
Exploring Languages
with Interpreters

and Functional Programming
Chapter 20

H. Conrad Cunningham

04 April 2022

Contents
20 Problem Solving 2

20.1 Chapter Introduction . 2
20.2 Problem Solving Philosophy . 2
20.3 Polya’s Insights . 2
20.4 Problem-Solving Strategies . 3

20.4.1 Solve a more general problem first 3
Examples . 4

20.4.2 Solve a simpler problem first 4
Examples . 5

20.4.3 Reuse off-the-shelf solutions to standard subproblems . . 5
Examples . 5

20.4.4 Solve a related problem 6
Examples . 6

20.4.5 Separate concerns . 6
Examples . 6

20.4.6 Divide and conquer . 7
Examples . 7

20.5 What Next? . 7
20.6 Chapter Source Code . 7
20.7 Exercises . 7
20.8 Acknowledgements . 8
20.9 Terms and Concepts . 8
20.10References . 8

Copyright (C) 2016, 2017, 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

2

20 Problem Solving
20.1 Chapter Introduction
This Chapter is incomplete.

TODO: - Add Chapter Introduction - Give additional and improved examples. -
Add What Next?, Chapter Source Code, and Exercises sections

20.2 Problem Solving Philosophy
I approach computing science with the following philosophy:

• Programming is the essence of computing science.

• Problem solving is the essence of programming.

Here I consider programming as the process of analyzing a problem and for-
mulating a solution suitable for execution on a computer. The solution should
be correct, elegant, efficient, and robust. It should be expressed in a manner
that is understandable, maintainable, and reusable. The solution should balance
generality and specificity, abstraction and concreteness.

In my view, programming is far more than just coding. It subsumes the concerns
of algorithms, data structures, and software engineering. It uses programming
languages and software development tools. It uses the intellectual tools of
mathematics, logic, linguistics, and computing science theory. Etc.

20.3 Polya’s Insights
The mathematician George Polya (1887–1985), a Professor of Mathematics at
Stanford University, said the following in the preface to his book Mathematical
Discovery: On Understanding, Learning and Teaching Problem Solving [4].

Solving a problem means finding a way out of a difficulty, a way
around an obstacle, attaining an aim which was not immediately at-
tainable. Solving problems is the specific achievement of intelligence,
and intelligence is the specific gift of mankind: solving problems can
be regarded as the most characteristically human activity. . . .

Solving problems is a practical art, like swimming, or skiing, or
playing the piano: you learn it only by imitation and practice. . . . if
you wish to learn swimming you have to go into the water, and if
you wish to become a problem solver you have to solve problems.

If you wish to derive the most profit from your effort, look out for
such features of a problem at hand as may be useful in handling the
problems to come. A solution that you have obtained by your own
effort or one that you have read or heard, but have followed with

3

real interest and insight, may become a pattern for you, a model that
you can imitate with advantage in solving similar problems. . . .

Our knowledge about any subject consists of information and know-
how. If you have genuine bonafide experience of mathematical work
on any level, elementary or advanced, there will be no doubt in your
mind that, in mathematics, know-how is much more important than
mere possession of information. . . .

What is know-how in mathematics? The ability to solve problems—
not merely routine problems but problems requiring some degree of
independence, judgment, originality, creativity. Therefore, the first
and foremost duty . . . in teaching mathematics is to emphasize
methodical work in problem solving.

What Polya says for mathematics holds just as much for computing science.

In the book How to Solve It [3], Polya states four phases of problem solving.
These steps are important for programming as well.

1. Understand the problem.

2. Devise a plan.

3. Carry out the plan, checking each step.

4. Reexamine and reconsider the solution. (And, of course, reexamine the
understanding of the problem, the plan, and the way the plan was carried
out.)

20.4 Problem-Solving Strategies
There are many problem-solving strategies applicable to programming in general
and functional programming in particular. We have seen some of these in the
earlier chapters and will see others in later chapters. In this section, we highlight
some of the general techniques.

20.4.1 Solve a more general problem first

The first strategy is to solve a more general problem first. That is, we solve a
“harder” problem than the specific problem at hand, then use the solution of the
“harder” problem to get the specific solution desired.

Sometimes a solution of the more general problem is actually easier to find
because the problem is simpler to state, more symmetrical, or less obscured by
special conditions. The general solution can often be used to solve other related
problems.

Often the solution of the more general problem can actually lead to a more
efficient solution of the specific problem.

4

Examples We have already seen one example of this technique: finding the
first occurrence of an item in a list in Chapter 18.

First, we devised a program to find all occurrences in a list. Then we selected
the first occurrence from the set of all occurrences. (Lazy evaluation of Haskell
programs means that this use of a more general solution differs very little in
efficiency from a specialized version.)

