Exploring Languages
with Interpreters

and Functional Programming
Chapter 12

H. Conrad Cunningham

02 April 2022

Contents

12 Testing Haskell Programs

12.1 Chapter Introduction
12.2 Organizing Tests
12.3 Testing Functions
12.3.1 Factorial example.
12.3.2 Arrange
1233 Act
1234 Asserto
12.3.5 Aggregating into test script

12.4 Testing Modules
12.4.1 Rational arithmetic modules example
12.4.2 Data representation modules
12.4.2.1 Arrange

12422 Act

124.2.3 Assert oo

12.4.2.4 Aggregate into test script

12.4.2.5 Broken encapsulation

12.4.3 Rational arithmetic modules
12.4.3.1 Arrange

12432 Act

12.4.3.3 Assert o

12.4.3.4 Aggregate into test script

12.4.4 Reflection on this example

12.6 Chapter Source Code
12.7 Exercises

12.8 Acknowledgements 14
12.9 Terms and Concepts L. 14
12.10References 15

Copyright (C) 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi

214 Weir Hall

P.O. Box 1848

University, MS 38677

(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

12 Testing Haskell Programs

12.1 Chapter Introduction

The goal of this chapter (12)is to illustrate the testing techniques by manually
constructing test scripts for Haskell functions and modules. It builds on the
concepts and techniques surveyed in Chapter 11.

We use two testing examples in this chapter:
e the group of factorial functions from Chapters 4 and 9
The series of tests can be applied any of the functions.

¢ the rational arithmetic modules from Chapter 7

12.2 Organizing Tests
Testers commonly organize unit tests on a system using the Arrange-Act-Assert
pattern [1,5].

1. Arrange: Select input values from the input domain and construct appro-

priate “objects” to use in testing the test subject.

2. Act: Apply some operation from the test subject to appropriate input
“objects”.

3. Assert: Determine whether or not the result satisfies the specification.

Each test should create the test-specific input “objects” it needs and remove
those and any result “objects” that would interfere with other tests.

Note: In this chapter, we use the word “object” in a general sense of any data
entity, not in the specific sense defined for object-based programming.

12.3 Testing Functions

In terms of the dimensions of testing described in Chapter 11, this section
approaches testing of a group of Haskell functions as follows.

Testing level: unit testing of each Haskell function

Testing method: primarily black-box testing of each Haskell function relative
to its specification

Testing type: functional testing of each Haskell function relative to its specifi-
cation

12.3.1 Factorial example

As an example, consider the set of seven factorial functions developed in Chapters
4 and 9 (in source file Factorial.hs). All have the requirement to implement
the mathematical function

../Ch04/Factorial.hs

fact(n) =TL,Z7 i
for any n > 0. The specification is ambiguous on what should be the result of
calling the function with a negative argument.

12.3.2 Arrange

To carry out black-box testing, we must arrange our input values. The factorial
function tests do not require any special testing “objects”.

We first partition the input domain. We identify two equivalence classes of
inputs for the factorial function:

1. the set of nonnegative integers for which the mathematical function is
defined and the Haskell function returns that value within the positive Int
range

2. the set of nonnegative integers for which the mathematical function is
defined but the Haskell function returns a value that overflows the Int
range

The class 2 values result are errors, but integer overflow is typically not detected
by the hardware.

We also note that the negative integers are outside the range of the specification.
Next, we select the following values inside the “lower” boundary of class 1 above:

e 0, empty case at the lower boundary
¢ 1, smallest nonempty case at the lower boundary

Then we choose representative values within class 1:

e 2, one larger than the smallest nonempty case
e 5, arbitrary value representative of values away from the boundary

Note: The choice of two representative values might be considered a violation of
the “minimize test overlap” principle from Chapter 11. So it could be acceptable
to drop the input of 2. Of course, we could argue that we should check 2 as a
possible boundary value.

We also select the value -1, which is just outside the lower boundary implied by
the n > 0 requirement.

All of the factorial functions have the type signature (where N is 1, 2, 3, 4, 4",
5, or 6):

factN :: Int -> Int
Thus the factN functions also have an “upper” boundary that depends on the
maximum value of the Int type on a particular machine. The author is testing

these functions on a machine with 64-bit, two’s complement integers. Thus the
largest integer whose factorial is less than 262 is 20.

