
Exploring Languages
with Interpreters

and Functional Programming
Chapter 17

H. Conrad Cunningham

04 April 2022

Contents
17 Higher Order Function Examples 2

17.1 Chapter Introduction . 2
17.2 List-Breaking Operations . 2
17.3 List-Combining operations . 3
17.4 Rational Arithmetic Revisited . 4
17.5 Mergesort . 4
17.6 Divide-and-Conquer Algorithms 6

17.6.1 General strategy . 6
17.6.2 As higher-order function 6
17.6.3 Generating Fibonacci sequence 7
17.6.4 Folding a list . 8
17.6.5 Finding minimum and maximum of a list 9

17.7 What Next? . 10
17.8 Chapter Source Code . 10
17.9 Exercises . 11
17.10Wally World Marketplace POP Project 12

17.10.1 Problem description and initial design 12
17.10.2 Prelude functions useful for project 15
17.10.3 POP project exercises . 16

17.11Acknowledgements . 18
17.12Terms and Concepts . 19
17.13References . 19

Copyright (C) 2016, 2017, 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

2

17 Higher Order Function Examples
17.1 Chapter Introduction
Chapters 15 and 16 introduced the concepts of first-class and higher-order
functions and their implications for Haskell programming.

The goals of this chapter (17) are to:

• continue to explore first-class and higher-order functions by examining
additional library functions and examples

• examine how to express general problem-solving strategies as higher-order
functions, in particular the divide-and-conquer strategy

17.2 List-Breaking Operations
In Chapter 13, we looked at the list-breaking functions take and drop. The
Prelude also includes several higher-order list-breaking functions that take two
arguments, a predicate that determines where the list is to be broken and the
list to be broken.

Here we look at Prelude functions takeWhile and dropWhile. As you would
expect, function takeWhile “takes” elements from the beginning of the list
“while” the elements satisfy the predicate and dropWhile “drops” elements from
the beginning of the list “while” the elements satisfy the predicate. The Prelude
definitions are similar to the following:

takeWhile':: (a -> Bool) -> [a] -> [a] -- takeWhile in Prelude
takeWhile' p [] = []
takeWhile' p (x:xs)

| p x = x : takeWhile' p xs
| otherwise = []

dropWhile' :: (a -> Bool) -> [a] -> [a] -- dropWhile in Prelude
dropWhile' p [] = []
dropWhile' p xs@(x:xs')

| p x = dropWhile' p xs'
| otherwise = xs

Note the use of the pattern xs@(x:xs’) in dropWhile'. This pattern matches
a non-nil list with x and xs’ binding to the head and tail, respectively, as usual.
Variable xs binds to the entire list.

As an example, suppose we want to remove the leading blanks from a string. We
can do that with the expression:

dropWhile ((==) ' ')

As with take and drop, the above functions can also be related by a “law”. For
all finite lists xs and predicates p on the same type:

3

takeWhile p xs ++ dropWhile p xs = xs

Prelude function span combines the functionality of takeWhile and dropWhile
into one function. It takes a predicate p and a list xs and returns a tuple where
the first element is the longest prefix (possibly empty) of xs that satisfies p and
the second element is the remainder of the list.

span' :: (a -> Bool) -> [a] -> ([a],[a]) -- span in Prelude
span' _ xs@[] = (xs, xs)
span' p xs@(x:xs')

| p x = let (ys,zs) = span' p xs' in (x:ys,zs)
| otherwise = ([],xs)

Thus the following “law” holds for all finite lists xs and predicates p on same
type:

span p xs == (takeWhile p xs, dropWhile p xs)

The Prelude also includes the function break, defined as follows:

break' :: (a -> Bool) -> [a] -> ([a],[a]) -- break in Prelude
break' p = span (not . p)

17.3 List-Combining operations
In Chapter 14, we also looked at the function zip, which takes two lists and
returns a list of pairs of the corresponding elements. Function zip applies an
operation, in this case tuple-construction, to the corresponding elements of two
lists.

