstr2 | · · · | Cnstrm

where:

• Datatype is the name of a new type constructor of arity n (n ≥ 0). As
with the built-in types, the name of the data type must begin with an
uppercase letter.

• a1 , a2 , · · · an are distinct type variables representing the n parameters
of the data type. These begin with lowercase letters (by convention at the
beginning of the alphabet).

• Cnstr1 , Cnstr2 , · · ·, Cnstrm are the m (m ≥ 1$) data constructors
that describe the ways in which the elements of the new data type are
constructed. These begin with uppercase letters.

The data definition can also end with an optional deriving that we discuss
below.

21.3.2 Declaring type Color

For example, consider a new data type Color whose possible values are the
colors on the flag of the USA. The names of the data constructors (the color
constants in this case) must also begin with capital letters.

data Color = Red | White | Blue
deriving (Show, Eq)

Color is an example of an enumerated type, a sum type that consists of a
finite sequence of nullary (i.e., the arity—number of parameters—is zero) data
constructors.
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We can use the type and data constructor names defined with data in declarations,
patterns, and expressions in the same way that the built-in types can be used.

isRed :: Color -> Bool
isRed Red = True
isRed _ = False

Data constructors can also have associated values. For example, the constructor
Grayscale below takes an integer value.

data Color' = Red' | Blue' | Grayscale Int
deriving (Show, Eq)

Constructor Grayscale implicitly defines a constructor function with the type.

21.3.3 Deriving class instances

The optional deriving clauses in the above definitions of Color and Color'
are very useful. They declare that these new types are automatically added as
instances of the type classes listed.

Note: Chapter 23 explores the concepts of type class, instance, and overloading
in more depth.

In the above cases, Show and Eq enable objects of type Color to be converted to
a String and compared for equality, respectively.

The Haskell compiler derives the body of an instance syntactically from the
data type declaration. It can derive instances for classes Eq, Ord, Enum, Bounded,
Read, and Show.

The derived instances of type class Eq include the (==) and (/=) methods.

Type class Ord extends Eq. In addition to (==) and (/=), a derived instance
of Ord also includes the compare, (<), (<=), (>), (>=), max, and min methods.
The ordered comparison operators use the order of the constructors given in
the data statement, from smallest to largest, left to right. These comparison
operators are strict in both arguments.

Similarly, a derived Enum instance assigns successive integers to the constructors
increasing from 0 at the left. In addition to this, a derived instance of Bounded
assigns minBound to the leftmost and maxBound to the rightmost.

The derived Show instance enables the function show to convert the data type
to a syntactically correct Haskell expression consisting of only the constructor
names, parentheses, and spaces. Similarly, Read enables the function read to
parse such a string into a value of the data type.

For example, the data type Bool might be defined as:

data Bool = False | True
deriving (Ord, Show)

5



Thus False < True evaluates to True and False > True evaluates to False.
If x == False, then show x yields the string False.

21.3.4 Exploring more example types

Consider a data type Point that has a type parameter. The following defines a
polymorphic type; both of the values associated with the constructor Pt must
be of type a. Constructor Pt implicitly defines a constructor function of type
a -> a -> Point a.

data Point a = Pt a a
deriving (Show, Eq)

As another example, consider a polymorphic set data type that represents a set
as a list of values as follows. Note that the name Set is used both as the type
constructor and a data constructor. In general, we should not use a symbol in
multiple ways. It is acceptable to double use only when the type has only one
constructor.

data Set a = Set [a]
deriving (Show, Eq)

Now we can write a function makeSet to transform a list into a Set. This
function uses the function nub from the Data.List module to remove duplicates
from a list.

makeSet :: Eq a => [a] -> Set a
makeSet xs = Set (nub xs)

As we have seen previously, programmers can also define type synonyms. As in
user-defined types, synonyms may have parameters. For example, the following
might define a matrix of some polymorphic type as a list of lists of that type.

type Matrix a = [[a]]

We can also use special types to encode error conditions. For example, suppose
we want an integer division operation that returns an error message if there is
an attempt to divide by 0 and returns the quotient otherwise. We can define
and use a union type Result as follows:

data Result a = Ok a | Err String
deriving (Show, Eq)

divide :: Int -> Int -> Result Int
divide _ 0 = Err "Divide by zero"
divide x y = Ok (x `div` y)

Then we can use this operation in the definition of another function f that
returns the maximum Int value maxBound when a division by 0 occurs.
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f :: Int -> Int -> Int
f x y = return (divide x y)

where return (Ok z) = z
return (Err s) = maxBound

The auxiliary function return can be avoided by using the Haskell case expres-
sion as follows:

f' x y =
case divide x y of

Ok z -> z
Err s -> maxBound

This case expression evaluates the expression divide x y, matches its result
against the patterns of the alternatives, and returns the right-hand-side of the
first matching patter.

Later in this chapter we discuss the Maybe and Either types, two polymorphic
types for handling errors defined in the Prelude.

21.4 Recursive Data Types
Types can also be recursive.

21.4.1 Defining a binary tree type

For example, consider the user-defined type BinTree, which defines a binary
tree with values of a polymorphic type.

data BinTree a = Empty | Node (BinTree a) a (BinTree a)
deriving (Show, Eq)

This data type represents a binary tree with a value in each node. The tree is
either “empty” (denoted by Empty) or it is a “node” (denoted by Node) that
consists of a value of type a and “left” and “right” subtrees. Each of the subtrees
must themselves be objects of type BinTree.

Thus a binary tree is represented as a three-part “record” as shown in on the
left side of Figure 21.1. The left and right subtrees are represented as nested
binary trees. There are no explicit “pointers”.

Consider a function flatten to return the list of the values in binary tree in the
order corresponding to a left-to-right in-order traversal. Thus expression

flatten (Node (Node Empty 3 Empty) 5
(Node (Node Empty 7 Empty) 1 Empty))

yields [3,5,7,1].

flatten :: BinTree a -> [a]
flatten Empty = []
flatten (Node l v r) = flatten l ++ [v] ++ flatten r
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Figure 21.1: Binary tree BinTree.

The second leg of flatten requires two recursive calls. However, as long as
the input tree is finite, each recursive call receives a tree that is simpler (3.g.,
shorter) than the input. Thus all recursions eventually terminate when flatten
is called with an Empty tree.

Function flatten can be rendered more efficiently using an accumulating para-
meter and cons as in the following:

flatten' :: BinTree a -> [a]
flatten' t = inorder t []

where inorder Empty xs = xs
inorder (Node l v r) xs =

inorder l (v : inorder r xs)

Auxiliary function inorder builds up the list of values from the right using cons.