We thus select input the following input values:
e 20, which is just inside the upper boundary of class 1

e 21, which is just outside class 1 and inside class 2

12.3.3 Act

We can test a factorial function at a chosen input value by simply applying the
function to the value such as the following:

factl O

A Haskell function has no side effects, so we just need to examine the integer
result returned by the function to determine whether it satisfies the function’s
specification.

12.3.4 Assert

We can test the result of a function by stating a Boolean expression—an assertion—
that the value satisfies some property that we want to check.

In simple cases like the factorial function, we can just compare the actual result
for equality with the expected result. If the comparison yields True, then the
test subject “passes” the test.

factl 0 ==

12.3.5 Aggregating into test script

There are testing frameworks for Haskell (e.g., HUnit [3], QuickCheck [2], or
Tasty [4]), but, in this section, we manually develop a simple test script.

We can state a Haskell I0 program to print the test and whether or not it passes
the test. (Simple input and output will eventually be discussed in a Chapter 10.
For now, see the Haskell Wikibooks [7] page on “Simple input and output”.)

Below is a Haskell I0 script that tests class 1 boundary values 0 and 1 and
“happy path” representative values 2 and 5.

pass :: Bool -> String
pass True = "PASS"
pass False = "FAIL"

main :: I0 ()
main = do
putStrLn '"\nTesting factl"

putStrLn ("factl 0 == 1: " ++ pass (factl 0 == 1))
putStrln ("factl 1 == 1: " ++ pass (factl 1 == 1))
putStrLn ("factl 2 == 2: " ++ pass (factl 2 == 2))
putStrln ("factl 5 == 120: " ++ pass (factl 5 == 120))

https://en.wikibooks.org/wiki/Haskell/Simple_input_and_output

The do construct begins a sequence of I0 commands. The I0 command putStrLn
outputs a string to the standard output followed by a newline character.

Testing a value below the lower boundary of class 1 is tricky. The specification
does not require any particular behavior for -1. As we saw in Chapter 4, some
of the function calls result in overflow of the runtime stack, some fail because all
of the patterns fail, and some fail with an explicit error call. However, all these
trigger a Haskell exception.

Our test script can catch these exceptions using the following code.

putStrln ("factl (-1) == 1: "
++ pass (factl (-1) == 1))
“catch® (\(StackOverflow)
-> putStrLn ("[Stack Overflow] (EXPECTED)"))
“catch® (\(PatternMatchFail msg)
-> putStrLn ("[Pattern Match Failure]\n...."

++ msg))
“catch”™ (\(ErrorCall msg)
=> putStrln ("[Error Call]\n...." ++ msg))

To catch the exceptions, the program needs to import the module
Control.Exception from the Haskell library.

import Prelude hiding (catch)
import Control.Exception

By catching the exception, the test program prints an appropriate error message
and then continues with the next test; otherwise the program would halt when
the exception is thrown.

Testing an input value in class 2 (i.e., outside the boundary of class 1) is also
tricky.

First, the values we need to test depend on the default integer (Int) size on the
particular machine.

Second, because the actual value of the factorial is outside the Int range, we
cannot express the test with Haskell Ints. Fortunately, by converting the values
to the unbounded Integer type, the code can compare the result to the expected
value.

The code below tests input values 20 and 21.

putStrLn ("factl 20 == 2432902008176640000: "
++ pass (toInteger (factl 20) ==
2432902008176640000))
putStrln ("factl 21 == 51090942171709440000: "
++ pass (toInteger (factl 21) ==
51090942171709440000)
++ " (EXPECT FAIL for 64-bit Int)")

The above is a black-box unit test. It is not specific to any one of the seven
factorial functions defined in Chapters 4 and 9. (These are defined in the source
file Factorial.hs.) The series of tests can be applied any of the functions.

The test script for the entire set of functions from Chapters 4 and 9 (and others)
are in the source file TestFactorial.hs.

12.4 Testing Modules

In terms of the dimensions of testing described in Chapter 11, this section
approaches testing of Haskell modules as follows.

Testing level: module-level testing of each Haskell module

Testing method: primarily black-box testing of each Haskell module relative
to its specification

Testing type: functional testing of each Haskell module relative to its specifi-
cation

Normally, module-level testing requires that unit-level testing be done for each
function first. In cases where the functions within a module are strongly coupled,
unit-level and module-level testing may be combined into one phase.

12.4.1 Rational arithmetic modules example
For this section, we use the rational arithmetic example from Chapter 7.

In the rational arithmetic example, we define two abstract (information-hiding)
modules: RationalRep and Rational.