We can generalize this pattern of computation with the function zipWith in
which the operation is an argument to the function.

zipWith' :: (a->b->c) -> [a]->[b]->[c] -- zipWith in Prelude
zipWith' z (x:xs) (y:ys) = z x y : zipWith' z xs ys
zipWith' _ _ _ = []

Using a lambda expression to state the tuple-forming operation, the Prelude
defines zip in terms of zipWith:

zip'' :: [a] -> [b] -> [(a,b)] -- zip
zip'' = zipWith' (\x y -> (x,y))

Or it can be written more simply as:

zip''' :: [a] -> [b] -> [(a,b)] -- zip
zip''' = zipWith' (,)

The zipWith function also enables us to define operations such as the scalar
product of two vectors in a concise way.

sp :: Num a => [a] -> [a] -> a
sp xs ys = sum' (zipWith' (*) xs ys)

4

The Prelude includes zipWith3 for triples. Library Data.List has versions of
zipWith that take up to seven input lists: zipWith3 · · · zipWith7.

17.4 Rational Arithmetic Revisited
Remember the rational number arithmetic package developed in Chapter 7. In
that package’s Rational module, we defined a function eqRat to compare two
rational numbers for equality using the appropriate set of integer comparisons.

eqRat :: Rat -> Rat -> Bool
eqRat x y = (numer x) * (denom y) == (numer y) * (denom x)

We could have implemented the other comparison operations similarly.

Because the comparison operations are similar, they are good candidates for
us to use a higher-order function. We can abstract out the common pattern of
comparisons into a function that takes the corresponding integer comparison as
an argument.

To compare two rational numbers, we can express their values in terms of a
common denominator (e.g., denom x * denom y) and then compare the numer-
ators using the integer comparisons. We can thus abstract the comparison into
a higher-order function compareRat that takes an appropriate integer relational
operator and the two rational numbers.

compareRat :: (Int -> Int -> Bool) -> Rat -> Rat -> Bool
compareRat r x y = r (numer x * denom y) (denom x * numer y)

Then we can define the rational number comparisons in terms of compareRat.
(Note that we redefine function eqRat from the package Chapter 7.)

eqRat,neqRat,ltRat,leqRat,gtRat,geqRat :: Rat -> Rat -> Bool
eqRat = compareRat (==)
neqRat = compareRat (/=)
ltRat = compareRat (<)
leqRat = compareRat (<=)
gtRat = compareRat (>)
geqRat = compareRat (>=)

The Haskell module for the revised rational arithmetic module is in
RationalHO.hs. The module TestRationalHO.hs is an extended version of
the standard test script from Chapter 12 that tests the standard features of
the rational arithmetic module plus eqRat, neqRat, and ltRat. (It does not
currently test leqRat, gtRat, or geqRat.)

17.5 Mergesort
We defined the insertion sort in Chapter 14. It has an average-case time
complexity of O(nˆ2) where n is the length of the input list.

5

../Ch07/RationalHO.hs
../Ch07/RestRationalHO.hs

We now consider a more efficient function to sort the elements of a list into
ascending order: mergesort. Mergesort works as follows:

• If the list has fewer than two elements, then it is already sorted.

• If the list has two or more elements, then we split it into two sublists, each
with about half the elements, and sort each recursively.

• We merge the two ascending sublists into an ascending list.

We define function msort to be a polymorphic, higher-order function that has
two parameters. The first (less) is the comparison operator and the second
(xs) is the list to be sorted. Function less must be defined for every element
that appears in the list to be sorted.

msort :: Ord a => (a -> a -> Bool) -> [a] -> [a]
msort _ [] = []
msort _ [x] = [x]
msort less xs = merge less (msort less ls) (msort less rs)

where n = (length xs) `div` 2
(ls,rs) = splitAt n xs
merge _ [] ys = ys
merge _ xs [] = xs
merge less ls@(x:xs) rs@(y:ys)

| less x y = x : (merge less xs rs)
| otherwise = y : (merge less ls ys)

By nesting the definition of merge, we enabled it to directly access the the
parameters of msort. In particular, we did not need to pass the comparison
function to merge.

Assuming that less evaluates in constant time, the time complexity of msort is
O(n * log2 n), where n is the length of the input list and log2 is a function
that computes the logarithm with base 2.

