
Exploring Languages
with Interpreters

and Functional Programming
Chapter 11

H. Conrad Cunningham

04 April 2022

Contents
11 Software Testing Concepts 2

11.1 Chapter Introduction . 2
11.2 Software Requirements Specification 2
11.3 What is Software Testing? . 3
11.4 Goals of Testing . 3
11.5 Dimensions of Testing . 3

11.5.1 Testing levels . 4
11.5.2 Testing methods . 6

11.5.2.1 Black-box testing 6
11.5.2.2 White-box testing 8
11.5.2.3 Gray-box testing 9
11.5.2.4 Ad hoc testing 9

11.5.3 Testing types . 9
11.5.4 Combining levels, methods, and types 10

11.6 Aside: Test-Driven Development 10
11.7 Principles for Test Automation 11
11.8 What Next? . 15
11.9 Exercises . 15
11.10Acknowledgements . 15
11.11Terms and Concepts . 15
11.12References . 16

Copyright (C) 2018, 2022, H. Conrad Cunningham
Professor of Computer and Information Science
University of Mississippi
214 Weir Hall
P.O. Box 1848

1

https://john.cs.olemiss.edu/~hcc
https://www.cs.olemiss.edu
http://www.olemiss.edu

University, MS 38677
(662) 915-7396 (dept. office)

Browser Advisory: The HTML version of this textbook requires a browser
that supports the display of MathML. A good choice as of April 2022 is a recent
version of Firefox from Mozilla.

2

11 Software Testing Concepts
11.1 Chapter Introduction
The goal of this chapter (11) is to survey the important concepts, terminology,
and techniques of software testing in general.

Chapter 12 illustrates these techniques by manually constructing test scripts for
Haskell functions and modules.

11.2 Software Requirements Specification
The purpose of a software development project is to meet particular needs and
expectations of the project’s stakeholders.

By stakeholder, we mean any person or organization with some interest in the
project’s outcome. Stakeholders include entities that:

• have a “business” problem needing a solution—the project’s sponsors,
customers, and users

• care about the broad impacts of the project and its solution—that laws,
regulations, standards, best practices, codes of conduct, etc., are followed

• are responsible for the development, deployment, operation, support, and
maintenance of the software

A project’s stakeholders should create a software requirements specification to
state the particular needs and expectations to be addressed.

A software requirements specification seeks to comprehensively describe the
intended behaviors and environment of the software to be developed. It should
address the “what” but not the “how”. For example, the software requirements
specification should describe the desired mapping from inputs to outputs but
not unnecessarily restrict the software architecture, software design, algorithms,
data structures, programming languages, and software libraries that can be used
to implement the mapping.

Once the requirements are sufficiently understood, the project’s developers
then design and implement the software system: its software architecture, its
subsystems, its modules, and its functions and procedures.

Software testing helps ensure that the software implementation satisfies the
design and that the design satisfies the stakeholder’s requirements.

Of course, the requirements analysis, design, and implementation may be an
incremental. Software testing can also play a role in identifying requirements
and defining appropriate designs and implementations.

3

11.3 What is Software Testing?
According to the Collins English Dictionary [4]:

A test is a deliberate action or experiment to find out how well
something works.

The purpose of testing a program is to determine “how well” the program
“works”—to what extent the program satisfies its software requirements specifi-
cation.

Software testing is a “deliberate” process. The tests must be chosen effectively
and conducted systematically. In most cases, the test plan should be documented
carefully so that the tests can be repeated precisely. The results of the tests
should be examined rigorously.

In general, the tests should be automated. Testers can use manually written test
scripts (as we do in the Chapter 12) or appropriate testing frameworks [12] (e.g.,
JUnit [17,18] in Java, Pytest [11,14] in Python, and HUnit [8], QuickCheck [7],
or Tasty [9] in Haskell).

Testers try to uncover as many defects as possible, but it is impossible to identify
and correct all defects by testing. Testing is just one aspect of software quality
assurance.