To extend the example further, consider a function treeFold that folds an
associative operation op with identity element i through a left-to-right in-order
traversal of the tree.

treeFold :: (a -> a -> a) -> a -> BinTree a -> a
treeFold op i Empty = i
treeFold op i (Node l v r) = op (op (treeFold op i l) v)

(treeFold op i r)

21.4.2 Exporting types from modules

If an algebraic data type is defined in a module, we can export the type and
make it available to users of the module. Suppose the BinTree type and the
functions above are defined in a Haskell module named BinaryTrees. Then the
following module header would export the type BinTree, the three explicitly
defined functions, and the functions generated for the Eq and Show classes.

module BinaryTrees
( BinTree, flatten, flatten', treeFold )
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where -- implementation details of type and functions

This module definition makes the type BinTree and its two constructors Node
and Empty available for use in a module that imports BinaryTrees.

If we want to make the type BinTree available but not its constructors, we can
use the following module header:

module BinaryTrees
( BinTree(..), flatten, flatten', treeFold )

where -- implementation details of type and functions

With BinTree(..) in the export list, BinTree values can only be constructed
and examined by functions defined in the module (including the automatically
generated functions). Outside the module, the BinTree values are “black boxes”
that can be passed around or stored.

If the BinaryTrees module is designed and implemented as an information-
hiding module as described in Chapter 7, then we also call this an abstract data
type. We discuss these data abstractions in more detail in Chapter 22.

21.4.3 Defining an alternative binary tree type

Now let’s consider a slightly different formulation of a binary tree: a tree in
which values are only stored at the leaves.

data Tree a = Leaf a | Tree a :ˆ: Tree a
deriving (Show, Eq)

This definition introduces the constructor function name Leaf as the constructor
for leaves and the infix construction operator “:ˆ:” as the constructor for internal
nodes of the tree. (A constructor operator symbol must begin with a colon.)

These constructors allow such trees to be defined conveniently. For example, the
tree

((Leaf 1 :ˆ: Leaf 2) :ˆ: (Leaf 3 :ˆ: Leaf 4))

generates a complete binary tree with height 3 and the integers 1, 2, 3, and 4 at
the leaves.

Suppose we want a function fringe, similar to function flatten above, that
displays the leaves in a left-to-right order. We can write this as:

fringe :: Tree a -> [a]
fringe (Leaf v) = [v]
fringe (l :ˆ: r) = fringe l ++ fringe r

As with flatten and flatten' above, function fringe can also be rendered
more efficiently using an accumulating parameter as in the following:

fringe' :: Tree a -> [a]
fringe' t = leaves t []
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where leaves (Leaf v) = ((:) v)
leaves (l :ˆ: r) = leaves l . leaves r

Auxiliary function leaves builds up the list of leaves from the right using cons.

21.5 Error-handling with Maybe and Either

Before we examine Maybe and Either, let’s consider a use case.

21.5.1 Handling null references

An association list is a list of pairs in which the first component is some key
(e.g., a string) and the second component is the value associated with that key.
It is a simple form of a map or dictionary data structure.

Suppose we have an association list that maps the name of a student (a key) to
the name of the student’s academic advisor (a value). The following function
lookup' carries out the search recursively.

lookup' :: String -> [(String,String)] -> String
lookup' key ((x,y):xys)

| key == x = y
| otherwise = lookup' key xys

But what do we do when the key is not in the list (e.g., the list is empty)? How
do we define a leg for lookup' key [] ?

1. Leave the function undefined for that pattern?

In this case, evaluation will halt with a “non-exhaustive pattern” error
message.

2. Put in an explicit error call with a custom error message?

3. Return some default value of the advisor such as "NONE"?

4. Return a null reference?

The first two approaches either halt the entire program or require use of the
exception-handling mechanism. However, in any language, both abnormal
termination and exceptions should be avoided except in cases in which the
program is unable to continue. The lack of an assignment of a student to an
advisor is likely not such an extraordinary situation.

Exceptions break referential transparency and, hence, negate many of the ad-
vantages of purely functional languages such as Haskell. In addition, Haskell
programs can only catch exceptions in IO programs (i.e., the outer layers that
handle input/output).

The third approach only works when there is some value that is not valid. This
is not a very general approach.
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The fourth approach, which is not available in Haskell, can be an especially
unsafe programming practice. British computing scientist Tony Hoare, who
introduced the null reference into the Algol type system in the mid-1960s, calls
that his “billion dollar mistake” [17] because it “has led to innumerable errors,
vulnerabilities, and system crashes”.

What is a safer, more general approach than these?

21.5.2 Introducing Maybe and Either

Haskell includes the union type Maybe (from the Prelude and Data.Maybe) which
can be used to handle such cases.

data Maybe a = Nothing | Just a
deriving (Eq, Ord)

The Maybe algebraic data type encapsulates an optional value. A value of type
Maybe a either contains a value of type a (represented by Just a) or it is empty
(represented by Nothing).

The Maybe type is a good way to handle errors or exceptional cases without
resorting to an error call.

Now we can define a general version of lookup' using a Maybe return type. (This
is essentially function lookup from the Prelude.)

lookup'' :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup'' key [] = Nothing
lookup'' key ((x,y):xys)

| key == x = Just y
| otherwise = lookup'' key xys

Suppose advisorList is an association list pairing students with their advisors
and defaultAdvisor is the advisor the student should consult if no advisor is
officially assigned. We can look up the advisor with a call to lookup and then
pattern match on the Maybe value returned. (Here we use a case expression.)

whoIsAdvisor :: String -> String
whoIsAdvisor std =

case lookup std advisorList of
Nothing -> defaultAdvisor
Just prof -> prof

The whoIsAdvisor function just returns a default value in place of Nothing.
The function

fromMaybe :: a -> Maybe a -> a

supported by the Data.Maybe library has the same effect. Thus we can rewrite
whoIsAdvisor as follows:
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whoIsAdvisor' std =
fromMaybe defaultAdvisor $ lookup std advisorList

Alternatively, we could use Data.Maybe functions such as:

isJust :: Maybe a -> Bool
isNothing :: Maybe a -> Bool
fromJust :: Maybe a -> a -- error if Nothing

This allows us to rewrite whoIsAdvisor as follows:

whoIsAdvisor'' std =
let ad = lookup std advisorList
in if isJust ad then fromJust ad else defaultAdvisor

If we need more fine-grained error messages, then we can use the union type
Either defined as follows:

data Either a b = Left a | Right b
deriving (Eq, Ord, Read, Show)

The Either a b type represents values with two possibilities: a Left a or
Right b. By convention, a Left constructor usually contains an error message
and a Right constructor a correct value.