• Each call level requires splitting of the list in half and merging of the two
sorted lists. This takes time proportional to the length of the list argument.

• Each call of msort for lists longer than one results in two recursive calls of
msort.

• But each successive call of msort halves the number of elements in its
input, so there are O(log2 n) recursive calls.

So the total cost is O(n * log2 n). The cost is independent of distribution of
elements in the original list.

We can apply msort as follows:

msort (<) [5, 7, 1, 3]

6

Function msort is defined in curried form with the comparison function first.
This enables us to conveniently specialize msort with a specific comparison
function. For example,

descendSort :: Ord a => [a] -> [a]
descendSort = msort (\ x y -> x > y) -- or (>)

17.6 Divide-and-Conquer Algorithms
The mergesort (msort) function in Section 17.5 uses the divide-and-conquer
strategy to solve the sorting problem. In this section, we exmine that strategy
in more detail.

17.6.1 General strategy

For some problem P, the general strategy for divide-and-conquer algorithms has
the following steps:

1. Decompose the problem P into subproblems, each like P but with a smaller
input argument.

2. Solve each subproblem, either directly or by recursively applying the
strategy.

3. Assemble the solution to P by combining the solutions to its subproblems.

The advantages of divide-and-conquer algorithms are that they:

• can lead to efficient solutions.

• allow use of a “horizontal” parallelism. Similar problems can be solved
simultaneously.

We examined the meregesort algorithm in Section 17.5. Other well-known divide-
and-conquer algorithms include quicksort, binary search, and multiplication
[3:6.4]. In these algorithms, the divide-and-conquer strategy leads to more
efficient algorithms.

For example, consider searching for a value in a list. A simple sequential
search has a time complexity of O(n), where n denotes the length of the list.
Application of the divide-and-conquer strategy leads to binary search, a more
efficient O(log2 n) algorithm.

17.6.2 As higher-order function

As a general pattern of computation, the divide and conquer strategy can be
expressed as the following higher-order function:

divideAndConquer :: (a -> Bool) -- trivial
-> (a -> b) -- simplySolve
-> (a -> [a]) -- decompose

7

-> (a -> [b] -> b) -- combineSolutions
-> a -- problem
-> b

divideAndConquer trivial simplySolve decompose
combineSolutions problem

= solve problem
where solve p

| trivial p = simplySolve p
| otherwise = combineSolutions p

(map solve (decompose p))

If the problem is trivially simple (i.e., trivial p holds), then it can be solved
directly using simplySolve.

If the problem is not trivially simple, then it is decomposed using the decompose
function. Each subproblem is then solved separately using map solve. The
function combineSolutions then assembles the subproblem solutions into a
solution for the overall problem.

Sometimes combineSolutions may require the original problem description to
put the solutions back together properly. Hence, the parameter p in the function
definition.

Note that the solution of each subproblem is completely independent from the
solution of all the others.

If all the subproblem solutions are needed by combineSolutions, then the
language implementation could potentially solve the subproblems simultaneously.
The implementation could take advantage of the availability of multiple processors
and actually evaluate the expressions in parallel. This is “horizontal” parallelism
as described above.

If combineSolutions does not require all the subproblem solutions, then the
subproblems cannot be safely solved in parallel. If they were, the result of
combineSolutions might be nondeterministic, that is, the result could be
dependent upon the relative order in which the subproblem results are completed.

Now let’s use the function divideAndConquer to define a few functions.

17.6.3 Generating Fibonacci sequence

First, let’s define a Fibonacci function. Consider the following definition (adapted
from Kelly [9:77–78]). This function is inefficient, so it is given here primarily to
illustrate the technique.

fib :: Int -> Int
fib n = divideAndConquer trivial simplySolve decompose

combineSolutions problem
where trivial 0 = True

8

trivial 1 = True
trivial (m+2) = False
simplySolve 0 = 0
simplySolve 1 = 1
decompose m = [m-1,m-2]
combineSolutions _ [x,y] = x + y

17.6.4 Folding a list

Next, let’s consider a folding function (similar to foldr and foldl) that uses
the function divideAndConquer. Consider the following definition (also adapted
from Kelly [9:79–80]).

fold :: (a -> a -> a) -> a -> [a] -> a
fold op i =

divideAndConquer trivial simplySolve decompose
combineSolutions

where trivial xs = length xs <= 1
simplySolve [] = i
simplySolve [x] = x
decompose xs = [take m xs, drop m xs]

where m = length xs / 2
combineSolutions _ [x,y] = op x y

This function divides the input list into two almost equal parts, folds each part
separately, and then applies the operation to the two partial results to get the
combined result.