11.4 Goals of Testing
Meszaros [12, Ch. 3] identifies several goals of test automation. These apply
more generally to all software testing. Tests should:

• help improve software quality

• help software developers understand the system being tested

• reduce risk

• be easy to develop

• be easy to conduct repeatedly

• be easy to maintain as the system being tested continues to evolve

11.5 Dimensions of Testing
We can organize software testing along three dimensions [16]:

• testing levels
• testing methods
• testing types

We explore these in the following subsections.

4

https://www.collinsdictionary.com/us/dictionary/english/test

11.5.1 Testing levels

Software testing levels categorize tests by the applicable stages of software
development.

Note: The use of the term “stages” does not mean that this approach is only
applicable to the traditional waterfall software development process. These
stages describe general analysis and design activities that must be carried out
however the process is organized and documented.

Ammann and Offutt [1] identify five levels of testing, as shown in Figure 11.1.
Each level assumes that the relevant aspects of the level below have been
completed successfully.

From the highest to the lowest, the testing levels are as follows.

1. Acceptance testing focuses on testing a completed system to determine
whether it satisfies the software requirements specification and to assess
whether the system is acceptable for delivery.

The acceptance test team must include individuals who are strongly familiar
with the business requirements of the stakeholders.

2. System testing focuses on testing an integrated system to determine whether
it satisfies its overall specification (i.e., the requirements as reflected in the
chosen software architecture).

The system test team is usually separate from the development team.

3. Integration testing focuses on testing each subsystem to determine whether
its constituent modules communicate as required. For example, do the
modules have consistent interfaces (e.g., compatible assumptions and
contracts)?

A subsystem is often constructed by using existing libraries, adapting
previously existing modules, and combining these with a few new modules.
It is easy to miss subtle incompatibilities among the modules. Integration
testing seeks to find any incompatibilities among the various modules.

Integration testing is often conducted by the development team.

4. Module testing focuses on the structure and behavior of each module
separately from the other modules with which it communicates.

A module is usually composed of several related units and their associ-
ated data types and data structures. Module testing assesses whether
the units and other features interact as required and assess whether the
module satisfies its specification (e.g., its preconditions, postconditions,
and invariants).

Note: Here we use the term “module” generically. For example, a module
in Java might be a class, package, or module (in Java 9) construct. A

5

Figure 11.1: Software testing levels.

6

module in Python 3 might be a code file (i.e., module) or a directory
structure of code files (i.e., package). In Haskell, a generic module might
be represented as a closely related group of Haskell module files.

Module testing is typically done by the developer(s) of a module.

5. Unit testing focuses on testing the implementation of each program unit
to determine whether it performs according to the unit’s specification.

The term “unit” typically refers to a procedural abstraction such as a
function, procedure, subroutine, or method.

A unit’s specification is its “contract”, whether represented in terms of
preconditions and postconditions or more informally.

Unit testing is typically the responsibility of the developer(s) of the unit.

In object-based systems, the units (e.g., methods) and the modules (e.g., objects
or classes) are often tightly coupled. In this and similar situations, developers
often combine unit testing and module testing into one stage called unit testing
[1,16].

In this book, we are primarily concerned with the levels usually conducted by
the developers: unit, module, and integration testing.

11.5.2 Testing methods

Software testing methods categorize tests by how they are conducted. The
Software Testing Fundamentals website [16] identifies several methods for testing.
Here we consider four:

• black-box testing
• white-box testing
• gray-box testing
• ad hoc testing

In this book, we are primarily concerned with black-box and gray-box testing.
Our tests are guided by the contracts and other specifications for the unit,
module, or subsystem being tested.

11.5.2.1 Black-box testing In black-box testing, the tester knows the ex-
ternal requirements specification (e.g., the contract) for the item being tested
but does not know the item’s internal structure, design, or implementation.

Note: This method is sometimes called closed-box or behavioral testing.

This method approaches the system much as a user does, as a black box whose
internal details are hidden from view. Using only the requirements specification
and public features of the item, the testers devise tests that check input values
to make sure the system yields the expected result for each. They use the item’s
regular interface to carry out the tests.