As with fromMaybe, we can use similar fromRight and fromLeft functions from
the Data.Either library to extract the Right or Left values or to return a
default value when the value is represented by the other constructor.

fromLeft :: a -> Either a b -> a
fromRight :: b -> Either a b -> b

Library module Data.Either also includes functions to query for the presence
of the two constructors.

isLeft :: Either a b -> Bool
isRight :: Either a b -> Bool

21.5.3 Considering other languages

Most recently designed languages include a maybe or option type [33]. Scala
[20,25] has an Option case class [5:4,10], Rust [19,24] has an Option enum, and
Swift has an Optional class, all of which are similar to Haskell’s Maybe. The
functional languages Idris [2,3], Elm [13,15], and PureScript [16,21] also have
Haskell-like Maybe algebraic data types.

The concept of nullable type [31] is closely related to the option type. Several
older languages support this concept (e.g., Optional in Java 8, None in Python
[22,23], and ? type annotations in C#).

When programming in an object-oriented language that does not provide an
option/maybe type, a programmer can often use the Null Object design pattern
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[26,32,34] to achieve a similar result. This well-known pattern seeks to “encapsu-
late the absence of an object by providing a substitutable alternative that offers
suitable default do nothing behavior” [26]. That is, the object must be of the
correct type. It must be possible to apply all operations on that type to the
object, but the operations should have neutral behaviors, with no side effects.
The null object should actively do nothing!

21.6 What Next?
This chapter (21) added Haskell’s algebraic data types to our programming
toolbox. Chapter 22 sharpens the data abstraction tools introduced in Chapter
7 by using algebraic data types from this chapter. Chapter 23 adds type classes
and overloading to the toolbox.

The remainder of this chapter includes a number of larger exercises and projects.

21.7 Chapter Source Code
The Haskell source module for this chapter is in file AlgDataTypes.hs.

21.8 Exercises
1. For trees of type Tree, implement a tree-folding function similar to

treeFold.

2. For trees of type BinTree, implement a version of treeFold that uses an
accumulating parameter. (Hint: foldl.)

3. In a binary search tree all values in the left subtree of a node are less than
the value at the node and all values in the right subtree are greater than
the value at the node.

Given binary search trees of type BinTree, implement the following Haskell
functions:

a. makeTree that takes a list and returns a perfectly balanced (i.e., mini-
mal height) BinTree such that flatten (makeTree xs) = sort xs.
Prelude function sort returns its argument rearranged into ascending
order.

b. insertTree that takes an element and a BinTree and returns the
BinTree with the element inserted at an appropriate position.

c. elemTree that takes an element and a BinTree and returns True if
the element is in the tree and False otherwise.

d. heightTree that takes a BinTree and returns its height. Assume
that height means the number of levels in the tree. (A tree consisting
of exactly one node has a height of 1.)

13
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e. mirrorTree that takes a BinTree and returns its mirror image. That
is, it takes a tree and returns the tree with the left and right subtrees
of every node swapped.

f. mapTree that takes a function and a BinTree and returns the BinTree
of the same shape except each node’s value is computed by applying
the function to the corresponding value in the input tree.

g. showTree that takes a BinTree and displays the tree in a parenthe-
sized, left-to-right, in-order traversal form. (That is, the traversal of
a tree is enclosed in a pair of parentheses, with the traversal of the
left subtree followed by the traversal of the right subtree.)

Extend the package to support both insertion and deletion of elements.
Keep the tree balanced using a technique such the AVL balancing algorithm.

4. Implement the package of functions described in the previous exercise for
the data type Tree.

5. Each node of a general (i.e., multiway) tree consists of a label and a list of
(zero or more) subtrees (each a general tree). We can define a general tree
data type in Haskell as follows:

data Gtree a = Node a [Gtree a]

For example, tree (Node 0 [ ]) consists of a single node with label 0;
a more complex tree Node 0 [Node 1 [ ], Node 2 [ ], Node 3 []]
consists of root node with three single-node subtrees.

Implement a “map” function for general trees, i.e., write Haskell function

mapGtree :: (a -> b) -> Gtree a -> Gtree b

that takes a function and a Gtree and returns the Gtree of the same
shape such that each label is generated by applying the function to the
corresponding label in the input tree.

6. We can introduce a new Haskell type for the natural numbers (i.e., non-
negative integers) with the statement

data Nat = Zero | Succ Nat

where the constructor Zero represents the value 0 and constructor Succ
represents the “successor function” from mathematics. Thus (Succ Zero)
denotes 1, (Succ (Succ Zero)) denotes 2, and so forth. Implement the
following Haskell functions.

a. intToNat that takes a nonnegative Int and returns the equivalent
Nat, for example, intToNat 2 returns Succ (Succ Zero).

b. natToInt that takes a Nat and returns the equivalent value of type
Int, for example, natToInt Succ (Succ Zero) returns 2.
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c. addNat that takes two Nat values and returns their sum as a Nat.
This function cannot use integer addition.

d. mulNat that takes two Nat values and returns their product as a Nat.
This function cannot use integer multiplication or addition.

e. compNat that takes two Nat values and returns the value -1 if the first
is less than the second, 0 if they are equal, and 1 if the first is greater
than the second. This function cannot use the integer comparison
operators.

7. Consider the following Haskell data type for representing sequences (i.e.,
lists):

data Seq a = Nil | Att (Seq a) a

Nil represents the empty sequence. Att xz y represents the sequence in
which last element y is “attached” at the right end of the initial sequence
xz.

Note that Att is similar to the ordinary “cons” (:) for Haskell lists ex-
cept that elements are attached at the opposite end of the sequences.
(Att (Att (Att Nil 1) 2) 3) represents the same sequence as the ordi-
nary list (1:(2:(3:[]))).