The fold function depends upon the operation op being associative. That is,
the result must not be affected by the order in which the operation is applied to
adjacent elements of the input list.

In foldr and foldl, the operations are not required to be associative. Thus
the result might depend upon the right-to-left operation order in foldr or
left-to-right order in foldl.

Function fold is thus a bit less general. However, since the operation is associa-
tive and combineSolutions is strict in all elements of its second argument, the
operations on pairs of elements from the list can be safely done in parallel,

Another divide-and-conquer definition of a folding function is the function fold'
shown below. It is an optimized version of fold above.

fold' :: (a -> a -> a) -> a -> [a] -> a
fold' op i xs = foldt (length xs) xs

where foldt _ [] = i
foldt _ [x] = x
foldt n ys = op (foldt m (take m ys))

(foldt m' (drop m ys))

9

where m = n / 2
m' = n - m

17.6.5 Finding minimum and maximum of a list

Now, consider the problem of finding both the minimum and the maximum
values in a nonempty list and returning them as a pair.

First let’s look at a definition that uses the left-folding operator.

sMinMax :: Ord a => [a] -> (a,a)
sMinMax (x:xs) = foldl' newmm (x,x) xs

where newmm (y,z) u = (min y u, max z u)

Let’s assume that the comparisons of the elements are expensive and base our
time measure on the number of comparisons. Let n denote the length of the list
argument and time be a time function

A singleton list requires no comparisons. Each additional element adds two
comparisons (one min and one max).

time n | n == 1 = 0
| n >= 2 = time (n-1) + 2

Thus time n == 2 * n - 2.

Now let’s look at a divide-and-conquer solution.

minMax :: Ord a => [a] -> (a,a)
minMax [x] = (x,x)
minMax [x,y] = if x < y then (x,y) else (y,x)
minMax xs = (min a c, max b d)

where m = length xs / 2
(a,b) = minMax (take m xs)
(c,d) = minMax (drop m xs)

Again let’s count the number of comparisons for a list of length n.

time n | n == 1 = 0
| n == 2 = 1
| n > 2 = time (floor (n/2)) + time (ceiling (n/2)) + 2

For convenience suppose n = 2ˆk for some k >= 1.

time n = 2 * time (n/2) + 2
= 2 * (2 * time (n/4) + 2) + 2
= 4 * time (n/4) + 4 + 2
= ...
= 2ˆ(k-1) * time 2 + sum [2ˆi | i <- [1..(k-1)]]
= 2ˆ(k-1) + 2 * sum [2ˆi | i <- [1..(k-1)]]

- sum [2ˆi | i <- [1..(k-1)]]
= 2ˆ(k-1) + 2ˆk - 2

10

= 3 * 2ˆ(k-1) - 2
= 3 * (n/2) - 2

Thus the divide and conquer version takes 25 percent fewer comparisons than
the left-folding version.

So, if element comparisons are the expensive in relation to to the take, drop, and
length list operations, then the divide-and-conquer version is better. However,
if that is not the case, then the left-folding version is probably better.

Of course, we can also express minMax in terms of the function divideAndConquer.

minMax' :: Ord a => [a] -> (a,a)
minMax' = divideAndConquer trivial simplySolve decompose

combineSolutions
where n = length xs

m = n/2
trivial xs = n <= 2
simplySolve [x] = (x,x)
simplySolve [x,y] =

if x < y then (x,y) else (y,x)
decompose xs =

[take m xs, drop m xs]
combineSolutions _ [(a,b),(c,d)] =

(min a c, max b d)

17.7 What Next?
Chapters 15, 16, and 17 (this chapter) examined higher-order list programming
concepts and features.

Chapter 18 examines list comprehensions, an alternative syntax for higher-
order list processing that is likely comfortable for programmers coming from an
imperative programming background.