7

http://softwaretestingfundamentals.com/

Black-box tests are applicable to testing at the higher levels—integration, systems,
and acceptance testing—and for use by external test teams.

The method is also useful for unit and module testing, particularly when we
wish to test the item against an abstract interface with an explicit specification
(e.g., a contract stated as preconditions, postconditions, and invariants).

How do we design black-box tests? Let’s consider the possible inputs to the
item.

Input domain An item being tested has some number of input parameters—
some explicit, others implicit. Each parameter has some domain of possible
values.

The input domain of the item thus consists of the Cartesian product of the
individual domains of its parameters. A test input is thus a tuple of values, one
possible value for each parameter [1].

For example, consider testing a public instance method in a Java class. The
method has zero or more explicit parameters, one implicit parameter (giving
the method access to all the associated instance’s variables), and perhaps direct
access to variables outside its associated instance (static variables, other instances’
variables, public variables in other classes, etc.).

In most practical situations, it is impossible to check all possible test inputs.
Thus, testers need to choose a relatively small, finite set of input values to test.
But how?

Choosing test inputs In choosing test inputs, the testers can fruitfully apply
the following techniques [5,12,15].

• Define equivalence classes (or partitions) of the possible inputs based on
the kinds of behaviors of interest and then choose representative members
of each class.

After studying the requirements specification for the item being tested, the
tester first groups together inputs that result in the “same” behaviors of
interest and then chooses typical representatives of each group for tests
(e.g., from the middle of the group).

The representative values are normal use or “happy path” cases that are
not usually problematic to implement [1].

For example, consider the valid integer values for the day of a month (on
the Gregorian calendar as used in the USA). It may be useful to consider
the months falling into three equivalence classes: 31-day months, 30-day
months, and February.

• Choose boundary values—values just inside and just outside the edges of an
equivalence class (as defined above) or special values that require unusual

8

handling.

Unlike the “happy path” tests, the boundary values often are values that
cause problems [1].

For example, consider the size of a data structure being constructed. The
boundary values of interest may be zero, one, minimum allowed, maximum
allowed, or just beyond the minimum or maximum.

For a mathematical function, a boundary value may also be at or near a
value for which the function is undefined or might result in a nonterminating
computation.

• Choose input values that cover the range of expected results.

This technique works from the output back toward the input to help ensure
that important paths through the item are handled properly.

For example, consider transactions on a bank account. The action might
be a balance inquiry, which returns information but does not change the
balance in the account. The action might be a deposit, which results in
a credit to the account. The action might be a withdrawal, which either
results in a debit or triggers an insufficient funds action. Tests should cover
all four cases.

• Choose input values based on the model used to specify the item (e.g.,
state machine, mathematical properties, invariants) to make sure the item
implements the model appropriately.

For example, a data abstraction should establish and preserve the invariants
of the abstraction (as shown in the Rational arithmetic case study in
Chapter 7).

Black-box testers often must give attention to tricky practical issues such as
appropriate error handling and data-type conversions.

11.5.2.2 White-box testing In white-box testing, the tester knows the
internal structure, design, and implementation of the item being tested as well
as the external requirements specification.

Note: This method is sometimes called open-box, clear-box transparent-box,
glass box, code-based, or structural testing.

This method seeks to test every path through the code to make sure every input
yields the expected result. It may use code analysis tools [1] to define the tests
or special instrumentation of the item (e.g., a testing interface) to carry out the
tests.

White-box testing is most applicable to unit and module testing (e.g., for use by
the developers of the unit), but it can also be used for integration and system
testing.

9

11.5.2.3 Gray-box testing In gray-box testing, the tester has partial knowl-
edge of the internal structure, design, and requirements of the item being tested
as well as the external requirements specification.

Note: “Gray” is the typical American English spelling. International or British
English spells the word “grey”.