Implement Haskell functions for the following operations on type Seq. The
operations are analogous to the similarly named operations on the built-in
Haskell lists.

a. lastSeq takes a nonempty Seq and returns its last (i.e., rightmost)
element.

b. initialSeq takes a nonempty Seq and returns its initial sequence
(i.e., sequence remaining after the last element removed).

c. lenSeq takes a Seq and returns the number of elements that it
contains.

d. headSeq takes a nonempty Seq and returns its head (i.e., leftmost)
element.

e. tailSeq takes a nonempty Seq and returns the Seq remaining after
the head element is removed.

f. conSeq that takes an element and a Seq and returns a Seq with the
argument element as its head and the Seq argument as its tail.

g. appSeq takes two arguments of type Seq and returns a Seq with the
second argument appended after the first.

h. revSeq takes a Seq and returns the Seq with the same elements in
reverse order.
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i. mapSeq takes a function and a Seq and returns the Seq resulting from
applying the function to each element of the sequence in turn.

j. filterSeq that takes a predicate and a Seq and returns the Seq
containing only those elements that satisfy the predicate.

k. listToSeq takes an ordinary Haskell list and returns the Seq with the
same values in the same order (e.g., headSeq (listToSeq xs) = head xs
for nonempty xs.)

l. seqToList takes a Seq and returns the ordinary Haskell list with the
same values in the same order (e.g., head (seqToList xz) = headSeq xz
for nonempty xz.)

8. Consider the following Haskell data type for representing sequences (i.e.,
lists):

data Seq a = Nil | Unit a | Cat (Seq a) (Seq a)

The constructor Nil represents the empty sequence; Unit represents a
single-element sequence; and Cat represents the “concatenation” (i.e.,
append) of its two arguments, the second argument appended after the
first.

Implement Haskell functions for the following operations on type Seq. The
operations are analogous to the similarly named operations on the built-in
Haskell lists. (Do not convert back and forth to lists.)

a. toSeq that takes a list and returns a corresponding Seq that is
balanced.

b. fromSeq that takes a Seq and returns the corresponding list.

c. appSeq that takes two arguments of type Seq and returns a Seq with
the second argument appended after the first.

d. conSeq that takes an element and a Seq and returns a Seq with the
argument element as its head and the Seq argument as its tail.

e. lenSeq that takes a Seq and returns the number of elements that it
contains.

f. revSeq that takes a Seq and returns a Seq with the same elements
in reverse order.

g. headSeq that takes a nonempty Seq and returns its head (i.e., leftmost
or front) element. (Be careful!)

h. tailSeq that takes a nonempty Seq and returns the Seq remaining
after the head is removed.

i. normSeq that takes a Seq and returns a Seq with unnecessary embed-
ded Nil values removed. (For example, normSeq (Cat (Cat Nil (Unit 1)) Nil)
returns (Unit 1).)
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j. eqSeq that takes two Seq “trees” and returns True if the sequences
of values are equal and returns False otherwise. Note that two Seq
“trees” may be structurally different yet represent the same sequence
of values.

For example, (Cat Nil (Unit 1)) and (Cat (Unit 1) Nil) have
the same sequence of values (i.e., [1]). But (Cat (Unit 1) (Unit 2))
and (Cat (Unit 2) (Unit 1)) do not represent the same sequence
of values (i.e., [1,2] and [2,1], respectively).

Also (Cat (Cat (Unit 1) (Unit 2)) (Unit 3)) has the same
sequence of values as (Cat (Cat (Unit 1) (Unit 2)) (Unit 3))
(i.e., [1,2,3]).

In general what are the advantages and disadvantages of representing lists
this way?

21.9 Carrie’s Candy Bowl Project
21.9.1 Problem description and initial design

Carrie, the Department’s Administrative Assistant, has a candy bowl on her
desk. Often she fills this bowl with candy, but the contents are quickly consumed
by students, professors, and staff members. At a particular point in time, the
candy bowl might contain several different kinds of candy with one or more
pieces of each kind or it might be empty. Over time, the kinds of candy in the
bowl varies.

In this project, we model the candy, the candy bowl, and the “operations” that
can be performed on the bowl and develop it as a Haskell module.

What about the candy?

In general, we want to be able to identify how many pieces of candy we have of
a particular kind (e.g., we may have two Snickers bars and fourteen Hershey’s
Kisses) but do not need to distinguish otherwise between the pieces. So distinct
identifiers for the different kinds of candy should be sufficient.

We can represent the different kinds of candy in several different ways. We could
use strings, integer codes, the different values of an enumerated type, etc. In
different circumstances, we might want to use different representations.

Thus we model the kinds of candy to be a polymorphic parameter of the candy
bowl. However, we can contrain the polymorphism on the kinds of candy to be a
Haskell type that can be compared for equality (i.e., in class Eq) and converted
to a string so that it can be displayed (i.e., in class Show).

What about the candy bowl itself?

A candy bowl is some type of collection of pieces of candy with several possible
representations. We could use a list (either unordered) of the pieces of candy,
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an association list (unordered or ordered) pairing the kinds of candy with the
numbers of pieces of each, a Data.Map structure (from the Haskell library), or
some other data structure.

Thus we want to allow the developers of the candy bowl to freely choose whatever
representation they wish or perhaps to provide several different implementations
with the same interface. We will leave this hidden inside the Haskell module
that implements an abstract data type.

Thus, a Haskell module that implements the candy bowl can define a polymophic
algebraic data type CandyBowl a and export its name, but not export the
implementation details (i.e., the constructors) of the type. For example, a
represenation built around a list of kinds of candy could be defined as:

data CandyBowl a = Bowl [a]

Or a representation using an association list can be defined as:

data CandyBowl a = Bowl [(a,Int)]

Thus, to export the CandyBowl but hide the details of the representation, the
module would have a header such as:

module CarrieCandyBowl
( CandyBowl(..), -- function names exported
)

where -- implementation details of type and functions

Some of the possible representations require the ability to order the types of
candy in some way. Thus, we further constrain the polymorphic type parameter
to class Ord instead of simply Eq. (Above, we also constrained it to class Show.)

21.9.2 Carrie’s Candy Bowl project exercises

Your task for this project to develop a Haskell module CarrieCandyBowl (in a
file CarrieCandyBowl.hs), as described above. You must choose an appropriate
internal representation for the data type CandyBowl and implement the public
operations (functions) defined below. In addition to exporting the public func-
tions and data type name, the module may contain whatever other internal data
and function definitions needed for theimplemenation.

An initial Haskell source code for this project is in file CarrieCandyBowl_skeleton.hs.

You may use a function you have completed to implement other functions in the
list (as long as you do not introduce circular definitions).

1. newBowl :: (Ord a,Show a) => CandyBowl a
creates a new empty candy bowl.

2. isEmpty :: (Ord a,Show a) => CandyBowl a -> Bool
returns True if and only if the bowl is empty.