Given that the Rational module depends on the RationalRep module, we first
consider testing the latter.

12.4.2 Data representation modules

Chapter 7 defines the abstract module RationalRep and presents two distinct
implementations, RationalCore and RationalDeferGCD. The two implementa-
tions differ in how the rational numbers are represented using data type Rat.
(See source files RationalCore.hs and RationalDeferGCD.hs.)

Consider the public function signatures of RationalRep (from Chapter 7):

makeRat :: Int -> Int -> Rat
numer :: Rat -> Int

denom :: Rat -> Int
zeroRat :: Rat

showRat :: Rat -> String

Because the results of makeRat and zeroRat and the inputs to numer, denom,
and showRat are abstract, we cannot test them directly as we did the factorial
functions Section 12.3. For example, we cannot just call makeRat with two

../Ch04/Factorial.hs%3E
../Ch04/TestFactorial.hs
../Ch07/RationalCore.hs
../Ch07/RationalDeferGCD.hs

integers and compare the result to some specific concrete value. Similarly, we
cannot test numer and denom directly by providing them some specific input
value.

However, we can test both through the abstract interface, taking advantages of
the interface invariant.

RationalRep Interface Invariant (from Chapter 7):
: For any valid Haskell rational number r, all the following hold:

- “r {.haskell} \in “Rat {.haskell}
- “denom r > 0 {.haskell}
- if “numer r == 0 {.haskell}, then “denom r == 1 {.haskell}
- “numer r {.haskell} and “denom r’{.haskell} are relatively prime
- the (mathematical) rational number value is
$\frac{\texttt{numer r}}{\texttt{denom r}}$

The invariant allows us to check combinations of the functions to see if they give
the expected results. For example, suppose we define x' and y' as follows:

X
y

Then the interface invariant and contracts for makeRat, numer, and denom allow

x?

us to infer that the (mathematical) rational number values ;- and T are equal.

numer (makeRat x y)
denom (makeRat x y)

This enables us to devise pairs of test assertions such as

numer (makeRat 1 2) ==
denom (makeRat 1 2) ==

and

numer (makeRat 4 (-2)) == -2
denom (makeRat 4 (-2)) ==

to indirectly test the functions in terms of their interactions with each other.
All the tests above should succeed if the module is designed and implemented
according to its specification.

Similarly, we cannot directly test the private functions signum', abs', and gecd"'.
But we try to choose inputs the tests above to cover testing of these functions.
(Private functions should be tested as the module is being developed to detect
any more problems.)

12.4.2.1 Arrange To conduct black-box testing, we must arrange the input
values we wish to test. The module tests do not require any special test objects,
but each pair of tests both create a Rat object with makeRat and select its
numerator and denominator with numer and denom.

However, for convenience, we can define the following shorter names for constants:

maxInt = (maxBound :: Int)
minInt = (minBound :: Int)

TODO: Draw a diagram as discussed

Each pair of tests has two Int parameters—the x and y parameters of makeRat.
Thus we can visualize the input domain as the integer grid points on an x-y
coordinate plane using the usual rectangular layout from high school algebra.

We note that any input x-y value along the x-axis does not correspond to a
rational number; the pair of integer values does not satisfy the precondition for
makeRat and thus result in an error exception.

For the purposes of our tests, we divide the rest of the plane into the following
additional partitions (equivalence classes):

o the y-axis

Input arguments where x == 0 may require special processing because of
the required unique representation for rational number zero.

e each quadrant of the plane (excluding the axes)

The x-y values in different quadrants may require different processing to
handle the y > 0 and “relatively prime” aspects of the interface invariant.

Given that the module uses the finite integer type Int, we bound the
quadrants by the maximum and minimum integer values along each axis.

We identify the following boundary values for special attention in our tests.
o Input pairs along the x-axis are outside any of the partitions.

e Input pairs composed of integer values 0, 1, and -1 are on the axes or just
inside the “corners” of the quadrants . In addition, these are special values
in various mathematical properties.

o Input pairs composed of the maximum Int (maxInt) and minimum Int
(minInt) values may be near the outer bounds of the partitions.

Note: If the machine’s integer arithmetic uses the two’s complement
representation, then minInt can cause a problem with overflow because
its negation is not in Int. Because of overflow, -minInt == minInt. So
we should check both minInt and -maxInt in most cases.

