Exploring Languages
with Interpreters
and Functional Programming

Chapter 13

H. Conrad Cunningham

04 April 2022

Contents

13 List Programming

13.1 Chapter Introduction
13.2 Polymorphic List Data Type
13.2.1 List: [t] . . . oo o oo
13.2.2 String: String
13.2.3 Polymorphic lists
13.3 Programming with List Patterns
13.3.1 Summing a list of integers: sum'
13.3.2 Multiplying a list of numbers: product'
13.3.3 Length of a list: length'
13.3.4 Remove duplicate elements: remdups
13.3.5 More list patterns
13.4 Data Sharing
13.4.1 Preconditions for head and tail
13.4.2 Dropping elements from beginning of list

13.5 What Next?
13.6 Chapter Source Code
13.7 Exercises
13.8 Acknowledgements,
13.9 Terms and Concepts
13.10References

Copyright (C) 2016, 2017, 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science

University of Mississippi

214 Weir Hall

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

P.O. Box 1848
University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

13 List Programming

13.1 Chapter Introduction

This chapter introduces the list data type and develops the fundamental program-
ming concepts and techniques for first-order polymorphic functions to process
lists.

The goals of the chapter are to:

o introduce Haskell syntax and semantics for programming constructs related
to polymorphic list data structures

o examine correct Haskell functional programs consisting of first-order poly-
morphic functions that solve problems by processing lists and strings

o explore methods for developing Haskell list-processing programs that ter-
minate and are efficient and elegant

¢ examine the concepts and use of data sharing in lists

The Haskell module for this chapter is in ListProg.hs.

13.2 Polymorphic List Data Type

As we have seen, to do functional programming, we construct programs from
collections of pure functions. Given the same arguments, a pure function always
returns the same result. The function application is thus referentially transparent.

Such a pure function does not have side effects. It does not modify a variable or a
data structure in place. It does not throw an exception or perform input/output.
It does nothing that can be seen from outside the function except return its
value.

Thus the data structures in purely functional programs must be immutable, not
subject to change as the program executes.

Functional programming languages often have a number of immutable data
structures. However, the most salient one is the list.

We mentioned the Haskell list and string data types in Chapter 5. In this chapter,
we look at lists in depth. Strings are just special cases of lists.

13.2.1 List: [t]

The primary built-in data structure in Haskell is the list, a sequence of values.
All the elements in a list must have the same type. Thus we declare lists with
the notation [t] to denote a list of zero or more elements of type t.

A list is is hierarchical data structure. It is either empty or it is a pair consisting
of a head element and a tail that is itself a list of elements.

ListProg.hs

The Haskell list is an example of an algebraic data type. We discuss that concept
in Chapter 21.

A matching pair of empty square brackets ([]1), pronounced “nil”, represents the
empty list.

A colon (:), pronounced “cons”, represents the list constructor operation between
a head element on the left and a tail list on the right.

Example lists include:

]
2:[1]
3:(2: [

The Haskell language adds a bit of syntactic sugar to make expressing lists easier.
(By syntactic sugar, we mean notation that simplifies expression of a concept
but that adds no new functionality to the language. The new notation can be
defined in terms of other notation within the language.)

The cons operations binds from the right. Thus
5:(3:(2: 1))

can be written as:
5:3:2:[1]

We can write this as a comma-separated sequence enclosed in brackets as follows:
[5,3,2]

Haskell supports two list selector functions, head and tail, such that
head (h:t) = h

where h is the head element of list, and
tail (h:t) =t

where t is the tail list.

Aside: Instead of head, Lisp uses car and other languages use hd, first, etc.
Instead of tail, Lisp uses cdr and other languages use t1, rest, etc.

The Prelude library supports a number of other useful functions on lists. For
example, length takes a list and returns its length.

Note that lists are defined inductively. That is, they are defined in terms of a
base element [] and the list constructor operation cons (:). As you would expect,
a form of mathematical induction can be used to prove that list-manipulating
functions satisfy various properties. We will discuss in Chapter 25.