18

CarrieCandyBowl_skeleton.hs


3. putIn :: (Ord a,Show a) => CandyBowl a -> a -> CandyBowl a
adds one piece of candy of the given kind to the bowl.

For example, if we use strings to represent the kinds, then

putIn bowl "Kiss"

adds one piece of candy of kind "Kiss" to the bowl.

4. has :: (Ord a,Show a) => CandyBowl a -> a -> Bool
returns True if and only if one or more pieces of the given kind of candy is
in the bowl.

5. size :: (Ord a,Show a) => CandyBowl a -> Int
returns the total number of pieces of candy in the bowl (regardless of kind).

6. howMany :: (Ord a,Show a) => CandyBowl a -> a -> Int
returns the count of the given kind of candy in the bowl.

7. takeOut :: (Ord a,Show a) => CandyBowl a -> a -> Maybe (CandyBowl a)
attempts to remove one piece of candy of the given kind from the bowl
(so it can be eaten). If the bowl contains a piece of the given kind, the
function returns the value Just bowl, where bowl is the bowl with the
piece removed. If the bowl does not contain such a piece, it returns the
value Nothing.

8. eqBowl :: (Ord a,Show a) => CandyBowl a -> CandyBowl a -> Bool
returns True if and only if the two bowls have the same contents (i.e., the
same kinds of candy and the same number of pieces of each kind).

9. inventory :: (Ord a,Show a) => CandyBowl a -> [(a,Int)]
returns a Haskell list of pairs (k,n), where each kind k of candy in the
bowl occurs once in the list with n > 0. The list should be arranged in
ascending order by kind.

For example, if there are two "Snickers" and one "Kiss" in the bowl, the
list returned would be [("Kiss",1),("Snickers",2)].

10. restock :: (Ord a,Show a) => [(a,Int)] -> CandyBowl a
creates a new bowl such that for any bowl:

eqBowl (restock (inventory bowl)) bowl == True

11. combine :: (Ord a,Show a) => CandyBowl a -> CandyBowl a -> CandyBowl a
pours the two bowls together to form a new “larger” bowl.

12. difference :: (Ord a,Show a) => CandyBowl a -> CandyBowl a -> CandyBowl a
returns a bowl containing the pieces of candy in the first bowl that are not
in the second bowl.

For example, if the first bowl has four "Snickers" and the second has one
"Snickers", then the result will have three "Snickers".
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13. rename :: (Ord a,Show a) => CandyBowl a -> (a -> b) -> CandyBowl b
takes a bowl and a renaming function, applies the renaming function to all
the kind values in the bowl, and returns the modified bowl.

For example, for some mysterious reason, we might want to reverse the
strings for the kind names: f xs = reverse xs. Thus "Kiss" would
become "ssiK". Then rename f bowl would do the reversing of all the
names.

21.9.3 Candy Bowl alternative exercises

TODO: Maybe specify reimplentations with a different data rep, perhaps requir-
ing a map.

21.10 Sandwich DSL Project
21.10.1 Project Introduction

Few computer science graduates will design and implement a general-purpose
programming language during their careers. However, many graduates will
design and implement—and all likely will use—special-purpose languages in their
work.

These special-purpose languages are often called domain-specific languages (or
DSLs) [11]. (For more discussion of the DSL concepts, terminology, and tech-
niques, see the introductory chapter of the Notes on Domain-Specific Languages
[11].)

In this project, we design and implement a simple internal DSL [11]. This DSL
describes simple “programs” using a set of Haskell algebraic data types. We
express a program as an abstract syntax tree (AST) [11] using the DSLs data
types.

In this project, we first build a package of functions for creating and manipulating
the abstract syntax trees. We then extend the package to translate the abstract
syntax trees to a sequence of instructions for a simple “machine”.

21.10.2 Developing the Sandwich DSL

Suppose Emerald de Gassy, the owner of the Oxford-based catering business
Deli-Gate, hires us to design a domain-specific language (DSL) for describing
sandwich platters. The DSL scripts will direct Deli-Gate’s robotic kitchen
appliance SueChef (Sandwich and Utility Electronic Chef) to assemble platters
of sandwiches.

In discussing the problem with Emerald and the Deli-Gate staff, we discover the
following:

• A sandwich platter consists of zero or more sandwiches. (Zero? Why not!
Although a platter with no sandwiches may not be a useful, or profitable,
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case, there does not seem to be any harm in allowing this degenerate case.
It may simplify some of the coding and representation.)

• Each sandwich consists of layers of ingredients.

• The categories of ingredients are breads, meats, cheeses, vegetables, and
condiments.

• Available breads are white, wheat, and rye.

• Available meats are turkey, chicken, ham, roast beef, and tofu. (Okay, tofu
is not a meat, but it is a good protein source for those who do not wish to
eat meat. This is a college town after all.)

• Available cheeses are American, Swiss, jack, and cheddar.

• Available vegetables are tomato, lettuce, onion, and bell pepper.

• Available condiments are mayo, mustard, relish, and Tabasco. (Of course,
this being the South, the mayo is Blue Plate Mayonnaise and the mustard
is a Creole mustard.)

Let’s define this as an internal DSL—in particular, by using a relatively deep
embedding [11].

What is a sandwich? . . . Basically, it is a stack of ingredients.

Should we require the sandwich to have a bread on the bottom? . . . Probably.
. . . On the top? Maybe not, to allow “open-faced” sandwiches. . . . What can
the SueChef build? . . . We don’t know at this point, but let’s assume it can
stack up any ingredients without restriction.

For simplicity and flexibility, let’s define a Haskell data type Sandwich to model
sandwiches. It wraps a possibly empty list of ingredient layers. We assume the
head of the list to be the layer at the top of the sandwich. We derive Show so we
can display sandwiches.

data Sandwich = Sandwich [Layer]
deriving Show

Note: In this project, we use the same name for an algebraic data type and its
only constructor. Above the Sandwich after data defines a type and the one
after the “=” defines the single constructor for that type.

Data type Sandwich gives the specification for a sandwich. When “executed”
by the SueChef, it results in the assembly of a sandwich that satisfies the
specification.

As defined, the Sandwich data type does not require there to be a bread in
the stack of ingredients. However, we add function newSandwich that starts a
sandwich with a bread at the bottom and a function addLayer that adds a new
ingredient to the top of the sandwich. We leave the implementation of these
functions as exercises.
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newSandwich :: Bread -> Sandwich
addLayer :: Sandwich -> Layer -> Sandwich

Ingredients are in one of five categories: breads, meats, cheeses, vegetables, and
condiments.