17.8 Chapter Source Code
The Haskell module for list-breaking, list-combining, and mergesort functions is
in file HigherOrderExamples.hs.

The Haskell module for the revised rational arithmetic module is in
RationalHO.hs. The module TestRationalHO.hs is an extended version of the
standard test script from Chapter 12.

TODO: Reconstruct source code for divide-and-conquer functions and place links
here and in text above. May also want to break out mergesort into a separate
module.

11

HigherOrderExamples.hs
../Ch07/RationalHO.hs
../Ch07/RestRationalHO.hs

17.9 Exercises
1. Define a Haskell function

removeFirst :: (a -> Bool) -> [a] -> [a]

so that removeFirst p xs removes the first element of xs that has the
property p.

2. Define a Haskell function

removeLast :: (a -> Bool) -> [a] -> [a]

so that removeLast p xs removes the last element of xs that has the
property p.

How could you define it using removeFirst?

3. A list s is a prefix of a list t if there is some list u (perhaps nil) such that
s ++ u == t. For example, the prefixes of string "abc" are "", "a", "ab",
and "abc".

A list s is a suffix of a list t if there is some list u (perhaps nil) such that
u ++ s == t. For example, the suffixes of "abc" are "abc", "bc", "c",
and "".

A list s is a segment of a list t if there are some (perhaps nil) lists u and v
such that u ++ s ++ v = t. For example, the segments of string "abc"
consist of the prefixes and the suffixes plus "b".

Define the following Haskell functions. You may use functions appearing
early in the list to implement later ones.

a. Define a function prefix such that prefix xs ys returns True if xs
is a prefix of ys and returns False otherwise.

b. Define a function suffixes such that suffixes xs returns the list
of all suffixes of list xs. (Hint: Generate them in the order given in
the example of "abc" above.)

c. Define a function indexes such that indexes xs ys returns a list
of all the positions at which list xs appears in list ys. Consider
the first character of ys as being at position 0. For example,
indexes "ab" "abaabbab" returns [1,4,7]. (Hint: Remember
functions like map, filter, zip, and the functions you just defined.)

d. Define a function sublist such that sublist xs ys returns True if
list xs appears as a segment of list ys and returns False otherwise.

4. Assume that the following Haskell type synonyms have been defined:

type Word = String -- word, characters left-to-right
type Line = [Word] -- line, words left-to-right

12

type Page = [Line] -- page, lines top-to-bottom
type Doc = [Page] -- document, pages front-to-back

Further assume that values of type Word do not contain any space characters.
Implement the following Haskell text-handling functions:

a. npages that takes a Doc and returns the number of Pages in the
document.

b. nlines that takes a Doc and returns the number of Lines in the
document.

c. nwords that takes a Doc and returns the number of Words in the
document.

d. nchars that takes a Doc and returns the number of Chars in the
document (not including spaces of course).

e. deblank that takes a Doc and returns the Doc with all blank lines
removed. A blank line is a line that contains no words.

f. linetext that takes a Line and returns the line as a String with
the words appended together in left-to-right order separated by space
characters and with a newline character '\n' appended to the right
end of the line. (For example, linetext ["Robert", "Khayat"]
yields "Robert Khayat\n".)

g. pagetext that takes a Page and returns the page as a String—applies
linetext to its component lines and appends the result in a top-to-
bottom order.

h. doctext that takes a Doc and returns the document as a String—
applies pagetext to its component lines and appends the result in a
top-to-bottom order.

i. wordeq that takes a two Docs and returns True if the two docu-
ments are word equivalent and False otherwise. Two documents
are word equivalent if they contain exactly the same words in
exactly the same order regardless of page and line structure.
For example, [[["Robert"],["Khayat"]]] is word equivalent to
[[["Robert","Khayat"]]].

17.10 Wally World Marketplace POP Project
17.10.1 Problem description and initial design

Wally World Marketplace (WWM) is a “big box” store selling groceries, dry goods,
hardware, electronics, etc. In this project, we develop part of a point-of-purchase
(POP) system for WWM.

