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9 Recursion Styles and Efficiency
9.1 Chapter Introduction
This chapter () introduces basic recursive programming styles and examines
issues of efficiency, termination, and correctness. It builds on the substitution
model from Chapter 8, but uses the model informally.

As in the previous chapters, this chapter focuses on use of first-order functions
and primitive data types.

The goals of the chapter are to:

• explre several recursive programming styles—linear and nonlinear, back-
ward and forward, tail, and logarithmic—and their implementation using
Haskell

• analyze Haskell functions to determine under what conditions they termi-
nate with the correct result and how efficient they are

• explore methods for developing recursive Haskell programs that terminate
with the correct result and are efficient in both time and space usage

• compare the basic functional programming syntax of Haskell with that in
other languages

9.2 Linear and Nonlinear Recursion
Given the substitution model described in Chapter 8, we can now consider
efficiency and termination in the design of recursive Haskell functions.

In this section, we examine the concepts of linear and nonlinear recursion. The
following two sections examine other styles.

9.2.1 Linear recursion

A function definition is linear recursive if at most one recursive application of
the function occurs in any leg of the definition (i.e., along any path from an
entry to a return). The various argument patterns and guards and the branches
of the conditional expression if introduce paths.

The definition of the function fact4 repeated below is linear recursive because
the expression in the second leg of the definition (i.e., n * fact4 (n-1)) involves
a single recursive application. The other leg is nonrecursive; it is the base case
of the recursive definition.

fact4 :: Int -> Int
fact4 n

| n == 0 = 1
| n >= 1 = n * fact4 (n-1)
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What are the precondition and postcondition for fact4 n?

As discussed in Chapter 6, we must require a precondition of n >= 0 to avoid
abnormal termination. When the precondition holds, the postcondition is:

fact4 n = fact’(n)

What are the time and space complexities of fact4 n?

Function fact4 recurses to a depth of n. As we in for fact1 in Chapter 8, it has
time complexity O(n), if we count either the recursive calls or the multiplication
at each level. The space complexity is also O(n) because a new runtime stack
frame is needed for each recursive call.

How do we know that function fact4 n terminates?

For a call fact4 n with n > 0, the argument of the recursive application always
decreases to n - 1. Because the argument always decreases in integer steps, it
must eventually reach 0 and, hence, terminate in the first leg of the definition.

9.2.2 Nonlinear recursion

A nonlinear recursion is a recursive function in which the evaluation of some leg
requires more than one recursive application. For example, the naive Fibonacci
number function fib shown below has two recursive applications in its third leg.
When we apply this function to a nonnegative integer argument greater than 1,
we generate a pattern of recursive applications that has the “shape” of a binary
tree. Some call this a tree recursion.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n | n >= 2 = fib (n-1) + fib (n-2)

What are the precondition and postcondition for fib n?

For fib n, the precondition n >= 0 to ensure that the function is defined. When
called with the precondition satisfied, the postcondition is:

fib n = Fibonacci(n)

How do we know that fib n terminates?

For the recursive case n >= 2. the two recursive calls have arguments that are 1
or 2 less than n. Thus every call gets closer to one of the two base cases.

What are the time and space complexities of fib n?

Function fib is combinatorially explosive, having a time complexity O(fib n).
The space complexity is O(n) because a new runtime stack frame is needed for
each recursive call and the calls recurse to a depth of n.
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An advantage of a linear recursion over a nonlinear one is that a linear recursion
can be compiled into a loop in a straightforward manner. Converting a nonlinear
recursion to a loop is, in general, difficult.

9.3 Backward and Forward Recursion
In this section, we examine the concepts of backward and forward recursion.

9.3.1 Backward recursion

A function definition is backward recursive if the recursive application is embedded
within another expression. During execution, the program must complete the
evaluation of the expression after the recursive call returns. Thus, the program
must preserve sufficient information from the outer call’s environment to complete
the evaluation.

The definition for the function fact4 above is backward recursive because
the recursive application fact4 (n-1) in the second leg is embedded within the
expression n * fact4 (n-1). During execution, the multiplication must be done
after return. The program must “remember” (at least) the value of parameter n
for that call.

A compiler can translate a backward linear recursion into a loop, but the
translation may require the use of a stack to store the program’s state (i.e., the
values of the variables and execution location) needed to complete the evaluation
of the expression.

Often when we design an algorithm, the first functions we come up with are
backward recursive. They often correspond directly to a convenient recurrence
relation. It is often useful to convert the function into an equivalent one that
evaluates more efficiently.

9.3.2 Forward recursion

A function definition is forward recursive if the recursive application is not
embedded within another expression. That is, the outermost expression is the
recursive application and any other subexpressions appear in the argument lists.
During execution, significant work is done as the recursive calls are made (e.g.,
in the argument list of the recursive call).