Because both the categories and the specific type of ingredient are important, we
choose to represent both in the type structures and define the following types. A
value of type Layer represents a single ingredient. Note that we use names such
as Bread both as a constructor of the Layer type and the type of the ingredients
within that category.

data Layer = Bread Bread | Meat Meat
| Cheese Cheese | Vegetable Vegetable
| Condiment Condiment

deriving (Eq,Show)

data Bread = White | Wheat | Rye
deriving (Eq, Show)

data Meat = Turkey | Chicken | Ham | RoastBeef | Tofu
deriving (Eq, Show)

data Cheese = American | Swiss | Jack | Cheddar
deriving (Eq, Show)

data Vegetable = Tomato | Onion | Lettuce | BellPepper
deriving (Eq, Show)

data Condiment = Mayo | Mustard | Ketchup | Relish | Tabasco
deriving (Eq, Show)

We need to be able to compare ingredients for equality and convert them to
strings. Because the automatically generated default definitions are appropriate,
we derive both classes Show and Eq for these ingredient types.

We do not derive Eq for Sandwich because the default element-by-element
equality of lists does not seem to be the appropriate equality comparison for
sandwiches.

To complete the model, we define type Platter to wrap a list of sandwiches.

data Platter = Platter [Sandwich]
deriving Show

We also define functions newPlatter to create a new Platter and addSandwich
to add a sandwich to the Platter. We leave the implementation of these
functions as exercises.
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newPlatter :: Platter
addSandwich :: Platter -> Sandwich -> Platter

21.10.3 Sandwich DSL exercise set A

Please put these functions in a Haskell module SandwichDSL (in a file named
SandwichDSL.) You may use functions defined earlier in the exercises to imple-
ment those later in the exercises.

1. Define and implement the Haskell functions newSandwich, addLayer,
newPlatter, and addSandwich described above.

2. Define and implement the Haskell query functions below that take an
ingredient (i.e., Layer) and return True if and only if the ingredient is in
the specified category.

isBread :: Layer -> Bool
isMeat :: Layer -> Bool
isCheese :: Layer -> Bool
isVegetable :: Layer -> Bool
isCondiment :: Layer -> Bool

3. Define and implement a Haskell function noMeat that takes a sandwich
and returns True if and only if the sandwich contains no meats.

noMeat :: Sandwich -> Bool

4. According to a proposed City of Oxford ordinance, in the future it may be
necessary to assemble all sandwiches in Oxford Standard Order (OSO): a
slice of bread on the bottom, then zero or more meats layered above that,
then zero or more cheeses, then zero or more vegetables, then zero or more
condiments, and then a slice of bread on top. The top and bottom slices
of bread must be of the same type.

Define and implement a Haskell function inOSO that takes a sandwich and
determines whether it is in OSO and another function intoOSO that takes
a sandwich and a default bread and returns the sandwich with the same
ingredients ordered in OSO.

inOSO :: Sandwich -> Bool
intoOSO :: Sandwich -> Bread -> Sandwich

Hint: Remember Prelude functions like dropWhile.

Note: It is impossible to rearrange the layers into OSO if the sandwich
does not include exactly two breads of the same type. If the sandwich does
not include any breads, then the default bread type (second argument)
should be specified for both. If there is at least one bread, then the bread
type nearest the bottom can be chosen for both top and bottom.
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5. Suppose we store the current prices of the sandwich ingredients in an
association list with the following type synonym:

type PriceList = [(Layer,Int)]

Assuming that the price for a sandwich is base price plus the sum of the
prices of the individual ingredients, define and implement a Haskell function
priceSandwich that takes a price list, a base price, and a sandwich and
returns the price of the sandwich.

priceSandwich :: PriceList -> Int -> Sandwich -> Int

Hint: Consider using the lookup function from the Prelude. The library
Data.Maybe may also include helpful functions.

Use the following price list as a part of your testing:

prices = [ (Bread White, 20), (Bread Wheat, 30),
(Bread Rye, 30),
(Meat Turkey, 100), (Meat Chicken, 80),
(Meat Ham, 120), (Meat RoastBeef, 140),
(Meat Tofu, 50),
(Cheese American, 50), (Cheese Swiss, 60),
(Cheese Jack, 60), (Cheese Cheddar, 60),
(Vegetable Tomato, 25), (Vegetable Onion, 20),
(Vegetable Lettuce, 20), (Vegetable BellPepper,25),
(Condiment Mayo, 5), (Condiment Mustard, 4),
(Condiment Ketchup, 4), (Condiment Relish, 10),
(Condiment Tabasco, 5)

]

6. Define and implement a Haskell function eqSandwich that compares two
sandwiches for equality.

What does equality mean for sandwiches? Although the definition of
equality could differ, you can use “bag equality”. That is, two sandwiches
are equal if they have the same number of layers (zero or more) of each
ingredient, regardless of the order of the layers.

eqSandwich :: Sandwich -> Sandwich -> Bool

Hint: The “sets” operations in library Data.List might be helpful

7. Give the Haskell declaration needed to make Sandwich an instance of class
Eq. You may use eqSandwich if applicable.

21.10.4 Compiling the program for the SueChef controller

In this section, we look at compiling the Platter and Sandwich descriptions to
issue a sequence of commands for the SueChef’s controller.
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The SueChef supports the special instructions that can be issued in sequence to
its controller. The data type SandwichOp below represents the instructions.

data SandwichOp = StartSandwich | FinishSandwich
| AddBread Bread | AddMeat Meat
| AddCheese Cheese | AddVegetable Vegetable
| AddCondiment Condiment
| StartPlatter | MoveToPlatter | FinishPlatter

deriving (Eq, Show)

We also define the type Program to represent the sequence of commands resulting
from compilation of a Sandwich or Platter specification.

data Program = Program [SandwichOp]
deriving Show

The flow of a program is given by the following pseudocode:

StartPlatter
for each sandwich needed

StartSandwich
for each ingredient needed

Add ingredient on top
FinishSandwich
MoveToPlatter

FinishPlatter

Consider a sandwich defined as follows:

Sandwich [ Bread Rye, Condiment Mayo, Cheese Swiss,
Meat Ham, Bread Rye ]

The corresponding sequence of SueChef commands would be the following:

[ StartSandwich, AddBread Rye, AddMeat Ham, AddCheese Swiss,
AddCondiment Mayo, AddBread Rye, FinishSandwich, MoveToPlatter ]

21.10.5 Sandwich DSL exercise set B

Add the following functions to the module SandwichDSL developed in the Sand-
wich DSL Project exercise set A.

