
Exploring Languages
with Interpreters

and Functional Programming
Chapter 18

H. Conrad Cunningham

25 February 2022

Contents
18 More List Processing 2

18.1 Chapter Introduction . 2
18.2 Sequences . 2
18.3 List Comprehensions . 3

18.3.1 Syntax and semantics . 3
18.3.2 Translating list comprehensions 4

18.4 Using List Comprehensions . 6
18.4.1 Strings of spaces . 6
18.4.2 Prime number test . 6
18.4.3 Squares of primes . 6
18.4.4 Doubling positive elements 7
18.4.5 Concatenating a list of lists of lists 7
18.4.6 First occurrence in a list 7

18.5 What Next? . 8
18.6 Exercises . 8
18.7 Acknowledgements . 9
18.8 Terms and Concepts . 9
18.9 References . 9

Copyright (C) 2016, 2017, 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of February 2022 is a
recent version of Firefox from Mozilla.

2

18 More List Processing
18.1 Chapter Introduction
Previous chapters examined first-order and higher-order list programming. In
particular, Chapter 15 explored the standard higher order functions such as
map, filter, and concatMap and Chapter 16 explored function concepts such
as function composition.

This chapter examines list comprehensions. This feature does not add new power
to the language; the computations can be expressed with combinations of features
from the previous chapters. But list comprehensions are often easier to write and
to understand than equivalent compositions of map, filter, concatMap, etc.

The source file for the code in this chapter is in source file MoreLists.hs.

18.2 Sequences
Haskell provides a compact notation for expressing arithmetic sequences.

An arithmetic sequence (or progression) is a sequence of elements from an
enumerated type (i.e., a member of class Enum) such that consecutive elements
have a fixed difference. Int, Integer, Float, Double, and Char are all predefined
members of this class.

• [m..n] produces the list of elements from m up to n in steps of one if
m <= n. It produces the nil list otherwise.

Examples:

– [1..5] =⇒ [1,2,3,4,5]
– [5..1] =⇒ []

This feature is implemented with Prelude function enumFromTo applied as
enumFromTo m n.

• [m,m’..n] produces the list of elements from m in steps of m’-m. If m’ > m
then the list is increasing up to n. If m’ < m, then it is decreasing.

Examples:

– [1,3..9] =⇒ [1,3,5,7,9]
– [9,8..5] =⇒ [9,8,7,6,5]
– [9,8..11] =⇒ []

This feature is implemented with Prelude function enumFromThenTo applied
as enumFromThenTo m’ m n.

• [m..] and [m,m’..] produce potentially infinite lists beginning with m
and having steps 1 and m’-m respectively.

These features are implemented with Prelude functions enumFrom applied
as enumFrom m and enumFromThen applied as enumFromThen m m’.

3

MoreLists.hs

Of course, we can provide our own functions for sequences. Consider the following
function to generate a geometric sequence.

A geometric sequence (or progression) is a sequence of elements from an ordered,
numeric type (i.e., a member of both classes Ord and Num) such that consecutive
elements have a fixed ratio.

geometric :: (Ord a, Num a) => a -> a -> a -> [a]
geometric r m n | m > n = []

| otherwise = m : geometric r (m*r) n

Example: geometric 2 1 10 =⇒ [1,2,4,8]

18.3 List Comprehensions
18.3.1 Syntax and semantics

The list comprehension is another powerful and compact notation for describing
lists. A list comprehension has the form

[expression | qualifiers]

where expression is any Haskell expression.

The expression and the qualifiers in a comprehension may contain variables that
are local to the comprehension. The values of these variables are bound by the
qualifiers.

For each group of values bound by the qualifiers, the comprehension generates
an element of the list whose value is the expression with the values substituted
for the local variables.

There are three kinds of qualifiers that can be used in Haskell: generators, filters,
and local definitions.

1. A generator is a qualifier of the form

pat <- exp

where exp is a list-valued expression. The generator extracts each element
of exp that matches the pattern pat in the order that the elements appear
in the list; elements that do not match the pattern are skipped.

Example:

• [n*n | n <- [1..5]] =⇒ [1,4,9,16,25]

2. A filter is a Boolean-valued expression used as a qualifier in a list compre-
hension. These expressions work like the filter function; only values that
make the expression True are used to form elements of the list comprehen-
sion.