The definition for the auxiliary function factIter below has two integer argu-
ments. The first argument is the number whose factorial is to be computed. The
second argument accumulates the product incrementally as recursive calls are
made.

The recursive application factIter (n-1) (n*r) in the second leg is on the
outside of the expression evaluated for return. The other leg of factIter and
fact6 itself are nonrecursive.
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fact6 :: Int -> Int
fact6 n = factIter n 1

factIter :: Int -> Int -> Int
factIter 0 r = r
factIter n r | n > 0 = factIter (n-1) (n*r)

What are the precondition and postcondition for factIter n r?

To avoid termination, factIter n r requires n >= 0. Its postcondition is that:

factIter n r = r * fact(n)

How do we know that factIter n r terminates?

Argument n of the recursive leg is at least 1 and decreases by 1 on each recursive
call.

What is the time and space complexity of factIter n r?

Function factIter n r has a time complexity O(n). But, if the compiler
converts the factIter recursion to a loop, the time complexity’s constant factor
should be smaller than that of fact4.

As shown, factIter n r has space complexity of O(n). But, if the compiler
does an innermost reduction on the second argument (because its value will
always be needed), then the space complexity of factIter becomes O(1).

9.3.3 Tail recursion

A function definition is tail recursive if it is both forward recursive and linear
recursive. In a tail recursion, the last action performed before the return is a
recursive call.

The definition of the function factIter above is thus tail recursive.

Tail recursive definitions are relatively straightforward to compile into efficient
loops. There is no need to save the states of unevaluated expressions for higher
level calls; the result of a recursive call can be returned directly as the caller’s
result. This is sometimes called tail call optimization (or “tail call elimination”
or “proper tail calls”) [14].

In converting the backward recursive function fact4 to a tail recursive auxiliary
function, we added the parameter r to factIter. This parameter is sometimes
called an accumulating parameter (or just an accumulator).

We typically use an accumulating parameter to “accumulate” the result of
the computation incrementally for return when the recursion terminates. In
factIter, this “state” passed from one “iteration” to the next enables us to
convert a backward recursive function to an “equivalent” tail recursive one.
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Function factIter defines a more general function than fact4. It computes
a factorial when we initialize the accumulator to 1, but it can compute some
multiple of the factorial if we initialize the accumulator to another value. However,
the application of factIter in fact6 gives the initial value of 1 needed for
factorial.

Consider auxiliary function fibIter used by function fib2 below. This function
adds two “accumulating parameters” to the backward nonlinear recursive function
fib to convert the nonlinear (tree) recursion into a tail recursion. This technique
works for Fibonacci numbers, but the same technique will not work in all cases.

fib2 :: Int -> Int
fib2 n | n >= 0 = fibIter n 0 1

where
fibIter 0 p q = p
fibIter m p q | m > 0 = fibIter (m-1) q (p+q)

Here we use type inference for fibIter. Function fibIter could be declared

fibIter :: Int -> Int -> Int -> Int

but it was not necessary because Haskell can infer the type from the types
involved in its defining expressions.

What are the precondition and postcondition for fibIter n p q?

To avoid abnormal termination, fibIter n p q requires n >= 0. When the
precondition holds, its postcondition is:

fibIter n p q = Fibonacci(n) + (p + q - 1)

If called with p and q set to 0 and 1, respectively, then fibIter returns:

Fibonacci(n)

How do we know that fibIter n p q terminates for n ≥ 0?

The recursive leg of fibIter n p q is only evaluated when n > 0. On the
recursive call, that argument decreases by 1. So eventually the computation
reaches the base case.

What are the time and space complexities of fibIter?

Function fibIter has a time complexity of O(n) in contrast to O(fib n) for
fib. This algorithmic speedup results from the replacement of the very expen-
sive operation fib(n-1) + fib(n-2) at each level in fib by the inexpensive
operation p + q (i.e., addition of two numbers) in fibIter.

Without tail call optimization, fibIter n p q has space complexity of O(n).
However, tail call optimization (including an innermost reduction on the q
argument) can convert the recursion to a loop, giving O(1) space complexity.

When combined with tail-call optimization and innermost reduction of strict
arguments, a tail recursive function may be more efficient than the equivalent
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backward recursive function. However, the backward recursive function is often
easier to understand and, as we see in Chapter 25, to reason about.

9.4 Logarithmic Recursion
We can define the exponentiation operation ˆ in terms of multiplication as follows
for integers b and n >= 0:

bˆn =
∏i=n

i=1 b

A backward recursive exponentiation function expt, shown below in Haskell,
raises a number to a nonnegative integer power.

expt :: Integer -> Integer -> Integer
expt b 0 = 1
expt b n

| n > 0 = b * expt b (n-1) -- backward rec
| otherwise = error (

"expt undefined for negative exponent "
++ show n )

Here we use the unbounded integer type Integer for the parameters and return
value.

