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15 Higher-Order Functions

15.1 Chapter Introduction

The previous chapters discussed first-order programming in Haskell. This chapter
“kicks it up a notch” (to quote chef Emeril Lagasse) by adding powerful new
abstraction facilities.

The goals of this chapter (15) are to:
¢ introduce first-class and higher-order functions
e construct a library of useful higher-order functions to process lists

This chapter continues the emphasis on Haskell programs that are correct,
terminating, efficient, and elegant.

The chapter approaches the development of higher-order functions by generalizing
a set of first-order functions having similar patterns of computation.

The Haskell module for this chapter is in file HigherOrderFunctions.hs.

15.2 Generalizing Procedural Abstractions

A function in a programming language is a procedural abstraction. It separates
the logical properties of a computation from the details of how the computation
is implemented. It abstracts a pattern of behavior and encapsulates it within a
program unit.

Suppose we wish to perform the same computation on a set of similar data
structures. As we have seen, we can encapsulate the computation in a function
having the data structure as an argument. For example, the function length'
computes the number of elements in a list of any type.4 Suppose instead we wish
to perform a similar (but not identical) computation on a set of similar data
structures. For example, we want to compute the sum or the product of a list of
numbers. In this case, we may can pass the operation itself into the function.

This kind of function is called a higher-order function. A higher-order function is
a function that takes functions as arguments or returns functions in a result. Most
traditional imperative languages do not fully support higher-order functions.

In most functional programming languages, functions are treated as first class
values. That is, functions can be stored in data structures, passed as arguments
to functions, and returned as the results of functions. Historically, imperative
languages have not treated functions as first-class values. (Recently, many
imperative languages, such as Java 8, have added support for functions as
first-class values.)

The higher-order functions in Haskell and other functional programming lan-
guages enable us to construct regular and powerful abstractions and operations.
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By taking advantage of a library of higher-order functions that capture com-
mon patterns of computation, we can quickly construct concise, yet powerful,
programs.

This can increase programmer productivity and program reliability because such
programs are shorter, easier to understand, and constructed from well-tested
components.

Higher-order functions can also increase the modularity of programs by enabling
simple program fragments to be “glued together” readily into more complex
programs.

In this chapter, we examine several common patterns and build a library of
useful higher-order functions.

15.3 Defining map

Consider the following two functions, noting their type signatures and patterns
of recursion.

The first, squareAll, takes a list of integers and returns the corresponding list
of squares of the integers.

squareAll :: [Int] -> [Int] squareAll :: [Int] -> [Int]
squareAll [] = [
squareAll (x:xs) = (x * x) : squareAll xs

The second, lengthAll,q takes a list of lists and returns the corresponding list
of the lengths of the element lists; it uses the Prelude function length.

lengthAll :: [[al]l -> [Int]
lengthAll [] =0
lengthAll (xs:xss) = (length xs) : lengthAll xss

Although these functions take different kinds of data (a list of integers versus
a list of polymorphically typed lists) and apply different operations (squaring
versus list length), they exhibit the same pattern of computation. That is, both
take a list of some type and apply a given function to each element to generate
a resulting list of the same length as the original.

The combination of polymorphic typing and higher-order functions allow us to
abstract this pattern of computation into a standard function.

We can abstract the pattern of computation common to squareAll and
lengthAll as the (broadly useful) function map, which we define as follows. (In
this chapter, we often add a suffix to the base function names to avoid conflicts
with the similarly named functions in the Prelude. Here we use map’ instead of
map.)

map' :: (a -> b) -> [a] -> [b] -- map in Prelude
map' f [] =0



map' f (x:xs) = f x : map' f xs

Function map generalizes squareAll, lengthAll, and similar functions by adding
a higher-order parameter for the operation applied and making the input and
the output lists polymorphic. Specifically, he function takes a function f of type
a -> b and a list of type [al, applies function f to each element of the list, and
produces a list of type [b].