13.2.2 String: String

In Haskell, a string is treated as a list of characters. Thus the data type String
is defined as a type synonym:

type String = [Char]

In addition to the standard list syntax, a String literal can be given by a
sequence of characters enclosed in double quotes. For example, "oxford" is
shorthand for [’0’,’x’,’f’,’0°,’r?,’d’]"

Strings can contain any graphic character or any special character given as
escape code sequence (using backslash). The special escape code \& is used to
separate any character sequences that are otherwise ambiguous.

Example: "Hello\nworld!\n" is a string that has two newline characters em-
bedded.

Example: "\12\&3" represents the list ['\12','3"'].

Because strings are represented as lists, all of the Prelude functions for manipu-
lating lists also apply to strings.

Consider a function to compute the length of a finite string:

len :: String -> Int
len s = if s == [] then O else 1 + len (tail s)

Note that the argument string for the recursive application of len is simpler
(i.e., shorter) than the original argument. Thus len will eventually be applied
to a [1 argument and, hence, len’s evaluation will terminate.

How efficient is this function (i.e., its time and space complexity)?

Consider the evaluation of the expression len "five" using the evaluation model
from Chapter 8.

len "five"

—
if "five" == [] then O else 1 + len (tail "five")
_—
if False then O else 1 + len (tail "five")
_—
1 + len (tail "five")
_—
1 + len "ive"
=

(if "ive" == [] then O else 1 + len (tail "ive"))

(if False then 0 else 1 + len (tail "ive"))

(1

¢!

(1

¢

(1

(1

(1

(1

¢

(1

¢

(1

(1

(1

len

len

(if

(if

(1

(1

¢!

(1

¢!

(1

¢

(1

(1

(1

(tail "ive"))

llvell)

"ye" == []

then 0 else 1 + len (tail "ve")))

False then 0 else 1 + len (tail "ve")))

len (tail "ve")))

len neu))

(if "e" == [] then 0 else 1 + len (tail "e"))))

(if False then 0 else 1 + len (tail "e"))))

(1 + len

(1 + len

(1 + (if

(1 + (if

1+ 0))

1)

(tail "e"))))

Illl)))

" == [] then 0 else 1 + len (tail "")))))

True then 0 else 1 + len (tail "")))))

1+ (1 + 2)
—

1+ 3
—

4

If n is the length of the list xs, then len s requires 4*n reduction steps involving
the recursive leg (first 16 steps above), 2 steps involving the nonrecursive leg
(next 2 steps above), and n+1 steps involving the additions (last five steps). Thus,
the evaluation requires 5*n+3 reduction steps. Hence, the number of reduction
steps in proportional to the length of the input list. The time complexity of the
function is thus O(length s{.haskell]).

The largest expression above is
1+ (1 + (1 + (1 + (A4f "" == [] then 0 else 1 + len (tail "")))))

This expression has n + 2 (6) binary operators, 2 unary operators, and 1
ternary operator. Counting arguments (as discussed in Chapter 8), it has
size 2 * (n + 2) + 2 + 3 (or 2#n+9). Hence, the amount of space required
(given lazy evaluation) is also proportional to the length of the input list. The
space complexity of the function is thus O(length s).

13.2.3 Polymorphic lists

The above definition of 1en only works for strings. How can we make it work
for a list of integers or other elements?

For an arbitrary type a, we want len to take objects of type [a] and return an
Int value. Thus its type signature could be:

len :: [a] -> Int

If a is a variable name (i.e., it begins with a lowercase letter) that does not
already have a value, then the type expression a used as above is a type variable;
it can represent an arbitrary type. All occurrences of a type variable appearing
in a type signature must, of course, represent the same type.

An object whose type includes one or more type variables can be thought of
having many different types and is thus described as having a polymorphic type.
(The next subsection gives more detail on polymorphism in general.)