1. Define and implement a Haskell function compileSandwich to convert a
sandwich specification into the sequence of SueChef commands to assemble
the sandwich.

compileSandwich :: Sandwich -> [SandwichOp]

2. Define and implement a Haskell function compile to convert a platter
specification into the sequence of SueChef commands to assemble the
sandwiches on the platter.
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compile :: Platter -> Program

21.10.6 Sandwich DSL source code

The Haskell source code for this project is in file:

• SandwichDSL_base.hs

21.11 Exam DSL Project
21.11.1 Project introduction

Few computer science graduates will design and implement a general-purpose
programming language during their careers. However, many graduates will
design and implement—and all likely will use—special-purpose languages in their
work.

These special-purpose languages are often called domain-specific languages (or
DSLs) [11]. (For more discussion of the DSL concepts, terminology, and tech-
niques, see the introductory chapter of the Notes on Domain-Specific Languages
[11].)

In this project, we design and implement a simple internal DSL [11]. This DSL
describes simple “programs” using a set of Haskell algebraic data types. We
express a program as an abstract syntax tree (AST) [11] using the DSL’s data
types.

The package first builds a set of functions for creating and manipulating the
abstract syntax trees for the exams. It then extends the package to translate
the abstract syntax trees to HTML.

21.11.2 Developing the Exam DSL

Suppose Professor Harold Pedantic decides to create a DSL to encode his
(allegedly vicious) multiple choice examinations. Since his course uses Haskell to
teach programming language organization, he wishes to implement the language
processor in Haskell. Professor Pedantic is too busy to do the task himself. He
is also cheap, so he assigns us, the students in his class, the task of developing a
prototype.

In the initial prototype, we do not concern ourselves with the concrete syntax of
the Exam DSl. We focus on design of the AST as a Haskell algebraic data type.
We seek to design a few useful functions to manipulate the AST and output an
exam as HTML.

First, let’s focus on multiple-choice questions. For this prototype, we can assume
a question has the following components:

• the text of the question
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• a group of several choices for the answer to the question, exactly one of
which should be be a correct answer to the question

• a group of tags identifying topics covered by the question

Let’s define this as an internal DSL—in particular, by using a relatively deep
embedding [11].

We can state a question using the Haskell data type Question, which has a
single constructor Ask. It has three components—a list of applicable topic tags,
the text of the question, and a list of possible answers to the question.

type QText = String
type Tag = String
data Question = Ask [Tag] QText [Choice] deriving Show

We use the type QText to describe the text of a question. We also use the type
Tag to describe the topic tags we can associate with a question.

We can then state a possible answer to the question using the data type Choice,
which has a single constructor Answer. It has two components—the text of the
answer and a Boolean value that indicates whether this is a correct answer to
the question (i.e., True) or not.

type AText = String
data Choice = Answer AText Bool deriving (Eq, Show)

As above, we use the type AText to describe the text of an answer.

For example, we could encode the question “Which of the following is a required
course?” as follows.

Ask ["curriculum"]
"Which of the following is a required course?"
[ Answer "CSci 323" False,

Answer "CSci 450" True,
Answer "CSci 525" False ]

The example has a single topic tag "curriculum" and three possible answers,
the second of which is correct.

We can develop various useful functions on these data types. Most of these are
left as exercises.

For example, we can define a function correctChoice that takes a Choice and
determines whether it is marked as a correct answer or not.

correctChoice :: Choice -> Bool

We can also define function lenQuestion that takes a question and returns the
number of possible answers are given. This function has the following signature.

lenQuestion :: Question -> Int

27



We can then define a function to check whether a question is valid. That is, the
question must have:

• a non-nil text

• at least 2 and no more than 10 possible answers

• exactly one correct answer

It has the type signature.

validQuestion :: Question -> Bool

We can also define a function to determine whether or not a question has a
particular topic tag.

hasTag :: Question -> Tag -> Bool

To work with our lists of answers (and other lists in our program), let’s define
function eqBag with the following signature.

eqBag :: Eq a => [a] -> [a] -> Bool

This is a “bag equality” function for two polymorphic lists. That is, the lists are
collections of elements that can be compared for equality and inequality, but not
necessarily using ordered comparisons. There may be elements repeated in the
list.

Now, what does it mean for two questions to be equal?

For our prototype, we require that the two questions have the same question
text, the same collection of tags, and the same collection of possible answers
with the same answer marked correct. However, we do not require that the tags
or possible answers appear in the same order.

We note that type Choice has a derived instance of class Eq. Thus we can give
an instance definition to make Question an instance of class Eq.

instance Eq Question where
-- fill in the details

Now, let’s consider the examination as a whole. It consists of a title and a list of
questions. We thus define the data type Exam as follows.

type Title = String
data Exam = Quiz Title [Question] deriving Show

We can encode an exam with two questions as follows.

Quiz "Curriculum Test" [
Ask ["curriculum"]

"Which one of the following is a required course?"
[ Answer "CSci 323" False,

Answer "CSci 450" True,
Answer "CSci 525" False ],
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Ask ["language","course"]
"What one of the following languages is used in CSci 450?"
[ Answer "Lua" False,

Answer "Elm" False,
Answer "Haskell" True ]

]

We can define function selectByTags selects questions from an exam based on
the occurrence of the specified topic tags.

selectByTags :: [Tag] -> Exam -> Exam

The function application selectByTags tags exam takes a list of zero or more
tags and an exam and returns an exam with only those questions in which at
least one of the given tags occur in a Question’s tag list.

We can define function validExam that takes an exam and determines whether
or not it is valid. It is valid if and only if all questions are valid. The function
has the following signature.

validExam :: Exam -> Bool

To assist in grading an exam, we can also define a function makeKey that takes
an exam and creates a list of (number,letter) pairs for all its questions. In a
pair, number is the problem number, a value that starts with 1 and increases for
each problem in order. Similarly, letter is the answer identifier, an uppercase
alphabetic character that starts with A and increases for each choice in order.
The function returns the tuples arranged by increasing problem number.

The function has the following signature.

makeKey :: Exam -> [(Int,Char)]

For the example exam above, makeKey should return [(1,'B'),(2,'C')].

21.11.3 Exam DSL exercise set A

Define the following functions in a module named ExamDSL (in a file named
ExamDSL.hs).