We have also seen several cases where we have generalized problems by adding
one or more accumulating parameters. These “harder” problems can lead to
more efficient tail recursive solutions.

For example, consider the tail recursive Fibonacci program we developed in
Chapter 9. We added two extra arguments to the function.

fib2 :: Int -> Int
fib2 n | n >= 0 = fibIter n 0 1

where
fibIter 0 p q = p
fibIter m p q | m > 0 = fibIter (m-1) q (p+q)

Another approach is to use the tupling technique. Instead of adding extra
arguments, we add extra results.

For example, in the Fibonacci program fastfib below, we compute (fib n,
fib (n+1)) instead of just fib n. This is a harder problem, but it actually
gives us more information to work with and, hence, provides more opportunity
for optimization. (We formally derive this solution in Chapter 26.)

fastfib :: Int -> Int
fastfib n | n >= 0 = fst (twofib n)

twofib :: Int -> (Int,Int)
twofib 0 = (0,1)
twofib n = (b,a+b)

where (a,b) = twofib (n-1)

20.4.2 Solve a simpler problem first

The second strategy is to solve a simpler problem first. After solving the simpler
problem, we then adapt or extend the solution to solve the original problem.

Often the mass of details in a problem description makes seeing a solution
difficult. In the previous technique we made the problem easier by finding a
more general problem to solve. In this technique, we move in the other direction:
we find a more specific problem that is similar and solve it.

At worst, by solving the simpler problem we should get a better understanding
of the problem we really want to solve. The more familiar we are with a problem,

5

the more information we have about it, and, hence, the more likely we will be
able to solve it.

At best, by solving the simpler problem we will find a solution that can be easily
extended to build a solution to the original problem.

Examples Consider a program to convert a positive integer of up to six digits
to a string consisting of the English words for that number. For example, 369027
yields the string:

three hundred and sixty-nine thousand and twenty-seven

To deal with the complexity of this problem, we can work as follows:

a. Solve the problem of converting a two-digit number to words. (The single
digit numbers and numbers in teens are special cases.)

b. Then extend the two-digit solution to three digits. (This can basically use
the solution to part “a” twice.)

c. Then extend three-digit solution to to six digits. (This can basically use
the solution to part “b” twice.)

See Section 4.1 of the classic Bird and Wadler textbook [1] for the details of this
problem and a solution.

TODO: May want to create some code for this problem rather than just refer to
an old textbook.

The process of generalizing first-order functions into higher-order functions is
another example of this “solve a simpler problem first” strategy. Recall how we
motivated the development of the higher-order library functions such as map,
filter, and foldr in Chapter 15. Also consider the function generalization
approach used in the cosequential processing case study in Chapter 19.

20.4.3 Reuse off-the-shelf solutions to standard subproblems

The third strategy is to reuse an off-the-shelf solutions to a standard subproblem.

We have been doing this all during this semester, especially since we began began
studying polymorphism and higher-order functions.

The basic idea is to identify standard patterns of computation (e.g., standard
Prelude functions such as length, take{.haskell, zip{.haskell, map{.haskell,
filter{.haskell, foldr{.haskell) that will solve some aspects of the problem and
then combine (e.g., using function composition) these standard patterns with
your own specialized functions to construct a solution to the problem.

Examples We have seen several examples of this technique in this textbook
and its exercises.

6

See section 4.2 of the classic Bird and Wadler textbook [1] for a case study that
develops a package of functions to do arithmetic on variable length integers. The
functions take advantage of several of the standard Prelude functions.

20.4.4 Solve a related problem

The fourth strategy is to solve a related problem. After solving the related
problem, we then transform the solution of the related problem to get a solution
to the original problem.

Perhaps we can find an entirely different problem formulation (i.e., stated in
different terms) for which we can readily find a solution. Then that solution can
be converted into a solution to the problem at hand.

Examples For example, we can recast a problem in terms of mathematical or
logical frameworks (e.g., sets, relations, graphs, finite state machines, grammars,
algebraic structures, differential equations, etc.), solve the corresponding problem
in those terms, and then interpret the result for the original problem. The
simplification provided by the frameworks may reveal solutions that are obscured
in the details of the problem. We can also take advantage of the theory and
techniques that have been found previously for the mathematical frameworks.

Consider the problem of breaking a string of text into the list of its component
lines.

This is not trivial. However, the “inverse” problem is trivial. All that is needed
to convert a list of lines to a string of text is to insert linefeed characters between
the lines.

We can first solve the inverse problem (line-folding) and then use it to calculate
what the line-breaking program must be. (See Section 4.3 of the Bird and Wadler
textbook [1] and a Chapter 27 in this textbook.)