The barcode scanner at a WWM POP—i.e., checkout counter—generates a list
of barcodes for the items in a customer’s shopping cart. For example, a cart

13

with nine items might result in the list:

[1848, 1620, 1492, 1620, 1773, 2525, 9595, 1945, 1066]

Note that there are two instances of the item with barcode 1620.

The primary goal of this project is to develop a Haskell module WWMPOP (in
file WWMPOP.hs) that takes a list of barcodes corresponding to the items in a
shopping cart and generates the corresponding printable receipt. The module
consists of several functions that work together. We build these incrementally in
a somewhat bottom-up manner.

Let’s consider how to model the various kinds of “objects” in our application.
The basic objects include:

• barcodes for products, which we represent as integers

• prices of products, which we represent as integers denoting cents

• names of products, which we represent as strings

We introduce the following Haskell type aliases for these basic objects above:

type BarCode = Int
type Price = Int
type Name = String

We associate barcodes with the product names and prices using a “database”
represented as a list of tuples. We represent this price list database using the
following type alias:

type PriceList = [(BarCode,Name,Price)]

An example price list database is:

database :: PriceList
database = [(1848, "Vanilla yogurt cups (4)", 188),

(1620, "Ground turkey (1 lb)", 316),
(1492, "Corn flakes cereal", 299),
(1773, "Black tea bags (100)", 307),
(2525, "Athletic socks (6)", 825),
(9595, "Claw hammer", 788),
(1945, "32-in TV", 13949),
(1066, "Zero sugar cola (12)", 334),
(2018, "Haskell programming book", 4495)

]

To generate a receipt, we need to take a list of barcodes from a shopping cart
and generate a list of prices associated with the items in the cart. From this list,
we can generate the receipt.

We introduce the type aliases:

14

type CartItems = [BarCode]
type CartPrices = [(Name,Price)]

We thus identify the need for a Haskell function

priceCart :: PriceList -> CartItems -> CartPrices

that takes a database of product prices (i.e., a price list) and a list of barcodes
of the items in a shopping cart and generates the list of item prices.

Of course, we must determine the relevant sales taxes due on the items and
determine the total amount owed. We introduce the following type alias for the
bill:

type Bill = (CartPrices, Price, Price, Price)

The three Price items above are for Subtotal, Tax, and Total amounts associated
with the purchase (printed on the bottom of the receipt).

We thus identify the need for a Haskell function

makeBill :: CartPrices -> Bill

that takes the list of item prices and constructs a Bill tuple. In carrying out
this calculation, the function uses the following n constant:

taxRate :: Double
taxRate = 0.07

Given a bill, we must be able to convert it to a printable receipt. Thus we
introduce the Haskell function

formatBill :: Bill -> String

that takes a bill tuple and generates the receipt. It uses the following named
constant for the width of the line:

lineWidth :: Int
lineWidth = 34

Given the above functions, we can put the above functionality together with the
Haskell function:

makeReceipt :: PriceList -> CartItems -> String

that does the end-to-end conversion of a list of barcodes to a printed receipt
given an applicable price database, tax rate, and line width.

Given the example shopping cart items and price list database, we get the
following receipt when printed.

Wally World Marketplace

Vanilla yogurt cups (4).......1.88
Ground turkey (1 lb)..........3.16

15

Toasted oat cereal............2.99
Ground turkey (1 lb)..........3.16
Black tea bags (100)..........3.07
Athletic socks (6)............8.25
Claw hammer...................7.88
32-in. television...........139.49
Zero sugar cola (12)..........3.34

Subtotal....................176.26
Tax..........................12.34
Total.......................188.60

The above Haskell definitions are collected into the source file WWMPOP_skeleton.hs.

The exercises in Section 17.10.3 guide you to develop the above functions
incrementally.