In addition, we identify representative values for each quadrant. Although we
do not partition the quadrants further, in each quadrant we should choose some
input values whose (mathematical) rational number values differ and some whose
values are the same.

Thus we choose the following (x,y) input pairs for testing:

« (0,0), (1,0), and (-1,0) as error inputs along the x-axis

and

(0,1), (0,-1), (0,9), and (0,-9) as inputs along the y-axis

(1,1), (9,9), and (maxInt,maxInt) as inputs from the first quadrant and
(-1,-1), (-9,-9), and (-maxInt,-maxInt) as inputs from the third quadrant,

all of whom have the same rational number value %

We also test input pairs (minIntminInt) and (-minInt,-minInt), cog-
nizant that the results might depend upon the machine’s integer represen-
tation.

(-1,1), (-9,9), and (-maxInt,maxInt) as inputs from the second quadrant and
(1,-1), (9,-9), and (maxInt,-maxInt) as inputs from the fourth quadrant,

all of whom have the same rational number value —%.

We also test input pairs (-minInt,minInt) and (minInt,-minInt), cog-
nizant that the results might depend upon the machine’s integer represen-
tation.

(3,2) and (12,8) as inputs from the first quadrant and (-3,-2) and (-12,-8)
as inputs from the third quadrant, all of whom have the same rational
number value %

(-3,2) and (-12,8) as inputs from the second quadrant and (3,-2) and (12,-8)
as inputs from the fourth quadrant, all of whom have the same rational

number value —%.
(maxInt,l), (maxInt,-1), (-maxInt,1) and (-maxInt,-1) as input values in
the “outer corners” of the quadrants.

We also test input pairs (minInt,1) and (minInt,-1), cognizant that the
results might depend upon the machine’s integer representation.

12.4.2.2 Act As we identified in the introduction to this example, we must
carry out a pair of actions in our tests. For example,

numer (makeRat 12 8)

denom (makeRat 12 8)

for the test of the input pair (12,8).

Note: The code above creates each test object (e.g., makeRat 12 8) twice. These
could be created once and then used twice to make the tests run slightly faster.

12.4.2.3 Assert The results of the test actions must then be examined
to determine whether they have the expected values. In the case of the
makeRat-numer-denom tests, it is sufficient to compare the result for equal-
ity with the expected result. The expected result must satisfy the interface
invariant.

10

For the two actions listed above, the comparison are
numer (makeRat 12 8) == 3

and
denom (makeRat 12 8) == 2

for the test of the input pair (12,8).

12.4.2.4 Aggregate into test script As with the factorial functions in
Section 12.3, we can bring the various test actions together into a Haskell I0
program. The excerpt below shows some of the tests.

pass :: Bool -> String
pass True = "PASS"
pass False = "FAIL"

main :: I0 Q)

main =
do

-- Test 3/2

putStrLn ("numer (makeRat 3 2) == 3: S
pass (numer (makeRat 3 2) == 3))

putStrLn ("denom (makeRat 3 2) == 2: "+t
pass (denom (makeRat 3 2) == 2))

-- Test -3/-2

putStrLn ("numer (makeRat (-3) (-2)) == 3: "o+
pass (numer (makeRat (-3) (-2)) == 3))

putStrln ("denom (makeRat (-3) (-2)) == 2: "o+t
pass (denom (makeRat (-3) (-2)) == 2))

-- Test 12/8

putStrLn ("numer (makeRat 12 8) == 3: "4
pass (numer (makeRat 12 8) == 3))

putStrln ("denom (makeRat 12 8) == 2: "o+t
pass (denom (makeRat 12 8) == 2))

-— Test -12/-8

putStrLln ("numer (makeRat (-12) (-8)) == 3: "o+t
pass (numer (makeRat (-12) (-8)) == 3))

putStrln ("denom (makeRat (-12) (-8)) == 2: "o+t
pass (denom (makeRat (-12) (-8)) == 2))

-- Test 0/0

putStrln ("makeRat O O is error:
++ show (makeRat 0 0))
“catch® (\(ErrorCall msg)
=> putStrLn ("[Error Call] (EXPECTED)\n"
++ msg))

11

The first four pairs of tests above check the test inputs (3,2), (-3,-2), (12,8), and
(-12,-8). These are four test inputs, drawn from the first and third quadrants,
that all have the same rational number value 3

5
The last test above checks whether the error pair (0,0) responds with an error
exception as expected.

For the full test script (including tests of showRat) examine the source file
TestRatRepCore.hs or TestRatRepDefer.hs.