Example:

4

• [n*n | even n] =⇒ (if even n then [n*n] else [])

Above variable n is global to this expression, not local to the comprehension.

3. A local definition is a qualifier of the form

let pat = expr

introduces a local definition into the list comprehension.

Example:

• [n*n | let n = 2] =⇒ [4]

The real power of list comprehensions come from using several qualifiers separated
by commas on the right side of the vertical bar |.

• Generators appearing later in the list of qualifiers vary more quickly than
those that appear earlier. Speaking operationally, the generation “loop”
for the later generator is nested within the “loop” for the earlier.

Example:

– [(m,n) | m<-[1..3], n<-[4,5]] =⇒
[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

• Qualifiers appearing later in the list of qualifiers may use values generated
by qualifiers appearing earlier, but not vice versa.

Examples:

– [n*n | n<-[1..10], even n] =⇒ [4,16,36,64,100]

– [(m,n) | m<-[1..3], n<-[1..m]] =⇒
[(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)]

• The generated values may or may not be used in the expression.

Examples:

– [27 | n<-[1..3]] =⇒ [27,27,27]

– [x | x<-[1..3], y<-[1..2]] =⇒ [1,1,2,2,3,3]

18.3.2 Translating list comprehensions

List comprehensions are syntactic sugar. We can translate them into core Haskell
features by applying the following identities.

1. For any expression e,

[e | True]

is equivalent to:

[e]

5

2. For any expression e and qualifier q,

[e | q]

is equivalent to:

[e | q, True]

3. For any expression e, boolean b, and sequence of qualifiers Q,

[e | b, Q]

is equivalent to:

if b then [e | Q] else []

4. For any expression e, pattern p, list-valued expression l, sequence of
qualifiers Q, and fresh variable ok,

[e | p <- l, Q]

is equivalent to:

let ok p = [e | Q] -- p is a pattern
ok _ = []

in concatMap ok l

5. For any expression e, declaration list D, and sequence of qualifiers Q,

[e | let D, Q]

is equivalent to:

let D in [e | Q]

Function concatMap and boolean value True are as defined in the Prelude.

As we saw in a previous chapter, concatMap applies a list-returning function to
each element of an input list and then concatenates the resulting list of lists into
a single list. Both map and filter can be defined in terms of concatMap.

Consider the list comprehension:

[n*n | n<-[1..10], even n]

a. Apply identity 4:

let ok n = [n*n | even n]
ok _ = []

in concatMap ok [1..10]

b. Apply identity 2:

let ok n = [n*n | even n, True]
ok _ = []

in concatMap ok [1..10]

c. Apply identity 3:

6

let ok n = if (even n) then [n*n | True]
ok _ = []

in concatMap ok [1..10]

d. Apply identity 1:

let ok n = if (even n) then [n*n]
ok _ = []

in concatMap ok [1..10]

18.4 Using List Comprehensions
This section gives several examples where list comprehensions can be used to
solve problems and express the solutions conveniently.

18.4.1 Strings of spaces

Consider a function spaces that takes a number and generates a string with
that many spaces.

spaces :: Int -> String
spaces n = [' ' | i<-[1..n]]

Note that when n < 1 the result is the empty string.

18.4.2 Prime number test

Consider a Boolean function isPrime that takes a nonzero natural number and
determines whether the number is prime. (Remember that a prime number is a
natural number whose only natural number factors are 1 and itself.)

isPrime :: Int -> Bool
isPrime n | n > 1 = (factors n == [])

where factors m = [x | x<-[2..(m-1)], m `mod` x == 0]
isPrime _ = False

18.4.3 Squares of primes

Consider a function sqPrimes that takes two natural numbers and returns the
list of squares of the prime numbers in the inclusive range from the first up to
the second.

sqPrimes :: Int -> Int -> [Int]
sqPrimes m n = [x*x | x<-[m..n], isPrime x]

Alternatively, this function could be defined using map and filter as follows:

sqPrimes' :: Int -> Int -> [Int]
sqPrimes' m n = map (\x -> x*x) (filter isPrime [m..n])

7

18.4.4 Doubling positive elements

We can use a list comprehension to define (our, by now, old and dear friend) the
function doublePos, which doubles the positive integers in a list.

doublePos5 :: [Int] -> [Int]
doublePos5 xs = [2*x | x<-xs, 0 < x]

18.4.5 Concatenating a list of lists of lists

Consider a program superConcat that takes a list of lists of lists and concatenates
the elements into a single list.

superConcat :: [[[a]]] -> [a]
superConcat xsss = [x | xss<-xsss, xs<-xss, x<-xs]

Alternatively, this function could be defined using Prelude functions concat and
map and functional composition as follows:

superConcat' :: [[[a]]] -> [a]
superConcat' = concat . map concat

18.4.6 First occurrence in a list

Consider a function position that takes a list and a value of the same type. If
the value occurs in the list, position returns the position of the value’s first
occurrence; if the value does not occur in the list, position returns 0.