Thus we can specialize map to give new definitions of squareAll and lengthAll
as follows:

squareAll2 :: [Int] -> [Int]
squareAll2 xs = map' sq Xs
where sq x = x * X

lengthAl112 :: [[al] -> [Int]
lengthAll2 xss = map' length xss

Consider the following questions.

e Under what circumstances does map' f xs terminate? Do we have to
assume anything about £7 about xs?

e What is the time complexity of map f xs?

e What is the time complexity of squareAl12 xs? Of lengthAl12 xs?

15.4 Thinking about Data Transformations

Above we define map as a recursive function that transforms the elements of a
list one by one. However, it is often more useful to think of map in one of two
ways:

1. as a powerful list operator that transforms every element of the list. We can
combine map with other powerful operators to quickly construct powerful
list processing programs.

We can consider map as operating on every element of the list “simulta-
neously”. In fact, an implementation could use separate processors to
transform each element: this is essentially the map operation in Google’s
mapReduce distributed “big data” processing framework.

Referential transparency and immutable data structures make parallelism
easier in Haskell than in most imperative languages.

2. as a operator node in a dataflow network. A stream of data objects flows
into the map node. The map node transforms each object by applying the
argument function. Then the data object flows out to the next node of the
network.

The lazy evaluation of the Haskell functions enables such an implementa-
tion.



Although in the early parts of these notes we give attention to the details of
recursion, learning how to think like a functional programmer requires us to
think about large-scale transformations of collections of data.

15.5 Generalizing Function Definitions

Whenever we recognize a computational pattern in a set of related functions, we
can generalize the function definition as follows:

1. Do a scope-commonality-variability (SCV) analysis on the set of related
functions [7].

That is, identify what is to be included and what not (i.e., the scope),
the parts of functions that are the same (i.e., the commonalities or frozen
spots), and the parts that differ (the variabilities or hot spots).

2. Leave the commonalities in the generalized function’s body.

3. Move the variabilities into the generalized function’s header—its type
signature and parameter list.

o If the part moved to the generalized function’s parameter list is an
expression, then make that part a function with a parameter for each
local variable accessed.

o If a data type potentially differs from a specific type used in the set
of related functions, then add a type parameter to the generalized
function.

e If the same data value or type appears in multiple roles, then consider
adding distinct type or value parameters for each role.

4. Consider other approaches if the generalized function’s type signature and
parameter list become too complex.

For example, we can introduce new data or procedural abstractions for
parts of the generalized function. These may be in the same module of the
generalized function or in an appropriately defined separate module.

15.6 Defining filter
Consider the following two functions.

The first, getEven, takes a list of integers and returns the list of those integers
that are even (i.e., are multiples of 2). The function preserves the relative order
of the elements in the list.

getEven :: [Int] -> [Int]
getEven [] =0
getEven (x:xs)



| even x
| otherwise

x : getEven xs
getEven xs

The second, doublePos, takes a list of integers and returns the list of doubles of
the positive integers from the input list; it preserves the relative order of the
elements.

doublePos :: [Int] -> [Int]

doublePos [] = [
doublePos (x:xs)
| 0 < x = (2 * x) : doublePos xs

| otherwise = doublePos xs

Function even is from the Prelude; it returns True if its argument is evenly
divisible by 2 and returns False otherwise.

What do these two functions have in common? What differs?
o Both take a list of integers and return a (possibly shorter) list of integers.

However, the fact they use integers is not important; the key fact is that
they take and return lists of the same element type.

e Both return an empty list when its input list is empty.

e In both, the relative orders of elements in the output list is the same as in
the input list.

¢ Both select some elements to copy to the output and others not to copy.

Function getEven selects elements that are even numbers and function
doublePos selects elements that are positive numbers.

o Function doublePos doubles the value copied and getEven leaves the value
unchanged.

Using the generalization method outlined above, we abstract the pattern of
computation common to getEven and doublePos as the (broadly useful) function
filter found in the Prelude. (We call the function filter’ below to avoid a
name conflict.)

filter' :: (a -> Bool) -> [a] -> [a] -- filter in Prelude
filter' _ [J =[]
filter' p (x:xs)
| p x =x : xs'
| otherwise = xs'
where xs' = filter' p xs

Function filter takes a predicate p of type a -> Bool and a list of type [a]
and returns a list containing those elements that satisfy p, in the same order as
the input list. Note that the keyword where begins in the same column as the =
in the defining equations; thus the scope of the definition of xs’ extends over
both legs of the definition.