12.4.2.5 Broken encapsulation So far, the tests have assumed that any
rational number object passed as an argument to numer, denom, and showRat is
an object returned by makeRat.

However, the encapsulation of the data type Rat within a RationalRep module
is just a convention. Rat is really an alias for (Int,Int). The alias is exposed
when the module is imported.

A user could call a function and directly pass an integer pair. If the integer pair
does not satisfy the interface invariant, then the functions might not return a
valid result.

For example, if we call numer with the invalid rational number value (1,0), what
is returned?

Because this value is outside the specification for RationalRep, each implementa-
tion could behave differently. In fact, RationalCore returns the first component
of the tuple and RationalDeferGCD throws a “divide by zero” exception.

The test scripts include tests of the invalid value (1,0) for each of the functions
numer, denom, and showRat.

A good solution to this broken encapsulation problem is (a) to change Rat to a
user-defined type and (b) only export the type name but not its components.
Then the Haskell compiler will enforce the encapsulation we have assumed. We
discuss approach in later chapters.

12.4.3 Rational arithmetic modules

TODO: Write section

The interface to the module Rational consists of the functions negRat, addRat,
subRat, mulRat, divRat, and eqRat, the RationalRep module’s interface. It
does not add any new data types, constructors, or destructors.

The Rational abstract module’s functions preserve the interface invariant for
the RationalRep abstract module, but it does not add any new components to
the invariant.

12

../Ch07/TestRatRepCore.hs
../Ch07/TestRatRepDefer.hs

12.4.3.1 Arrange TODO: Write section

TODO: Draw a diagram to help visualize input domain

12.4.3.2 Act TODO: Write section

12.4.3.3 Assert TODO: Write section

12.4.3.4 Aggregate into test script TODO: Write section

TODO: Discuss TestRationall.hs and TestRational2.hs

12.4.4 Reflection on this example

TODO: Update after completing chapter

I designed and implemented the Rational and RationalCore modules using the
approach described in the early sections of Chapter 7, doing somewhat ad hoc
testing of the modules with the REPL. I later developed the RationalDeferGCD
module, abstracting from the RationalCore module. After that, I wrote Chapter
7 to describe the example and the development process. Even later, I constructed
the systematic test scripts and wrote Chapters 11 and 12 (this chapter).

As T am closing out the discussion of this example, I find it useful to reflect upon
the process.

The problem seemed quite simple, but I learned there are several subtle
issues in the problem and the modules developed to solve it. As the saying
goes, “the devil is in the details”.

In my initial development and testing of these simple modules, I got the
“happy paths” right and covered the primary error conditions. Although
singer Bobby McFerrin’s song “Don’t Worry, Be Happy” may give good
advice for many life circumstances, it should not be taken too literally for
software development and testing.

In writing both Chapter 7 and this chapter, I realized that my state-
ments of the preconditions, postconditions, and interface invariants of
RationalRep abstraction needed to be reconsidered and restated more
carefully. Specifying a good abstract interface for a family of modules is
challenging.

In developing the systematic test scripts, I encountered other issues I had
either not considered sufficiently or overlooked totally:

— the full implications of using the finite data Int data type for the
rational arithmetic modules

— the impact of the underlying integer arithmetic representation (e.g.,
as two’s complement) on the Haskell code

13

../Ch07/TestRational1.hs
../Ch07/TestRational2.hs

— the effects of calls of functions like numer, denom, and showRat with
invalid input data

— a subtle violation of the interface invariant in the RationalDeferGCD
implementations of makeRat and showRat

— the value of a systematic input domain partitioning for both developing
good tests and understanding the problem

It took me much longer to develop the systematic tests and document them
than it did to develop the modules initially. I clearly violated the Meszaros’s
final principle, “ensure commensurate effort and responsibility” described in the
previous chapter (also in Mesazaros [6, Ch. 5]).

For future programming, I learned I need to pay attention to other of Meszaros’s

” W MW

principles such as “design for testability”, “minimize untestable code”, “commu-
nicate intent”, and perhaps “write tests first” or at least to develop the tests
hand-in-hand with the program.

12.5 What Next?

Chapters 11 and 12 examined software testing concepts and applied them to
testing Haskell functions and modules from Chapters 4 and 7.

So far we have limited our examples mostly to primitive types. In Chapters 13
and 14, we explore first-order, polymorphic list programming in Haskell.