17.10.2 Prelude functions useful for project

In the exercises in Section 17.10.3, you may want to consider using some of the
following:

• numeric functions from the Prelude library such as such as:

– div, integer division truncated toward negative infinity, and quot,
integer division truncated toward 0

– rem and mod satisfy the following for y /= 0

(x `quot` y)*y + (x `rem` y) == x
(x `div` y)*y + (x `mod` y) == x

– floor, ceiling, truncate, and round that convert real numbers to
integers; truncate truncates toward 0 and round rounds away from
0

– fromIntegral converts integers to Double (and from Integer to
Int)

– show converts numbers to strings

• first-order list functions (Chapters 13 and 14) from the Prelude–such as
head, tail, ++, -take, drop, length, -sum, and product

• Prelude function replicate :: Int -> a -> [a] such that replicate n e
returns a list of n copies of e

• higher-order list functions (Chapters 15, 16, and 17) from the Prelude such
as map, filter, foldr, foldl, and concatMap

• list comprehensions (Chapter 18)—not necessary for solution but may be
convenient

16

WWWMPOP_skeleton.hs

17.10.3 POP project exercises

Note: Most of the exercises in this project can be programmed without direct
recursions. Consider the Prelude functions listed in the previous subsection.

Also remember that the character code '\n' is the newline character; it denotes
the end of a line in Haskell strings.

This project defines several type aliases and the constants lineWidth and
taxRate that should be defined and used in the exercises. You should start with
the template source file WWMPOP_skeleton.hs to develop your own WWMPOP.hs
solution.

1. Develop the Haskell function

formatDollars :: Price -> String

that takes a Price in cents and formats a string in dollars and cents. For
example, formatDollars 1307 returns the string 13.07. (Note the 0 in
07.)

2. Using formatDollars above, develop the Haskell function

formatLine :: (Name, Price) -> String

that takes an item and formats a line of the receipt for that item. For
example,

formatLine ("Claw hammer",788)

yields the string:

"Claw hammer...................7.88\n"

This string has length lineWidth not including the newline character. The
space between the item’s name and cost is filled using '.' characters.

3. Using the formatLine function above, develop the Haskell function

formatLines :: CartPrices -> String

that takes a list of priced items and formats a string with a line for each
item. (In general, the resulting string will consist of several lines, each
ending with a newline.)

4. Develop the Haskell function

calcSubtotal :: CartPrices -> Price

that takes a list of priced items and calculates the sum of the prices (i.e.,
the subtotal).

5. Develop the Haskell function

formatAmt :: String -> Price -> String

17

WWWMPOP_skeleton.hs

that takes a label string and a price amount and generates a line of the
receipt for that label

For example,

formatAmt "Total" 18860

generates the string:‘

"Total.......................188.60\n"`.

6. Develop the Haskell function

formatBill :: Bill -> String

that takes a Bill tuple and generates a receipt string.

7. Develop the Haskell function

look :: PriceList -> BarCode -> (Name,Price)

that takes a price list database and a barcode for an item and looks up
the name and price of the item.

If the BarCode argument does not occur in the PriceList, then look
should return the tuple ("None",0).

8. Now develop the Haskell function

priceCart :: PriceList -> CartItems -> CartPrices

defined above.

9. Now develop the Haskell function

makeBill :: CartPrices -> Bill

defined above. It takes a list of priced items and generates a bill tuple. It
uses the taxRate constant.

10. Now develop the Haskell function

makeReceipt :: PriceList -> CartItems -> String

defined above. This function defines the end-to-end processing that takes
the list of items from the shopping cart and generates the receipt.

11. Develop Haskell functions

addPL :: PriceList -> BarCode -> (Name,Price)
-> PriceList

removePL :: PriceList -> BarCode -> PriceList

Function removePL takes an “old” price list and a barcode to remove and
returns a “new” price list with any occurrences of that barcode removed.

18

Function addPL takes an “old” price list, a barcode, and a name/price pair
to add and returns a price list with the item added. (If the the barcode is
already in the list, the old entry should be removed.)

17.11 Acknowledgements
In Summer 2016, I adapted and revised the following to form a chapter on
Higher-Order Functions:

• Chapter 6 of my Notes on Functional Programming with Haskell [7], which
is influenced by Bird [1–3] and Wentworth [11]

• My notes on Functional Data Structures (Scala) [8], which are based, in
part, on chapter 3 of the book Functional Programming in Scala [4] and
its associated materials [5,6]

In 2017, I continued to develop this work as Chapter 5, Higher-Order Functions,
of my 2017 Haskell-based programming languages textbook.