Function filter does not incorporate the doubling operation from doublePos.
We could have included it as another higher-order parameter, but we leave it
out to keep the generalized function simple. We can use the already defined map
function to achieve this separately.

Therefore, we can specialize filter to give new definitions of getEven and
doublePos as follows:

getEven2 :: [Int] -> [Int]
getEven2 xs = filter' even xs

doublePos2 :: [Int] -> [Int]
doublePos2 xs = map' dbl (filter' pos xs)
where dbl x = 2 * x
pos x = (0 < x)

Note that function doublePos2 exhibits both the filter and the map patterns
of computation.

The standard higher-order functions map and filter allow us to restate the
three-leg definitions of getEven and doublePos in just one leg each, except that
doublePos requires two lines of local definitions. In Chapter 16, we see how to
eliminate these simple local definitions as well.

e Under what circumstances does filter' p xs terminate? Do we have to
assume anything about p? about xs?

e What is the time complexity of filter' p xs? space complexity?
e What is the time complexity of getEven2 xs? space complexity?

e What is the time complexity of doublePos2 xs? space complexity?

15.7 Defining Fold Right (foldr)

Consider the sum and product {.haskell} functions we defined in Chapter 4,
ignoring the short-cut handling of the zero element in product.

sum' :: [Int] -> Int -- sum in Prelude
sum' [] =0
sum' (x:x8) = X + sum' Xs

product' :: [Integer] -> Integer -- product in Prelude
product' [] =1
product' (x:xs) = x * product' xs

Both sum' and product' apply arithmetic operations to integers. What about
other operations with similar pattern of computation?

Also consider a function concat that concatenates a list of lists of some type into
a list of that type with the order of the input lists and their elements preserved.



concat' :: [[al]l -> [al] -- concat 4n Prelude
concat' [] = []
concat' (xs:xss) = xs ++ concat' xss

For example,

sum' [1,2,3] 1+ @+ (@3 +0)
product' [1,2,3] (1 x (2 % (3% 1)))
COnCat' [||1||’||2n’n3||] = ("1” ++ (||2|| ++ (||3|| ++ |lll)))

What do sum', product', and concat' have in common? What differs?
All exhibit the same pattern of computation.
o All take a list.

But the element type differs. Function sum' takes a list of Int values,
product' takes a list of Integer values, and concat' takes a polymorphic
list.

o All insert a binary operator between all the consecutive elements of the
list in order to reduce the list to a single value.

But the binary operation differs. Function sum' applies integer addition,
product' applies integer multiplication, and concat' applies ++.

e All group the operations from the right to the left.

o Each function returns some value for an empty list. The function extends
nonempty input lists to implicitly include this value as the “rightmost”
value of the input list.

But the actual value differs.

Function sum' returns integer 0, the (right) identity element for addition.

Function product' returns 1, the (right) identity element for multiplication.

Function concat' returns [1, the (right) identity element for ++.

In general, this value could be something other than the identity element.
e All return a value of the same element type as the input list.

But the input type differs, as we noted above.

This group of functions inserts operations of type a -> a -> a between elements
a list of type [a].

But these are special cases of more general operations of type a -=> b -> b. In
this case, the value returned must be of type b in the case of both empty and
nonempty lists.

We can abstract the pattern of computation common to sum', product', and
concat’ as the function foldr (pronounced “fold right”) found in the Prelude.
(Here we use foldrX{.haskell} to avoid the name conflict.)



foldrX :: (a -> b ->b) -> b -> [a] -> b -- foldr in Prelude
foldrX £ z [] =z
foldrX f z (x:xs) = f x (foldrX f z xs)

Function foldr:

e uses two type parameters a and b—one for the type of elements in the list
and one for the type of the result

e passes in the general binary operation £ (with type a -> b -> b)
that combines (i.e., folds) the list elements

o passes in the “seed” element z (of type b) to be returned for empty lists

The foldr function “folds” the list elements (of type a) into a value (of type b)
by “inserting” operation f between the elements, with value z “appended” as
the rightmost element.