Polymorphism and first-class functions are powerful abstraction mechanisms:
they allow irrelevant detail to be hidden.

Other examples of polymorphic list functions from the Prelude library include:

head :: [a] > a
tail :: [a] -> [al]
(:) ::a—-> [a] -> [a]

13.3 Programming with List Patterns

In the factorial examples in Chapter 4, we used integer patterns and guards to
break out various cases of a function definition into separate equations. Lists
and other data types may also be used in patterns.

Pattern matching helps enable the form of the algorithm to match the form
of the data structure. Or, as others may say, it helps in following types to
implementations.

This is considered elegant. It is also pragmatic. The structure of the data often
suggests the algorithm that is needed for a task.

In general, lists have two cases that need to be handled: the empty list and the
nonempty list. Breaking a definition for a list-processing function into these two
cases is usually a good place to begin.

13.3.1 Summing a list of integers: sum'

Consider a function sum' to sum all the elements in a finite list of integers. That
is, if the list is

V1,V2,V3, " ,Un,
then the sum of the list is the value resulting from inserting the addition operator
between consecutive elements of the list:

vy + U2 + U3+ + Upe

Because addition is an associative operation (that is, (z +y)+z=z+ (y+ 2)
for any integers z, y, and z), the above additions can be computed in any order.

What is the sum of an empty list?

Because there are no numbers to add, then, intuitively, zero seems to be the
proper value for the sum.

In general, if some binary operation is inserted between the elements of a list,
then the result for an empty list is the identity element for the operation. Since
0+ 2 =z =2+ 0 for all integers z, zero is the identity element for addition.

Now, how can we compute the sum of a nonempty list?

Because a nonempty list has at least one element, we can remove one element
and add it to the sum of the rest of the list. Note that the “rest of the list”
is a simpler (i.e., shorter) list than the original list. This suggests a recursive
definition.

The fact that Haskell defines lists recursively as a cons of a head element with
a tail list suggests that we structure the algorithm around the structure of the
beginning of the list.

Bringing together the two cases above, we can define the function sum' in Haskell
as follows. This is similar to the Prelude function sum.

{- Function sum' sums a list of integers. It is similar to
function sum in the Prelude.

-}
sum' :: [Int] -> Int
sum' [] =0 -- nil list
sum' (x:xs) = x + sum' xs -- non-nil list
e As noted previously, all of the text between the symbol “--" and the end

of the line represents a comment; it is ignored by the Haskell interpreter.

The text enclosed by the {- and -} is a block comment, that can extend
over multiple lines.

o This definition uses two legs. The equation in the first leg is used for nil
list arguments, the second for non-nil arguments.

e Note the (x:xs) pattern in the second leg. The “:” denotes the list
constructor operation cons.

If this pattern succeeds, then the head element of the list argument is
bound to the variable x and the tail of the list argument is bound to the
variable xs. These bindings hold for the right-hand side of the equation.

e The use of the cons in the pattern simplifies the expression of the case.
Otherwise the second leg would have to be stated using the head and tail
selectors as follows:

sum' xs = head xs + sum' (tail xs)

e We use the simple name x to represent items of some type and the name
xs, the same name with an s (for sequence) appended, to represent a list of
that same type. This is a useful convention (adopted from the classic Bird
and Wadler textbook [3]) that helps make a definition easier to understand.

o Remember that patterns (and guards) are tested in the order of occurrence
(i-e., left to right, top to bottom). Thus, in most situations, the cases
should be listed from the most specific (e.g., nil) to the most general (e.g.,
non-nil).

e The length of a non-nil argument decreases by one for each successive
recursive application. Thus (assuming the list is finite) sum' will eventually
be applied to a [] argument and terminate.

For a list consisting of elements 2, 4, 6, and 8, that is, 2:4:6:8: [], function
sum' computes

2+ 4+ 6+ (B+0)))
giving the integer result 20.

Function sum' is backward linear recursive; its time and space complexity are
both O(n), where n is the length of the input list.