Gray-box testing combines aspects of black-box and white-box testing. As
in white-box testing, the tester can use knowlege of the internal details (e.g.,
algorithms, data structures, or programming language features) of the item being
tested to design the test cases. But, as in black-box testing, the tester conducts
the tests through the item’s regular interface.

This method is primarily used for integration testing, but it can be used for the
other levels as well.

11.5.2.4 Ad hoc testing In ad hoc testing, the tester does not plan the
details of the tests in advance as is typically done for the other methods. The
testing is done informally and randomly, improvised according the creativity and
experience of the tester. The tester strives to “break” the system, perhaps in
unexpected ways.

This method is primarily used at the acceptance test level. It may be carried
out by someone from outside the software development organization on behalf
of the client of a software project.

11.5.3 Testing types

Software testing types categorize tests by the purposes for which they are con-
ducted. The Software Testing Fundamentals website [16] identifies several types
of testing:

• Smoke testing seeks to ensure that the primary functions work. It uses of
a non-exhaustive set of tests to “smoke out” any major problems.

• Functional testing seeks to ensure that the system satisfies all its functional
requirements. (That is, does a given input yield the correct result?)

• Usability testing seeks to ensure that the system is easily usable from the
perspective of an end-user.

• Security testing seeks to ensure that the system’s data and resources are
protected from possible intruders by revealing any vulnerabilities in the
system

• Performance testing seeks to ensure that the system meets its performance
requirements under certain loads.

• Regression testing seeks to ensure that software changes (bug fixes or
enhancements) do not break other functionality.

10

http://softwaretestingfundamentals.com/

• Compliance testing seeks to ensure the system complies to required internal
or external standards.

In this book, we are primarily interested in functional testing.

11.5.4 Combining levels, methods, and types

A tester can conduct some type of testing during some stage of software develop-
ment using some method. For example,

• a test team might conduct functional testing (a type) at the system testing
level using the black-box testing method to determine whether the system
performs correctly

• a programmer might do smoke testing (a type) of the code at the module
testing level using the white-box testing method to find and resolve major
shortcomings before proceeding with more complete functional testing

As noted above, in this book we are primarily interested in applying functional
testing (type) techniques at the unit, module, or integration testing levels using
black-box or gray-box testing methods. We are also interested in automating our
tests.

11.6 Aside: Test-Driven Development
The traditional software development process follows a design-code-test cycle.
The developers create a design to satisfy the requirements, then implement the
design as code in a programming language, and then test the code.

Test-driven development (TDD) reverses the traditional cycle; it follows a test-
code-design cycle instead. It uses a test case to drive the writing of code that
satisfies the test. The new code drives the restructuring (i.e., refactoring) of the
code base to evolve a good design. The goal is for the design and code to grow
organically from the tests [2,10].

Beck describes the following “algorithm” for TDD [2].

1. Add a test for a small, unmet requirement.

If there are no unmet requirements, stop. The program is complete.

2. Run all the tests.

If no tests fail, go to step 1.

3. Write code to make a failing test succeed.

4. Run all the tests.

If any test fails, go to step 3.

5. Refactor the code to create a “clean” design.

11

6. Run all the tests.

If any test fails, go to step 3.

7. Go to step 1 to start a new cycle.

Refactoring [6] (step 5) is critical for evolving good designs and good code. It
involves removing duplication, moving code to provide a more logical structure,
splitting apart existing abstractions (e.g., functions, modules, and data types),
creating appropriate new procedural and data abstractions, generalizing constants
to variables or functions, and other code transformations.

TDD focuses on functional-type unit and module testing using black-box and
gray-box methods. The tests are defined and conducted by the developers, so
the tests may not cover the full functional requirements needed at the higher
levels. The tests often favor “happy path” tests over possible error cases [1].

This book presents programming language concepts using mostly small programs
consisting of a few functions and modules. The book does not use TDD techniques
directly, but it promotes similar rigor in analyzing requirements. As we have
seen in previous chapters, this book focuses on design using contracts (i.e.,
preconditions, postconditions, and invariants), information-hiding modules, pure
functions, and other features we study in later chapters.