Often the seed value z is the right identity element for the operation, but foldr
may be useful in some circumstances where it is not (or perhaps even if there is
no right identity).

For example, foldr f z [1,2,3] expandstof 1 (£ 2 (£ 3 z)), or, using an
infix style:

1 7f (2 f° (8 Tf Z)
Function foldr does not depend upon f being associative or having either a

right or left identity.

Function foldr is backward recursive. If the function application is fully eval-
uated, it needs a new stack frame for each element of the input list. If its list
argument is long or the folding function itself is expensive, then the function
can terminate with a stack overflow error.

In Haskell, foldr is called a fold operation. Other languages sometimes call this
a reduce or insert operation.

We can specialize foldr to restate the definitions for sum', product', and
concat’.

sum2 :: [Int] -> Int -— sum
sum?2 xs = foldrX (+) 0 xs

product2 :: [Int] -> Int —-- product
product2 xs = foldrX (x) 1 xs

concat2:: [[a]]l -> [al -- concat
concat2 xss = foldrX (++) [] xss

As further examples, consider the folding of the Boolean operators && (“and”)
and || (“or”) over lists of Boolean values as Prelude functions and and or (shown
as and’ and or’ below to avoid name conflicts):
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and', or' :: [Bool] -> Bool -- and, or in Prelude
and' xs foldrX (&&) True xs
or' xs foldrX (||) False xs

Although their definitions look different, and’ and or’ are actually identical to
functions and and or in the Prelude.

Consider the following questions.

¢ Under what circumstances does foldrX f z xs terminate? Do we have
to assume anything about £? about xs?

e What is the time complexity of product2? of concat2?

15.8 Using foldr

The fold functions are very powerful. By choosing an appropriate folding function
argument, many different list functions can be implemented in terms of foldr.

For example, we can implement map using foldr as follows:

map2 :: (a -> b) -> [a] -> [b] —- map
map2 f xs = foldr mf [] xs
where mf y ys = (£ y) : ys

The folding function mf y ys = (f y):ys applies the mapping function f to
the next element of the list (moving right to left) and attaches the result on the
front of the processed tail. This is a case where the folding function mf does not
have a right identity, but where foldr is quite useful.

We can also implement filter in terms of foldr as follows:

filter2 :: (a -> Bool) -> [a] -> [a]l] -- filter
filter2 p xs = foldr ff [] xs
where ff y ys = if p y then (y:ys) else ys

The folding function £ff y ys = if p x then (y:ys) else ys applies the fil-
ter predicate p to the next element of the list (moving right to left). If the
predicate evaluates to True, the folding function attaches that element on the
front of the processed tail; otherwise, it omits the element from the result.

We can also use foldr to compute the length of a polymorphic list.

length2 :: [a] -> Int -- length
length2 xs = foldr len 0 xs
where len _ acc = acc + 1

This uses the z parameter of foldr to initialize the count to 0. Higher-order
argument f of foldr is a function that takes an element of the list as its left
argument and the previous accumulator as its right argument and returns the
accumulator incremented by 1. In this application, z is not the identity element
for £ but is a convenient beginning value for the counter.
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We can construct an “append” function that uses foldr as follows:

append2 :: [a]l -> [a]l -> [a] -- ++
append2 xs ys = foldr (:) ys xs

Here the the list that foldr operates on the first argument of the append. The z
parameter is the entire second argument and the folding function is just (:). So
the effect is to replace the [] at the end of the first list by the entire second list.

Function foldr 1s a backward recursive function that processes the elements of
a list one by one. However, as we have seen, it is often more useful to think of
foldr as a powerful list operator that reduces the element of the list into a single
value. We can combine foldr with other operators to conveniently construct
list processing programs.