We could, of course, redefine this to use a tail-recursive auxiliary function. With
tail call optimization, the recursion could be converted into a loop. It would still
be O(n) in time complexity (but with a smaller constant factor) but O(1) in
space.

13.3.2 Multiplying a list of numbers: product'
Now consider a function product' to multiply together a finite list of integers.
The product of an empty list is 1 (which is the identity element for multiplication).

The product of a nonempty list is the head of the list multiplied by the product
of the tail of the list, except that, if a 0 occurs anywhere in the list, the product
of the list is 0.

We can thus define product' with two base cases and one recursive case, as
follows. This is similar to the Prelude function product.

product' :: [Integer] -> Integer
product' [] =1
product' (0:_) =0
product' (x:xs) = x * product' xs

“won

Note the use of the wildcard pattern underscore “_” in the second leg above.
This represents a “don’t care” value. In this pattern it matches the tail, but
no value is bound; the right-hand side of the equation does not need the actual
value.

0 is the zero element for the multiplication operation on integers. That is, for
all integers x:

Oxx=x2x0=0

For a list consisting of elements 2, 4, 6, and 8, that is, 2:4:6:8: [], function
product' computes:

2% (4% (6% (8% 1)))
which yields the integer result 384.
For a list consisting of elements 2, 0, 6, and 8, function product' “short circuits”
the computation as:

2 %0

Like sum', function product' is backward linear recursive; it has a worst-case
time complexity of O(n), where n is the length of the input list. It terminates

10

because the argument of each successive recursive call is one element shorter
than the previous call, approaching the first base case.

As with sum', we could redefine this to use a tail-recursive auxiliary function,
which could evaluate in O(n) space with tail call optimization.

Note that sum' and product' have similar computational patterns. In Chapter
15, we look at how to capture the commonality in a single higher-order function.
13.3.3 Length of a list: length'

As another example, consider the function for the length of a finite list that we
discussed earlier (as len). Using list patterns we can define length’ as follows:

length' :: [a] -> Int
length' [] =0 -- nil list
length' (_:xs) = 1 + length' xs -- non-nil list
Note the use of the wildcard pattern underscore “_”. In this pattern it matches

the head, but no value is bound; the right-hand side of the equation does not
need the actual value.

Given a finite list for its argument, does this function terminate? What are its
time and space complexities?

This definition is similar to the definition for length in the Prelude.

13.3.4 Remove duplicate elements: remdups

Consider the problem of removing adjacent duplicate elements from a list. That
is, we want to replace a group of adjacent elements having the same value by a
single occurrence of that value.

As with the above functions, we let the form of the data guide the form of the
algorithm, following the type to the implementation.

The notion of adjacency is only meaningful when there are two or more of
something. Thus, in approaching this problem, there seem to be three cases to
consider:

e The argument is a list whose first two elements are duplicates; in which
case one of them should be removed from the result.

e The argument is a list whose first two elements are not duplicates; in which
case both elements are needed in the result.

e The argument is a list with fewer than two elements; in which case the
remaining element, if any, is needed in the result.

Of course, we must be careful that sequences of more than two duplicates are
handled properly.

11

Our algorithm thus can examine the first two elements of the list. If they are
equal, then the first is discarded and the process is repeated recursively on
the list remaining. If they are not equal, then the first element is retained in
the result and the process is repeated on the list remaining. In either case the
remaining list is one element shorter than the original list. When the list has
fewer than two elements, it is simply returned as the result.

If we restrict the function to lists of integers, we can define Haskell function
remdups as follows:

remdups :: [Int] -> [Int]
remdups (x:y:xs)

| x == y = remdups (y:xs)

| x /=y =x : remdups (y:xs)
remdups Xs = XS

o Note the use of the pattern (x:y:xs). This pattern match succeeds if the
argument list has at least two elements: the head element is bound to x,
the second element to y, and the tail list to xs.

o Note the use of guards to distinguish between the cases where the two
elements are equal (==) and where they are not equal (/=).

o In this definition the case patterns overlap, that is, a list with at least two
elements satisfies both patterns. But since the cases are evaluated top to
bottom, the list only matches the first pattern. Thus the second pattern
just matches lists with fewer than two elements.