As illustrated in Chapter 12, these methods are also compatible with functional-
type unit and module testing using black-box and gray-box methods.

11.7 Principles for Test Automation
Based on earlier work on the Test Automation Manifesto [13], Meszaros proposes
several principles for test automation [12, Ch. 5]. These focus primarily on unit
and module testing. The principles include the following:

1. Write the tests first.

This principle suggests that developers should use Test-Driven Development
(TDD) [2] as described in Section 11.6.

2. Design for testability.

Developers should consider how to test an item while the item is being
designed and implemented. This is natural when TDD is being used, but,
even if TDD is not used, testability should be an important consideration
during design and implementation. If code cannot be tested reliably, it is
usually bad code.

The application of this principle requires judicious use of the abstraction
techniques, such as those illustrated in Chapters 6 and 7 and in later
chapters.

3. Use the front door first.

12

Testing should be done primarily through the standard public interface of
the item being tested. A test involves invoking a standard operation and
then verifying that the operation has the desired result. (In terms of the
testing methods described in Section 11.5.2, this principle implies use of
black-box and gray-box methods.)

Special testing interfaces and operations may sometimes be necessary, but
they can introduce new problems. They make the item being tested more
complex and costly to maintain. They promote unintentional (or perhaps
intentional) overspecification of the item. This can limit future changes to
the item—or at least it makes future changes more difficult.

Note: Overspecification means imposing requirements on the software
that are not explicitly needed to meet the users’ actual requirements. For
example, a particular order may be imposed on a sequence of data or
activities when an arbitrary order may be sufficient to meet the actual
requirements.

4. Communicate intent.

As with any other program, a test program should be designed, imple-
mented, tested, and documented carefully.

However, test code is often more difficult to understand than other code
because the reader must understand both the test program and the item
being tested. The “big picture” meaning is often obscured by the mass of
details.

Testers should ensure they communicate the intent of a set of tests. They
should use a naming scheme that reveals the intent and include appropriate
comments. They should use standard utility procedures from the testing
framework or develop their own utilities to abstract out common activities
and data.

5. Don’t modify the system under test.

Testers should avoid modifying a “completed” item to enable testing. This
can break existing functionality and introduce new flaws. Also, if the tests
are not conducted on the item to be deployed, then the results of the tests
may be inaccurate or misleading.

As noted in principles above, it is better to “design for testability” from
the beginning so that tests can be conducted through “the front door” if
possible.

6. Keep tests independent.

A test should be designed and implemented to be run independently of all
other tests of that unit or module. It should be possible to execute a set
of tests in any order, perhaps even concurrently, and get the same results
for all tests.

13

Thus each automated test should set up its needed precondition state,
run the test, determine whether the test succeeds or fails, and ensure no
artifacts created by the test affect any of the other tests.

If one item depends upon the correct operation of a second item, then it
may be useful to test the second item fully before testing the first. This
dependency should be documented or enforced by the testing program.

7. Isolate the system under test.

Almost all programs depend on some programming language, its standard
runtime library, and basic features of the underlying operating system.
Most modern software depends on much more: the libraries, frameworks,
database systems, hardware devices, and other software that it uses.

As much as possible, developers and testers should isolate the system
being tested from other items not being tested at that time. They should
document the versions and configurations of all other items that the system
under test depends on. They should ensure the testing environment controls
(or at least records) what versions and configurations are used.

As much as practical, the software developers should encapsulate criti-
cal external dependencies within information-hiding components. This
approach helps the developers to provide stable behavior over time. If
necessary, this also enables the testers to substitute a “test double” for a
problematic system.

A test double is a “test-specific equivalent” [12, Ch. 11, Ch. 23] that is
substituted for some component upon which the system under test depends.
It may replace a component that is necessary but which is not available for
safe use in the testing environment. For example, testers might be testing
on system that interacts with another that has not yet been developed.

8. Minimize test overlap.

Tests need to cover as much functionality of a system as possible, but it
may be counterproductive to test the same functionality more than once.
If the code for that functionality is defective, it likely will cause all the
overlapping tests to fail. Following up on the duplicate failures takes time
and effort that can better be invested in other testing work.