Note that the recursive call of expt does not change the value of the parameter
b.

Consider the following questions relative to expt.

• What are the precondition and postcondition for expt b n?

• How do we know that expt b n terminates?

• What are the time and space complexities of expt b n (ignoring any
additional costs of processing the unbounded integer type)?

We can define a tail recursive auxiliary function exptIter by adding a new
parameter to accumulate the value of the exponentiation incrementally. We can
define exptIter within a function expt2, taking advantage of the fact that the
base b does not change. This is shown below.

expt2 :: Integer -> Integer -> Integer
expt2 b n | n < 0 = error (

"expt2 undefined for negative exponent "
++ show n )

expt2 b n = exptIter n 1
where exptIter 0 p = p

exptIter m p = exptIter (m-1) (b*p) -- tail rec

Consider the following questions relative to expt2.

• What are the precondition and postcondition for exptIter n p?
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• How do we know that exptIter n p terminates?

• What are the time and space complexities of exptIter n p?

The exponentiation function can be made computationally more efficient by
squaring the intermediate values instead of iteratively multiplying. We observe
that:

bˆn = bˆ(n/2)ˆ2 if n is even
bˆn = b * bˆ(n-1) if n is odd

Function expt3 below incorporates this observation into an improved algorithm.
Its time complexity is O(log2 n) and space complexity is O(log2 n). (Here we
assume that log2 computes the logarithm base 2.)

expt3 :: Integer -> Integer -> Integer
expt3 _ n | n < 0 = error (

"expt3 undefined for negative exponent "
++ show n )

expt3 b n = exptAux n
where exptAux 0 = 1

exptAux n
| even n = let exp = exptAux (n `div` 2) in

exp * exp -- backward rec
| otherwise = b * exptAux (n-1) -- backward rec

Here we are use two features of Haskell we have not used in the previous examples.

• Boolean function even returns True if and only if its integer argument is
an even number. Similarly, odd returns True when its argument is an odd
number.

• The let clause introduces exp as a local definition within the expression
following in keyword, that is, within exp * exp.

The let feature allows us to introduce new definitions in a bottom-up
manner—first defining a symbol and then using it.

Consider the following questions relative to expt3.

• What are the precondition and postcondition expt3 b n?

• How do we know that exptAux n terminates?

• What are the time and space complexities of exptAux n?

9.5 Local Definitions
We have used two different language features to add local definitions to Haskell
functions: let and where.

The let expression is useful whenever a nested set of definitions is required. It
has the following syntax:
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let local_definitions in expression

A let may be used anywhere that an expression my appear in a Haskell program.

For example, consider a function f that takes a list of integers and returns a list
of their squares incremented by one:

f :: [Int] -> [Int]
f [] = []
f xs = let square a = a * a

one = 1
(y:ys) = xs

in (square y + one) : f ys

• square represents a function of one variable.

• one represents a constant, that is, a function of zero variables.

• (y:ys) represents a pattern match binding against argument xs of f.

• Reference to y or ys when argument xs of f is nil results in an error.

• Local definitions square, one, y, and ys all come into scope simultaneously;
their scope is the expression following the in keyword.

• Local definitions may access identifiers in outer scopes (e.g., xs in definition
of (y:ys)) and have definitions nested within themselves.

• Local definitions may be recursive and call each other.

The let clause introduces symbols in a bottom-up manner: it introduces symbols
before they are used.

The where clause is similar semantically, but it introduces symbols in a top-down
manner: the symbols are used and then defined in a where that follows.

The where clause is more versatile than the let. It allows the scope of local
definitions to span over several guarded equations while a let’s scope is restricted
to the right-hand side of one equation.

For example, consider the definition:

g :: Int -> Int
g n | check3 == x = x

| check3 == y = y
| check3 == z = z * z

where check3 = n `mod` 3
x = 0
y = 1
z = 2

• The scope of this where clause is over all three guards and their respective
right-hand sides. (Note that the where begins in the same column as the
= rather than to the right as in rev’.)
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• Note the use of the modulo function mod as an infix operator. The back-
quotes (‘) around a function name denotes the infix use of the function.

In addition to making definitions easier to understand, local definitions can
increase execution efficiency in some cases. A local definition may introduce a
component into the expression graph that is shared among multiple branches.
Haskell uses graph reduction, so any shared component is evaluated once and
then replaced by its value for subsequent accesses.

The local variable check3 introduces a component shared among all three legs.
It is evaluated once for each call of g.

9.6 Using Other Languages
In this chapter, we have expressed the functions in Haskell, but they are adapted
from the classic textbook Structure and Interpretation of Computer Programs
(SICP) [1], which uses Scheme.