What if we wanted to make the list type polymorphic instead of just integers?

At first glance, it would seem to be sufficient to give remdups the polymorphic
type [a]l] -> [a]. But the guards complicate the situation a bit.

Evaluation of the guards requires that Haskell be able to compare elements of
the polymorphic type a for equality (==) and inequality (/=). For some types
these comparisons may not be supported. (For example, suppose the elements
are functions.) Thus we need to restrict the polymorphism to types in which the
comparisons are supported.

We can restrict the range of types by using a context predicate. The following
type signature restricts the polymorphism of type variable a to the built-in type
class Eq, the group of types for which both equality (==) and inequality (/=)
comparisons have been defined:

remdups :: Eq a => [a] -> [a]

Another useful context is the class Ord, which is an extension of class Eq. Ord
denotes the class of objects for which the relational operators <, <=, >, and >=
have been defined in addition to == and /=.

Note: Chapter 22 explores the concepts of type class, instances, and overloading
in more depth.

12

In most situations the type signature can be left off the declaration of a function.
Haskell then attempts to infer an appropriate type. For remdups, the type
inference mechanism would assign the type Eq [a]l => [a] -> [a] . However,
in general, it is good practice to give explicit type signatures.

Like the previous functions, remdups is backward linear recursive; it takes a
number of steps that is proportional to the length of the list. This function has
a recursive call on both the duplicate and non-duplicate legs. Each of these
recursive calls uses a list that is shorter than the previous call, thus moving
closer to the base case.

13.3.5 More list patterns

Table 13.1 shows Haskell parameter patterns, corresponding arguments, and the
results of the attempted match.

Table 13.1: Example Haskell parameter patterns and match results.

Pattern Argument Succeeds? Bindings

1 1 yes none

X 1 yes x+1

(x:y) [1,2] yes x+ 1, y+ [2]

(x:y) [[1,2]1] yes x« [1,2], y+«]
(x:y) ["olemiss"] yes X < "olemiss", y < []
(x:y) "olemiss" yes X4+ ’0’,y + "lemiss"
(1:x) [1,2] yes x + [2]

(1:x) [2,2] no none

(x:_:_:y) [1,2,3,4,5,6] yes x <+ 1,y « [4,5,6]

(] (] yes none

[x] ["Cy"] yes X < "Cy"

[1,x] [1,2] yes X 2

[x,y] [1] no none

(x,y) (1,2) yes X 1,75+ 2

13.4 Data Sharing
Suppose we have the declaration:
xs = [1,2,3]

As we learned in the data structures course, we can implement this list as a
singly linked list xs with three cells with the values 1, 2, and 3, as shown in
Figure 13.1.

Consider the following declarations (which are illustrated in Figure 13.1):

13

ys = 0:xs
Zs tail xs

where

e 0:xs returns a list that has a new cell containing 0 in front of the previous
list

e tail xs returns the list consisting of the last two elements of xs

x§ — | L 2 . —m 3 | null

7

z8
ys — (0

Figure 13.1: Data sharing in lists.
If the linked list xs is immutable (i.e., the values and pointers in the three cells
cannot be changed), then neither of these operations requires any copying.

o The first just constructs a new cell containing 0, links it to the first cell in
list xs, and initializes ys with a reference to the new cell.

e The second just returns a reference to the second cell in list xs and initializes
zs with this reference.

o The original list xs is still available, unaltered.

This is called data sharing. It enables the programming language to implement
immutable data structures efficiently, without copying in many key cases.

Also, such functional data structures are persistent because existing references
are never changed by operations on the data structure.

Consider evaluation of the expression head xs. It must create a copy of the
head element (in this case 1). The result does not share data with the input list.