15.9 Defining Fold Left (foldl)

We designed function foldr as a backward linear recursive function with the
signature:

foldr :: (a ->b ->Db) ->b -> [a] > D
As noted:
foldr f z [1,2,3] == £ 1 (£ 2 (£ 3 2))
== 1 "f° (2 "f° (3 "f° =z))
Consider a function foldl (pronounced “fold left”) such that:
foldl f z [1,2,3] == £ (£ (£ z 1) 2) 3
== ((z "f* 1) £ 2) "£° 3

This function folds from the left. It offers us the opportunity to use parameter z
as an accumulating parameter in a tail recursive implementation. This is shown
below as fold1lX, which is similar to foldl in the Prelude.

foldlX :: (a -=> b -> a) -> a -> [b] -> a -- foldl in Prelude
foldlX f z [] =z
foldlX f z (x:xs) foldlX £ (f z x) xs

| Note how the second leg of f01d1X implements the left binding of the opera-
tion. In the recursive call of f01d1X the “seed value” argument is used as an
accumulating parameter.

Also note how the types of foldr and foldl differ.

Often the beginning value of z is the left identity of the operation f, but foldl
(like foldr) can be a quite useful function in circumstances when it is not (or
when f has no left identity).
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15.10 Using foldl

If @ is an associative binary operation of type t -> t -> t with identity element
z (i.e., ® and t form the algebraic structure know as a monoid), then, for any
Xs,

foldr () z xs = foldl (D) z xs

The classic Bird and Wadler textbook [3] calls this property the first duality
theorem.

Because +, *, and ++ are all associative operations with identity elements, sum,
product, and concat can all be implemented with either foldr or foldl.

Which is better?

Depending upon the nature of the operation, an implementation using foldr
may be more efficient than foldl or vice versa.

We defer a more complete discussion of the efficiency until we study evaluation
strategies further in Chapter 29.

As a rule of thumb, however, if the operation & is nonstrict in either argument,
then it is usually better to use foldr. That form takes better advantage of lazy
evaluation.

If the operation @ is strict in both arguments, then it is often better (i.e., more
efficient) to use the optimized version of foldl called foldl' from the standard
Haskell module Data.List.

The append operation ++ is nonstrict in its second argument, so it is better to
use foldr to implement concat.

Addition and multiplication are strict in both arguments, so we can implement
sum and product functions efficiently with foldl', as follows:

import Data.List -- to make foldl' available
sum3, product3 :: Num a => [a] -> a -- sum, product
sum3 xs = foldl' (+) O xs

product3 xs = foldl' (*) 1 xs

Note that we generalize these functions to operate on polymorphic lists with a
base type in class Num. Class Num includes all numeric types.

Function length3 uses foldl. It is like length2 except that the arguments of
function len are reversed.

length3 :: [a]l -> Int -- length
length3 xs = foldl len O xs
where len acc _ = acc + 1

However, it is usually better to use the foldr version length2 because the
folding function len is nonstrict in the argument corresponding to the list.

13



We can also implement list reversal using foldl as follows:

reverse2 :: [a] -> [a] -- reverse
reverse2 xs = foldl rev [] xs
where rev acc x = (x:acc)

This gives a solution similar to the tail recursive reverse function from Chapter
14. The z parameter of function foldl is initially an empty list; the folding
function parameter £ of foldl uses (:) to “attach” each element of the list as
the new head of the accumulator, incrementally building the list in reverse order.

Although cons is nonstrict in its right operand, reverse2 builds up that argument
from [], so reverse2 cannot take advantage of lazy evaluation by using foldr
instead.

To avoid a stack overflow situation with foldr, we can first apply reverse to
the list argument and then apply foldl as follows:

foldr2 :: (@ ->b ->b) > b -> [a] > Db -- foldr
foldr2 f z xs = foldl flipf z (reverse xs)
where flipf y x = f x y

The combining function in the call to foldl is the same as the one passed to
foldr except that its arguments are reversed.

15.11 Defining concatMap (flatmap)

The higher-order function map applies its function argument f to every element
of a list and returns the list of results. If the function argument f returns a list,
then the result is a list of lists. Often we wish to flatten this into a single list,
that is, apply a function like concat defined in Section 15.7.