9. Minimize untestable code.

Some components cannot be tested fully using an automated test program.
For example, code in graphical user interfaces (GUIs), in multithreaded
programs, or in test programs themselves are embedded in contexts that
may not support being called by other programs.

However, developers can design the system so that as much as possible is
moved to separate components that can be tested in an automated fashion.

14

For example, a GUI can perhaps be designed as a “thin” interactive layer
that sets up calls to an application programming interface (API) to carry
out most of the work. In addition to being easier to test, such an API may
enable other kinds of interfaces in addition to the GUI.

10. Keep test logic out of production code.

As suggested above, developers should “design for testability” through “the
front door”. Code should be tested in a configuration that is as close as
possible to the production configuration.

Developers and testers should avoid inserting special test hooks into the
code (e.g., if testing then doSomething) that will not be active in
the production code. In addition to distorting the tests, such hooks can
introduce functional or security flaws into the production code and make
the program larger, slower, and more difficult to understand.

11. Verify one condition per test.

If one test covers multiple conditions, it may be nontrivial to determine
the specific condition causing a failure. This is likely not a problem with a
manual test carried out by a human; it may be an efficient use of time to
do fewer, broader tests.

However, tests covering multiple conditions are an unnecessary compli-
cation for inexpensive automated tests. Each automated test should be
“independent” of others, do its own setup, and focus on a single likely cause
of a failure. ”

12. Test concerns separately.

The behavior of a large system consists of many different, “small” behaviors.
Sometimes a component of the system may implement several of the “small”
behaviors. Instead of focusing a test on broad concerns of the entire system,
testers should focus a test on a narrow concern. The failure of such a test
can help pinpoint where the problem is.

The key here is to “pull apart” the overall behaviors of the system to
identify “small” behaviors that can be tested independently.

13. Ensure commensurate effort and responsibility.

Developing test code that follows all of these principles can exceed the time
it took to develop the system under test. Such an imbalance is bad. Testing
should take approximately the same time as design and implementation.

The developers may need to devote more time and effort to “designing for
testability” so that testing becomes less burdensome.

The testers may need to better use existing tools and frameworks to avoid
too much special testing code. The testers should consider carefully which

15

tests can provide useful information and which do not. There is no need
for a test if it does not help reduce risk.

11.8 What Next?
This chapter (11) surveyed software testing concepts. Chapter 12 applies them
to testing Haskell modules from Chapters 4 and 7.

11.9 Exercises
TODO

11.10 Acknowledgements
I wrote this chapter in Summer 2018 for the 2018 version of the textbook
Exploring Languages with Interpreters and Functional Programming.

• The discussion of the dimensions of software testing — levels, methods, and
types — draws on the discussion on the Software Testing Fundamentals
website [16] and other sources [1,3,5,15].

• The presentation of the goals and principles of test automation draws on
the ideas of Meszaros [12,13].

• The description of Test-Driven Development (TDD) “algorithm” is adapted
from that of Beck [2] and Koskela [10].

I retired from the full-time faculty in May 2019. As one of my post-retirement
projects, I am continuing work on this textbook. In January 2022, I began refin-
ing the existing content, integrating additional separately developed materials,
reformatting the document (e.g., using CSS), constructing a bibliography (e.g.,
using citeproc), and improving the build workflow and use of Pandoc.

I maintain this chapter as text in Pandoc’s dialect of Markdown using embedded
LaTeX markup for the mathematical formulas and then translate the document
to HTML, PDF, and other forms as needed.

11.11 Terms and Concepts
Stakeholder, software requirements specification, test, test plan, testing dimen-
sions (levels, methods, types), testing levels (unit, module, integration, system,
and acceptance testing), testing methods (black-box, white-box, gray-box, and
ad hoc testing), input domain, test input, input domain equivalence classes, rep-
resentatives of normal use or “happy path”, boundary values, covering the range
of expected outputs, testing based on the specification model, error handling,
data-type conversions, testing types (smoke testing, functional testing, usability
testing, security testing, performance testing, regression testing, compliance
testing), test-driven development (TDD), design-code-test vs. test-code-design.