1. Develop function correctChoice :: Choice -> Bool as defined above.

2. Develop function lenQuestion :: Question -> Int as defined above.

3. Develop function validQuestion :: Question -> Bool as defined
above.

4. Develop function hasTag :: Question -> Tag -> Bool as defined
above.

5. Develop function eqBag :: Eq a => [a] -> [a] -> Bool as defined
above.
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6. Give an instance declaration to make data type Question an instance of
class Eq.

7. Develop function selectByTags :: [Tag] -> Exam -> Exam as defined
above.

8. Develop function validExam :: Exam -> Bool as defined above.

9. Develop function makeKey :: Exam -> [(Int,Char)] as defined above.

21.11.4 Outputting the Exam as HTML

Professor Pedantic wants to take an examination expressed with the Exam DSL,
as described above, and output it as HTML.

Again, consider the following Exam value.

Quiz "Curriculum Test" [
Ask ["curriculum"]

"Which one of the following courses is required?"
[ Answer "CSci 323" False,

Answer "CSci 450" True,
Answer "CSci 525" False ],

Ask ["language","course"]
"What one of the following is used in CSci 450?"
[ Answer "Lua" False,

Answer "Elm" False,
Answer "Haskell" True ]

]

We want to convert the above to the following HTML.

<html lang="en">
<body>
<h1>Curriculum Test</h1>
<ol type="1">
<li>Which one of the following courses is required?
<ol type="A">
<li>CSci 323</li>
<li>CSci 450</li>
<li>CSci 525</li>
</ol>
</li>
<li>What one of the following is used in CSci 450?
<ol type="A">
<li>Lua</li>
<li>Elm</li>
<li>Haskell</li>
</ol>
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</li>
</ol>
</body>
</html>

This would render in a browser something like the following.

Curriculum Test

1. Which one of the following courses is required?
A. CSci 323
B. CSci 450
C. CSci 525

2. What one of the following is used in CSci 450?
A. Lua
B. Elm
C. Haskell

Professor Pedantic developed a module of HTML template functions named
SimpleHTML to assist us in this process. (See file SimpleHTML.hs.)

A function application to_html lang content wraps the content (HTML in
a string) inside a pair of HTML tags <html> and </html> with lang attribute
set to langtype, defaulting to English (i.e., "en"). This function and the data
types are defined in the following.

type HTML = String
data LangType = English | Spanish | Portuguese | French

deriving (Eq, Show)
langmap = [ (English,"en"), (Spanish,"es"), (Portuguese,"pt"),

(French,"fr") ]

to_html :: LangType -> HTML -> HTML
to_html langtype content =

"<html lang=\"" ++ lang ++ "\">" ++ content ++ "</html>"
where lang = case lookup langtype langmap of

Just l -> l
Nothing -> "en"

For the above example, the to_html function generates the the outer layer:

<html lang="en"> ... </html>

Function application to_body content wraps the content inside a pair of
HTML tags <body> and </body>.

to_body :: HTML -> HTML
to_body content = "<body>" ++ content ++ "</body>"

Function application to_heading level title wraps string title inside a pair
of HTML tags <hN> and </hN> where N is in the range 1 to 6. If level is outside

31

SimpleHTML.hs


this range, it defaults to the nearest valid value.

to_heading:: Int -> String -> HTML
to_heading level title = open ++ title ++ close

where lev = show (min (max level 1) 6)
open = "<h" ++ lev ++ ">"
close = "</h" ++ lev ++ ">"

Function application to_list listtype content wraps the content inside a
pair of HTML tags <ul> and </ul> or <ol> and </ol>. For <ol> tags, it sets
the type attribute based on the value of the listtype argument.

data ListType = Decimal | UpRoman | LowRoman
| UpLettered | LowLettered | Bulleted

deriving (Eq, Show)

to_list :: ListType -> HTML -> HTML
to_list listtype content = open ++ content ++ close

where
(open,close) =

case listtype of
Decimal -> ("<ol type=\"1\">", "</ol>")
UpRoman -> ("<ol type=\"I\">", "</ol>")
LowRoman -> ("<ol type=\"i\">", "</ol>")
UpLettered -> ("<ol type=\"A\">", "</ol>")
LowLettered -> ("<ol type=\"a\">", "</ol>")
Bulleted -> ("<ul>", "</ul>")

Finally, function application to_li content wraps the content inside a pair of
HTML tags <li> and </li>.

to_li :: HTML -> HTML
to_li content = "<li>" ++ content ++ "</li>"

By importing the SimpleHTML module, we can now develop functions to output
an Exam as HTML.

If we start at the leaves of the Exam AST (i.e., from the Choice data type), we
can define a function choice2html function as follows in terms of to_li.

choice2html :: Choice -> HTML
choice2html (Answer text _) = to_li text

Using choice2html and the SimpleHTML module, we can define question2html
with the following signature.

question2html :: Question -> HTML

Then using question2html and the SimpleHTML module, we can define
question2html with the following signature.

exam2html :: Exam -> HTML
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Note: These two functions should add newline characters to the HTML output
so that they look like the examples at the beginning of the “Outputting the
Exam” section. Similarly, it should not output extra spaces. This both makes
the string output more readable and makes it possible to grade the assignment
using automated testing.

For example, the output of question2html for the first Question in the example
above should appear as the following when printed with the putStr input-output
command.

<li>Which one of the following courses is required?
<ol type="A">
<li>CSci 323</li>
<li>CSci 450</li>
<li>CSci 525</li>
</ol>

In addition, you may want to output the result of exam2html to a file to see how
it displays in a browser a particular exam.

writeFile "output.html" $ exam2html exam

21.11.5 Exam DSL project exercise set B

Add the following functions to the module ExamDSL developed in the Exam DSL
Project exercise set A.

1. Develop function question2html :: Question -> HTML as defined
above.

2. Develop function exam2html :: Exam -> HTML as defined above.

21.11.6 Exam DSL source code

The Haskell source code for this project is in files:

• ExamDSL_base.hs, which is the skeleton to flesh out for a solution to this
project

• SimpleHTML.hs, which is the module of HTML string templates
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in the Lua-based, Fall 2013 CSci 658 (Software Language Engineering) class. I
subsequently developed a full Haskell-based project for the Fall 2014 CSci 450
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21.13 Terms and Concepts
Types, algebraic data types (composite), sum (tagged, disjoint union, variant,
enumerated), product (tuple, record), arity, nullary, recursive types, algebraic
data types versus abstract data types, syntax, semantics, pattern matching, null
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reference, safe error handling, Maybe and Either “option” types, Null Object
design pattern, association list (map, dictionary), key, value.
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