This computation is sufficiently common that we give it the name concatMap.
We can define it in terms of map and concat as

concatMap' :: (a -> [b]) -> [a] —> [b]
concatMap' f xs = concat (map f xs)

or by combining map and concat into one foldr as:

concatMap2 :: (a -> [b]) -> [a] -> [b]
concatMap2 f xs = foldr fmf [] xs
where fmf x ys = f x ++ ys

Above, the function argument to foldr applies the concatMap function argument
f to each element of the list argument and then appends the resulting list in
front of the result from processing the elements to the right.

We can also define filter in terms of concatMap as follows:

filter3 :: (a -> Bool) -> [a] -> [a]
filter3 p xs = concatMap' fmf xs

14



where fmf x = if p x then [x] else []

The function argument to concatMap generates a one-element list if the filter
predicate p is true and an empty list if it is false.

Some other languages (e.g., Scala) call the concatMap function by the name
flatmap.

15.12 What Next?

This chapter introduced the concepts of first-class and higher-order functions
and generalized common computational patterns to construct a library of useful
higher-order functions to process lists.

Chapter 16 continues to examine those concepts and their implications for Haskell
programming.

15.13 Chapter Source Code

The Haskell module for this chapter is in file HigherOrderFunctions.hs.

15.14 Exercises

1. Suppose you need a Haskell function times that takes a list of integers (type
Integer) and returns the product of the elements (e.g., times [2,3,4]
returns 24). Define the following Haskell functions.

a. Function times1 that uses the Prelude function foldr (or foldr'
from this chapter).

b. Function times2 that uses backward recursion to compute the product.
(Use recursion directly. Do not use the list-folding Prelude functions
such as foldr or product.)

c. Function times3 that uses forward recursion to compute the product.
(Hint: use a tail-recursive auxiliary function with an accumulating
parameter.)

d. Function times4 that uses function foldl' from the Haskell library
Data.List.

2. For each of the following specifications, define a Haskell function that has
the given arguments and result. Use the higher order library functions
(from this chapter) such as map, filter, foldr, and foldl as appropriate.

a. Function numof takes a value and a list and returns the number of
occurrences of the value in the list.

b. Function ellen takes a list of character strings and returns a list of
the lengths of the corresponding strings.

15
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c. Function ssp takes a list of integers and returns the sum of the squares
of the positive elements of the list.

3. Suppose you need a Haskell function sumSqNeg that takes a list of integers
(type Integer) and returns the sum of the squares of the negative values
in the list.

Define the following Haskell functions. Use the higher order library func-
tions (from this chapter) such as map, filter, foldr, and foldl as appro-
priate.

a. Function sumSqNeg1 that is backward recursive. (Use recursion di-
rectly. Do not use the list-folding Prelude functions such as foldr or
sum.)

b. Function sumSqNeg2 that is tail recursive. (Use recursion directly. Do
not use the list-folding Prelude functions such as foldr or sum.)

c. Function sumSqNeg3 that uses standard prelude functions such as
map, filter, foldr, and foldl.

d. Function sumSqNeg4 that uses list comprehensions (Chapter 18).
4. Define a Haskell function
scalarprod :: [Int] -> [Int] -> Int

to compute the scalar product of two lists of integers (e.g., representing
vectors).

The scalar product is the sum of the products of the elements in corre-
sponding positions in the lists. That is, the scalar product of two lists xs
and ys, of length n, is:

i=n

> ws; kys;
i=0

For example, scalarprod [1,2,3] [3,3,3] yields 18.

5. Define a Haskell function map2 that takes a list of functions and a list of
values and returns the list of results of applying each function in the first
list to the corresponding value in the second list.
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to HTML, PDF, and other forms as needed.

15.16 Terms and Concepts

Procedural abstraction, functions (first-class, higher-order), modularity, inter-
face, function generalization and specialization, scope-commonality-variability
(SCV) analysis, hot and frozen spots, data transformations, think like a func-
tional programmer, common functional programming patterns (map, filter, fold,
concatMap), duality theorem, strict and nonstrict functions.
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