16

http://softwaretestingfundamentals.com/

11.12 References
[1] Paul Ammann and Jeff Offutt. 2017. Introduction to software testing.

Cambridge University Pres, Cambridge, UK.
[2] Kent Beck. 2003. Test-driven development: By example. Addison-Wesley,

Boston Massachusetts, USA.
[3] Rex Black. 2007. Pragmatic software testing. Wiley, Indianapolis,

Indiana, USA.
[4] Collins Learning. 2022. Collins english dictionary. Retrieved from

https://www.collinsdictionary.com/us/dictionary/english/
[5] Gerard D. Everett and Raymond McLeod Jr. 2007. Software testing:

Testing across the entire software development life cycle. Wiley, Hoboken,
New Jersey, USA.

[6] Martin Fowler. 1999. Refactoring: Improving the design of existing code
(First ed.). Addison-Wesley, Boston, Massachusetts, USA.

[7] Haskell Organization. 2020. QuickCheck: Automatic checking of Haskell
programs. Retrieved from https://hackage.haskell.org/package/QuickC
heck

[8] Haskell Organization. 2021. HUnit: A unit testing framework for Haskell.
Retrieved from https://hackage.haskell.org/package/HUnit

[9] Haskell Organization. 2021. Tasty: Modern and extensible testing
framework. Retrieved from https://hackage.haskell.org/package/tasty

[10] Lasse Koskela. 2013. Effective unit testing. Manning, Shelter Island, New
York, USA.

[11] Holger Krekel and Pytest-dev Team. 2022. pytest: Helps you write better
programs. Retrieved from https://docs.pytest.org/

[12] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code.
Addison-Wesley, Boston, Massachusetts, USA.

[13] Gerard Meszaros, Shaun M. Smith, and Jennitta Andrea. 2003. The
test automation manifest. In Proceedings of the conference on extreme
programming and agile methods, Springer, New Orleans, Louisiana, USA,
73–81. Retrieved from https://pdfs.semanticscholar.org/b42f/337557b9
1e5a4daa571fe19a8e937d9ac03d.pdf

[14] Brian Okken. 2017. Python testing with pytest: Simple, rapid, effective,
and scalable (First ed.). Pragmatic Bookshelf, Raleigh, North Carolina,
USA.

[15] William E. Perry. 2006. Effective methods for software testing. Wiley,
Indianapolis, Indiana, USA.

[16] Software Testing Fundamentals (SFT). 2021. Software testing guide and
tutorial. Retrieved from https://softwaretestingfundamentals.com/

[17] The JUnit Team. 2022. JUnit 5: The fifth major version of the
programmer-friendly testing framework for Java and the JVM. Retrieved
from https://junit.org/junit5/

17

https://www.collinsdictionary.com/us/dictionary/english/
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/HUnit
https://hackage.haskell.org/package/tasty
https://docs.pytest.org/
https://pdfs.semanticscholar.org/b42f/337557b91e5a4daa571fe19a8e937d9ac03d.pdf
https://pdfs.semanticscholar.org/b42f/337557b91e5a4daa571fe19a8e937d9ac03d.pdf
https://softwaretestingfundamentals.com/
https://junit.org/junit5/

[18] Catalin Tudose. 2020. JUnit in action (Third ed.). Manning, Shelter
Island, New York, USA.

18

	Software Testing Concepts
	Chapter Introduction
	Software Requirements Specification
	What is Software Testing?
	Goals of Testing
	Dimensions of Testing
	Testing levels
	Testing methods
	Black-box testing
	White-box testing
	Gray-box testing
	Ad hoc testing

	Testing types
	Combining levels, methods, and types

	Aside: Test-Driven Development
	Principles for Test Automation
	What Next?
	Exercises
	Acknowledgements
	Terms and Concepts
	References