20.4.5 Separate concerns

The fifth strategy is to separate concerns. That is, we partition the problem into
logically separate problems, solve each problem separately, then combine the
solutions to the subproblems to construct a solution to the problem at hand.

As we have seen in the above strategies, when a problem is complex and difficult
to attack directly, we search for simpler, but related, problems to solve, then
build a solution to the complex problem from the simpler problems.

Examples We have seen examples of this approach in earlier chapters and
homework assignments. We separated concerns when we used stepwise refinement
to develop a square root function, data abstraction in the rational number case
study, and function pipelines.

7

Consider the development of a program to print a calendar for any year in
various formats. We can approach this problem by first separating it into two
independent subproblems:

a. building a calendar
b. formatting the output

After solving each of these simpler problems, the more complex problem can be
solved easily by combining the two solutions. (See Section 4.5 of the classic Bird
and Wadler textbook [1] for the details of this problem and a solution.)

20.4.6 Divide and conquer

The sixth strategy is divide and conquer. This is a special case of the “solve a
simpler problem first” strategy. In this technique, we must divide the problem
into subproblems that are the same as the original problem except that the size
of the input is smaller.

This process of division continues recursively until we get a problem that can
be solved trivially, then we combined we reverse the process by combining the
solutions to subproblems to form solutions to larger problems.

Examples Examples of divide and conquer from earlier chapters include the
logarithmic exponentiation function expt3 in Chapter 9 and the merge sort
function msort in Chapter 17.

Another common example of the divide and conquer approach is binary search.
(See Section 6.4.3 of the classic Bird and Wadler textbook [1].)

Chapter 17 examines divide and conquer algorithms in terms of a higher order
function that captures the pattern.

There are, of course, other strategies that can be used to approach problem
solving.

20.5 What Next?
TODO

20.6 Chapter Source Code
TODO

20.7 Exercises
TODO

8

20.8 Acknowledgements
In 2016 and 2017, I adapted and revised my previous notes to form Chapter 7,
More List Processing and Problem Solving, in the 2017 version of this textbook.
In particular, I drew the information on Problem Solving from:

• chapter 10 of my Notes on Functional Programming with Haskell for
discussion of problem-solving techniques in section 7.4

Chapter 10 drew on chapters 4 and 6 of Bird [1], chapter 4 of [5], and two
of Polya’s books [3,4].

• part of chapter 12 of Notes on Functional Programming with Haskell for
discussion of the tupling technique incorporated into subsection 7.4.2.1

The tupling discussion originally drew from Bird [1] and Hoogerwoord [2].

In Summer 2018, I divided the previous More List Processing and Problem
Solving chapter back into two chapters in the 2018 version of the textbook,
now titled Exploring Languages with Interpreters and Functional Programming.
Previous sections 7.2-7.3 became the basis for new Chapter 18, More List
Processing, and previous section 7.4 (essentially the two items above) became
the basis for new Chapter 20 (this chapter), Problem Solving.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

20.9 Terms and Concepts
Problem solving, Polya, information, know-how, bonafide experience, problem-
solving strategies, solve a more general (harder) problem first, accumulating
parameters, tupling, solve a simpler problem first, reuse an off-the-shelf solution,
higher-order functions, stepwise refinement, data abstraction, solve a related
problem, separate concerns, divide and conquer.

20.10 References
[1] Richard Bird and Philip Wadler. 1988. Introduction to functional pro-

gramming (First ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.
[2] Robert R. Hoogerwoord. 1989. The design of functional programs: A

calculational approach. PhD thesis. Eindhoven Technical University,
Eindhoven, The Netherlands.

9

[3] George Polya. 1957. How to solve it: A new aspect of mathematical
method (Second ed.). Princeton Unversity Press.

[4] George Polya. 1981. Mathematical discovery: On understanding, learning,
and teaching problem solving (Combined ed.). Wiley, Hoboken, New
Jersey, USA.

[5] Simon Thompson. 2011. Haskell: The craft of programming (Third ed.).
Addison-Wesley, Boston, Massachusetts, USA.

10

	Problem Solving
	Chapter Introduction
	Problem Solving Philosophy
	Polya's Insights
	Problem-Solving Strategies
	Solve a more general problem first
	Examples

	Solve a simpler problem first
	Examples

	Reuse off-the-shelf solutions to standard subproblems
	Examples

	Solve a related problem
	Examples

	Separate concerns
	Examples

	Divide and conquer
	Examples

	What Next?
	Chapter Source Code
	Exercises
	Acknowledgements
	Terms and Concepts
	References