Strategy: Solve a more general problem first, then use it to get the specific
solution desired.

In this problem, we generalize the problem to finding all occurrences of a value
in a list. This more general problem is actually easier to solve.

positions :: Eq a => [a] -> a -> [Int]
positions xs x = [i | (i,y)<-zip [1..length xs] xs, x == y]

Function zip is useful in pairing an element of the list with its position within
the list. The subsequent filter removes those pairs not involving the value x.
The “zipper” functions can be very useful within list comprehensions.

Now that we have the positions of all the occurrences, we can use head to get
the first occurrence. Of course, we need to be careful that we return 0 when
there are no occurrences of x in xs.

position :: Eq a => [a] -> a -> Int
position xs x = head (positions xs x ++ [0])

Because of lazy evaluation, this implementation of position is not as inefficient
as it first appears. The function positions will, in actuality, only generate the
head element of its output list.

8

Also because of lazy evaluation, the upper bound length xs can be left off the
generator in positions. In fact, the function is more efficient to do so.

18.5 What Next?
This chapter (18) examined list comprehensions. Although they do not add new
power to the language, programs involving comprehensions are often easier to
write and to understand than equivalent compositions of other functions.

The next two chapters discuss problem solving techniques. Chapter 19 discusses
systematic generalization of functions. Chapter 20 surveys various problem-
solving techniques uses in this textbook and other sources.

18.6 Exercises
1. Show the list (or string) yielded by each of the following Haskell list

expressions. Display it using fully specified list bracket notation, e.g.,
expression [1..5] yields [1,2,3,4,5].

a. [7..11]

b. [11..7]

c. [3,6..12]

d. [12,9..2]

e. [n*n | n <- [1..10], even n]

f. [7 | n <- [1..4]]

g. [x | (x:xs) <- [Did, you, study?]]

h. [(x,y) | x <- [1..3], y <- [4,7]]

i. [(m,n) | m <- [1..3], n <- [1..m]]

j. take 3 [[1..n] | n <- [1..]]

2. Translate the following expressions into expressions that use list
comprehensions. For example, map (*2) xs could be translated to
[x*2 | x <- xs].

a. map (\x -> 2*x-1) xs

b. filter p xs

c. map (ˆ2) (filter even [1..5])

d. foldr (++) [] xss

e. map snd (filter (p . fst) (zip xs [1..]))

9

18.7 Acknowledgements
In 2016 and 2017, I adapted and revised my previous notes to form Chapter 7,
More List Processing and Problem Solving, in the 2017 version of this textbook.
In particular, I drew the information on More List Processing from:

• chapter 7 of my Notes on Functional Programming with Haskell [1]

In Summer 2018, I divided the 2017 More List Processing and Problem Solving
chapter back into two chapters in the 2018 version of the textbook, now titled
Exploring Languages with Interpreters and Functional Programming. Previous
sections 7.2-7.3 (essentially chapter 7 of [1]) became the basis for new Chapter
18, More List Processing (this chapter), and the Problem Solving discussion
became the basis for new Chapter 20, Problem Solving.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

18.8 Terms and Concepts
Sequence (arithmetic, geometric), list comprehension (generator, filter, local
definition, multiple generators and filters), syntactic sugar, translating list com-
prehensions to function calls, prime numbers, solve a harder problem first.

18.9 References
[1] H. Conrad Cunningham. 2014. Notes on functional programming with

Haskell. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

10

https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

	More List Processing
	Chapter Introduction
	Sequences
	List Comprehensions
	Syntax and semantics
	Translating list comprehensions

	Using List Comprehensions
	Strings of spaces
	Prime number test
	Squares of primes
	Doubling positive elements
	Concatenating a list of lists of lists
	First occurrence in a list

	What Next?
	Exercises
	Acknowledgements
	Terms and Concepts
	References