Similarly, the list returned by function remdups (defined above) does not share
data with its input list.

13.4.1 Preconditions for head and tail

What should tail return if the list is nil?

One choice is to return a nil list [1. However, it seems illogical for an empty list
to have a tail.

14

Consider a typical usage of the tail function. It is normally an error for a
program to attempt to get the tail of an empty list. Moreover, a program can
efficiently check whether a list is empty or not. So, in this case, it is better to
consider tail a partial function.

Thus, Haskell defines both tail and head to have the precondition that their
parameters are non-nil lists. If we call either with a nil list, then it will terminate
execution with a standard error message.

13.4.2 Dropping elements from beginning of list

We can generalize tail to a function drop' that removes the first n elements of
a list as follows, (This function is called drop in the Prelude.)

drop' :: Int -> [a] -> [a]

drop' n xs | n <= 0 = xs

drop' _ [] =[]

drop' n (_:xs) = drop' (n-1) xs

Consider the example:
drop 2 "oxford" = ... "ford"

This function takes a different approach to the “empty list” issue than tail
does. Although it is illogical to take the tail of an empty list, dropping the
first element from an empty list seems subtly different. Given that we often use
drop' in cases where the length of the input list is unknown, dropping the first
element of an empty list does not necessarily indicate a program error.

Suppose instead that drop' would trigger an error when called with an empty
list. To avoid this situation, the program might need to determine the length of
the list argument. This is inefficient, usually requiring a traversal of the entire
list to count the elements. Thus the choice for drop' to return a nil is also
pragmatic.

The drop' function is tail recursive. The result list shares space with the input
list.

The drop' function terminates when either the list argument is empty or the
integer argument is 0 or negative. The function eventually terminates because
each recursive call both shortens the list and decrements the integer.

What is the time complexity of drop'?
There are two base cases.
o For the first leg, the function must terminate in O(max 1 n) steps.

o For the second leg, the function must terminate within O(length xs) steps.
So the function must terminate within O(min (max 1 n) (length xs))
steps.

15

What is the space complexity of drop'?

This tail recursive function evaluates in constant space when optimized.

13.4.3 Taking elements from the beginning of a list

Similarly, we can generalize head' to a function take that takes a number n and
a list and returns the first n elements of the list.

take' :: Int -> [a] -> [a]
take' n _ | n <=0 = []
take' _ [] = [

take' n (x:xs) x : take' (n-1) xs
Consider the following questions for this function?
e What is returned when the list argument is nil?
e Does evaluation of this function terminate?
e Does the result share data with the input?
e Is the function tail recursive?
e What are its time and space complexities?

Consider the example:

take 2 "oxford" = --- "ox"

13.5 What Next?

This chapter (13) examined programming with the list data type using first-order
polymorphic functions. Chapter 14 continues the discussion of list programming,
introducing infix operations and more examples.

13.6 Chapter Source Code
The Haskell module for this chapter is in ListProg.hs.

13.7 Exercises

1. Answer the following questions for the take' function defined in this
chapter:

o What is returned when the list argument is nil?
e Does evaluation of the function terminate?

e Does the result share data with the input?

o Is the function tail recursive?

e What are its time and space complexities?

16

ListProg.hs

2. Write a Haskell function maxlist to compute the maximum value in a
nonempty list of integers. Generalize the function by making it polymorphic,
accepting a value from any ordered type.

3. Write a Haskell function adjpairs that takes a list and returns the list of
all pairs of adjacent elements. For example, adjpairs [2,1,11,4]
returns [(2,1), (1,11), (11,4)].