In Summer 2018, I divided the previous Higher-Order Functions chapter into
three chapters in the 2018 version of the textbook, now titled Exploring Languages
with Interpreters and Functional Programming (ELIFP), Previous sections 5.1-
5.2 became the basis for new Chapter 15, Higher-Order Functions, section 5.3
became the basis for new Chapter 16, Haskell Function Concepts, and previous
sections 5.4-5.6 became the basis for new Chapter 17 (this chapter), Higher-Order
Function Examples.

In Fall 2018, I developed the Wally World Marketplace POP project. It was
motivated by a similar project in Thompson’s textbook [10] that I had used in
my courses. I designed the project and its exercises to allow for the possibility
of automatic grading.

In Summer 2018, I also adapted and revised Chapter 14 of my Notes on Func-
tional Programming with Haskell [7] to form Chapter 29 (Divide and Conquer
Algorithms) of ELIFP. These previous notes drew on the presentations in the 1st
edition of the Bird and Wadler textbook [3], Kelly’s dissertation [9], and other
functional programming sources.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

In 2022, I also merged the previous ELIFP Chapter 29 (Divide and Conquer
Algorithms) and the Wally World Marketplace project into an expanded Chapter
17 (this chapter) of the revised ELIFP.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document

19

to HTML, PDF, and other forms as needed.

17.12 Terms and Concepts
List-breaking (splitting) operators, list-combining operators, rational arithmetic,
merge sort, divide and conquer, horizontal parallelism, divide and conquer as
higher-order function, sequential search binary search, simply solve, decompose,
combine solutions, Fibonacci sequence, nondeterministic, associative.

17.13 References
[1] Richard Bird. 1998. Introduction to functional programming using Haskell

(Second ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.
[2] Richard Bird. 2015. Thinking functionall with Haskell (First ed.). Cam-

bridge University Press, Cambridge, UK.
[3] Richard Bird and Philip Wadler. 1988. Introduction to functional pro-

gramming (First ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.
[4] Paul Chiusano and Runar Bjarnason. 2015. Functional programming in

Scala (First ed.). Manning, Shelter Island, New York, USA.
[5] Paul Chiusano and Runar Bjarnason. 2022. FP in Scala exercises, hints,

and answers. Retrieved from https://github.com/fpinscala/fpinscala
[6] Paul Chiusano and Runar Bjarnason. 2022. FP in Scala community guide

and chapter notes. Retrieved from https://github.com/fpinscala/fpinsca
la/wiki

[7] H. Conrad Cunningham. 2014. Notes on functional programming with
Haskell. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf

[8] H. Conrad Cunningham. 2019. Functional data structures (Scala). Uni-
versity of Mississippi, Department of Computer and Information Science,
University, Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/
~hcc/csci555/notes/FPS03/FunctionalDS.html

[9] Paul H. J. Kelly. 1989. Functional programming for loosely-coupled
multiprocessors. MIT Press, Cambridge, Massachusetts, USA.

[10] Simon Thompson. 2011. Haskell: The craft of programming (Third ed.).
Addison-Wesley, Boston, Massachusetts, USA.

[11] E. Peter Wentworth. 1990. Introduction to functional programming using
RUFL. Rhodes University, Department of Computer Science, Graham-
stown, South Africa.

20

https://github.com/fpinscala/fpinscala
https://github.com/fpinscala/fpinscala/wiki
https://github.com/fpinscala/fpinscala/wiki
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci555/notes/FPS03/FunctionalDS.html
https://john.cs.olemiss.edu/~hcc/csci555/notes/FPS03/FunctionalDS.html

	Higher Order Function Examples
	Chapter Introduction
	List-Breaking Operations
	List-Combining operations
	Rational Arithmetic Revisited
	Mergesort
	Divide-and-Conquer Algorithms
	General strategy
	As higher-order function
	Generating Fibonacci sequence
	Folding a list
	Finding minimum and maximum of a list

	What Next?
	Chapter Source Code
	Exercises
	Wally World Marketplace POP Project
	Problem description and initial design
	Prelude functions useful for project
	POP project exercises

	Acknowledgements
	Terms and Concepts
	References