12.6 Chapter Source Code

The source code for the group of factorial functions from Chapters 4 and 9 is in
following
files:

e Factorial.hs, the source code for the functions
e TestFactorial.hs, the source code for the factorial test script

The source code for the rational arithmetic modules from Chapter 7 is in following
files:

e RationalCore.hs and RationalDeferGCD.hs, the source code for the two
implementations of the “RationalRep” abstract module

e TestRatRepCore.hs and TestRatRepDefer.hs, the test scripts for the
two above implementations of the “RationalRep” abstract module

e Rationall.hs and Rational2.hs, the source code for the Rational arith-
metic module paired with the two above implementations of the “Ratio-
nalRep” abstract module

e TestRationall.hs and TestRational2.hs, the test scripts for the
Rational module paired with the two “RationalRep” implementations

14

../Ch04/Factorial.hs
../Ch04/TestFactorial.hs
../Ch07/RationalCore.hs
../Ch07/RationalDeferGCD.hs
../Ch07/TestRatRepCore.hs
../Ch07/TestRatRepDefer.hs
../Ch07/Rational1.hs
../Ch07/Rational2.hs
../Ch07/TestRational1.hs
../Ch07/TestRational2.hs

12.7 Exercises

1. Using the approach of this chapter, develop a black-box unit-testing script
for the fib and fib2 Fibonacci functions from Chapter 9. Test the
functions with your script.

2. Using the approach of this chapter, develop a black-box unit-testing script
for the expt, expt2, and expt3 exponentiation functions from Chapter 9.
Test the functions with your script.

3. Using the approach of this chapter, develop a black-box unit/module-
testing script for the module Sqrt from Chapter 6. Test the module with
your script.

4. Using the approach of this chapter, develop a black-box unit/module-
testing script for the line-segment modules developed in exercises 1-3 of
Chapter 7. Test the module with your script.

12.8 Acknowledgements

I wrote this chapter in Summer 2018 for the 2018 version of the textbook
Ezxploring Languages with Interpreters and Functional Programming.

e The presentation builds on the concepts and techniques surveyed in the
Chapter 11, which was written at the same time.

e The presentation and use of the Arrange-Act-Assert pattern draws on the
discussion in Beck [1] and Koskela [5].

e The testing examples draw on previously existing function and (simple)
test script examples and on discussion of the examples in Chapters 4 and
7. However, I did redesign and reimplement the test scripts to be more
systematic and to follow the discussion in this new chapter.

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

12.9 Terms and Concepts

Test, testing level, testing method, testing type, unit and module testing (levels),
black-box and gray-box testing (methods), functional testing (type), arrange-act-
assert, input domain, input partitioning, representative values (for equivalence

15

classes), boundary values, testing based on the specification, Haskell I0 program,
do, putStrLn, exceptions.

12.10 References

1]
[2]

Kent Beck. 2003. Test-driven development: By example. Addison-Wesley,
Boston Massachusetts, USA.

Haskell Organization. 2020. QuickCheck: Automatic checking of Haskell
programs. Retrieved from https://hackage.haskell.org/package/QuickC
heck

Haskell Organization. 2021. HUnit: A unit testing framework for Haskell.
Retrieved from https://hackage.haskell.org/package/HUnit

Haskell Organization. 2021. Tasty: Modern and extensible testing
framework. Retrieved from https://hackage.haskell.org/package/tasty
Lasse Koskela. 2013. Effective unit testing. Manning, Shelter Island, New
York, USA.

Gerard Meszaros. 2007. xzUnit test patterns: Refactoring test code.
Addison-Wesley, Boston, Massachusetts, USA.

Wikibooks: Open Books for the World. 2019. Haskell. Retrieved from
https://en.wikibooks.org/wiki/Haskell

16

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/HUnit
https://hackage.haskell.org/package/tasty
https://en.wikibooks.org/wiki/Haskell

	Testing Haskell Programs
	Chapter Introduction
	Organizing Tests
	Testing Functions
	Factorial example
	Arrange
	Act
	Assert
	Aggregating into test script

	Testing Modules
	Rational arithmetic modules example
	Data representation modules
	Arrange
	Act
	Assert
	Aggregate into test script
	Broken encapsulation

	Rational arithmetic modules
	Arrange
	Act
	Assert
	Aggregate into test script

	Reflection on this example

	What Next?
	Chapter Source Code
	Exercises
	Acknowledgements
	Terms and Concepts
	References