4. Write a Haskell function mean that takes a list of integers and returns the
mean (i.e., average) value for the list.

5. Write the following Haskell functions using tail recursion:
a. sum'' with same functionality as sum'

b. product'' with the same functionality as product'

13.8 Acknowledgements
In Summer 2016, I adapted and revised much of this work from previous work:

o Chapter 5 of my Notes on Functional Programming with Haskell [7], which
is influenced by Bird [1-3] and Wentworth [9]

o My notes on Functional Data Structures (Scala) [8], which are based, in
part, on chapter 3 of the book Functional Programming in Scala [4] and
its associated materials [5,6]

In 2017, I continued to develop this work as Chapter 4, List Programming, of
my 2017 Haskell-based programming languages textbook.

In Summer 2018, T divided the previous List Programming chapter into two
chapters in the 2018 version of the textbook, now titled Ezploring Languages with
Interpreters and Functional Programming. Previous sections 4.1-4.4 became the
basis for new Chapter 13 (this chapter), List Programming, and previous sections
4.5-4.8 became the basis for Chapter 14, Infix Operators and List Programming
Examples. I moved the discussion of “kinds of polymorphism” to new Chapter 5
and “local definitions” to new Chapter 9.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

17

13.9 Terms and Concepts

Type class (Eq, Ord, context predicate), lists (polymorphic, immutable, persistent,
data sharing, empty/nil, nonempty), string, list and string operations (cons,
head, tail, pattern matching, wildcard pattern, length), inductive definitions,
operator binding, syntactic sugar, type synonym, type variable, type signature,
follow the types to implementations, let the form of the data guide the form of
the algorithm, associativity, identity element, zero element, termination, time
and space complexity, adjacency,

13.10 References

Richard Bird. 1998. Introduction to functional programming using Haskell
(Second ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

Richard Bird. 2015. Thinking functionall with Haskell (First ed.). Cam-
bridge University Press, Cambridge, UK.

Richard Bird and Philip Wadler. 1988. Introduction to functional pro-
gramming (First ed.). Prentice Hall, Englewood Cliffs, New Jersey, USA.

Paul Chiusano and Runar Bjarnason. 2015. Functional programming in
Scala (First ed.). Manning, Shelter Island, New York, USA.

Paul Chiusano and Runar Bjarnason. 2022. FP in Scala exercises, hints,
and answers. Retrieved from https://github.com/fpinscala/fpinscala

Paul Chiusano and Runar Bjarnason. 2022. FP in Scala community guide
and chapter notes. Retrieved from https://github.com/fpinscala/fpinsca
la/wiki

H. Conrad Cunningham. 2014. Notes on functional programming with
Haskell. University of Mississippi, Department of Computer and In-
formation Science, University, Mississippi, USA. Retrieved from https:
//john.cs.olemiss.edu/~hcc/cscid50 /notes/haskell notes.pdf

H. Conrad Cunningham. 2019. Functional data structures (Scala). Uni-
versity of Mississippi, Department of Computer and Information Science,
University, Mississippi, USA. Retrieved from https://john.cs.olemiss.edu/
~hce/escibbb /notes/FPS03/FunctionalDS.html

E. Peter Wentworth. 1990. Introduction to functional programming using
RUFL. Rhodes University, Department of Computer Science, Graham-
stown, South Africa.

18

https://github.com/fpinscala/fpinscala
https://github.com/fpinscala/fpinscala/wiki
https://github.com/fpinscala/fpinscala/wiki
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci450/notes/haskell_notes.pdf
https://john.cs.olemiss.edu/~hcc/csci555/notes/FPS03/FunctionalDS.html
https://john.cs.olemiss.edu/~hcc/csci555/notes/FPS03/FunctionalDS.html

	List Programming
	Chapter Introduction
	Polymorphic List Data Type
	List: [t]
	String: String
	Polymorphic lists

	Programming with List Patterns
	Summing a list of integers: sum'
	Multiplying a list of numbers: product'
	Length of a list: length'
	Remove duplicate elements: remdups
	More list patterns

	Data Sharing
	Preconditions for head and tail
	Dropping elements from beginning of list
	Taking elements from the beginning of a list

	What Next?
	Chapter Source Code
	Exercises
	Acknowledgements
	Terms and Concepts
	References