To compare languages, let’s examine the expt3 function in Scheme and other
languages.

9.6.1 Scheme

Below is the Scheme language program for exponentiation similar to to expt3
(called fast-expt in SICP [1]). Scheme, a dialect of Lisp, is an impure, eagerly
evaluated functional language with dynamic typing.

(define (expt3 b n)
(cond

((< n 0) (error `expt3 "Called with negative exponent"))
(else (expt_aux b n))))

(define (expt_aux b n)
(cond
((= n 0) 1)
((even? n) (square (expt3 b (/ n 2))))
(else (* b (expt3 b (- n 1))))))

(define (square x) (* x x))

(define (even? n) (= (remainder n 2) 0))

Scheme (and Lisp) represents both data and programs as s-expressions (nested
list structures) enclosed in balanced parentheses; that is, Scheme is homoiconic.
In the case of executable expressions, the first element of the list may be operator.
For example, consider:

(define (square x) (* x x))

The define operator takes two arguments:
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• a symbol being defined, in this case a function signature (square x) for a
function named square with one formal parameter named x

• an expression defining the value of the symbol, in this case the expression
(* x x) that multiplies formal parameter x by itself and returns the result

The define operator has the side effect of adding the definition of the symbol
to the environment. That is, square is introduced as a one argument function
with the value denoted by the expression (* x x).

The conditional expression cond gives an if-then-elseif expression that evaluates
a sequence of predicates until one evaluates to “true” value and then returns the
paired expression. The else at the end always evaluates to “true”.

The above Scheme code defines the functions square, the exponentiation function
expt3, and the logical predicate even? {.scheme}. It uses the primitive Scheme
functions -, *, /, remainder, and = (equality).

We can evaluate the Scheme expression (expt 2 10) using a Scheme interpreter
(as I did using DrRacket [6,7,11]) and get the value 1024.

Although Haskell and Scheme are different in many ways—algebraic versus s-
expression syntax, static versus dynamic typing, lazy versus eager evaluation (by
default), always pure versus sometimes impure functions, etc.—the fundamental
techniques we have examined in Haskell still apply to Scheme and other languages.
We can use a substitution model, consider preconditions and termination, use
tail recursion, and take advantage of first-class and higher-order functions.

Of course, each language offers a unique combination of features that can be
exploited in our programs. For example, Scheme programmers can leverage
its runtime flexibility and powerful macro system; Haskell programmers can
build on its safe type system, algebraic data types, pattern matching, and other
features.

The Racket Scheme [11] code for this subsection is in file expt3.rkt.

Let’s now consider other languages.

9.6.2 Elixir

The language Elixir [4,13] is a relatively new language that executes on the
Erlang platform (called the Erlang Virtual Machine or BEAM). Elixir is an
eagerly evaluated functional language with strong support for message-passing
concurrent programming. It is dynamically typed and is mostly pure except for
input/output. It has pattern-matching features similar to Haskell.

We can render the expt3 program into a sequential Elixir program as follows.

def expt3(b,n) when is_number(b) and is_integer(n)
and n >= 0 do

exptAux(b,n)
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end

defp exptAux(_,0) do 1 end

defp exptAux(b,n) do
if rem(n,2) == 0 do # i.e. even

exp = exptAux(b,div(n,2))
exp * exp # backward rec

else # i.e. odd
b * exptAux(b,n-1) # backward rec

end
end

This code occurs within an Elixir module. The def statement defines a function
that is exported from the module while defp defines a function that is private
to the module (i.e., not exported).

A definition allows the addition of guard clauses following when (although
they cannot include user-defined function calls because of restrictions of the
Erlang VM). In function expt3, we use guards to do some type checking in this
dynamically typed language and to ensure that the exponent is nonnegative.

Private function exptAux has two functions bodies. As in Haskell, the body is
selected using pattern matching proceeding from top to bottom in the module.
The first function body with the header exptAux(_,0) matches all cases in
which the second argument is 0. All other situations match the second header
exptAux(b,n) binding parameters b and n to the argument values.

The functions div and rem denote integer division and remainder, respectively.

The Elixir = operator is not an assignment as in imperative languages. It is a
pattern-match statement with an effect similar to let in the Haskell function.

Above the expression

exp = exptAux(b,div(n,2))

evaluates the recursive call and then binds the result to new local variable named
exp. This value is used in the next statement to compute the return value
exp * exp.

Again, although there are significant differences between Haskell and Elixir, the
basic thinking and programming styles learned for Haskell are also useful in Elixir
(or Erlang). These styles are also key to use of their concurrent programming
features.

The Elixir [4] code for this subsection is in file expt.ex.
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9.6.3 Scala

The language Scala [10,12] is a hybrid functional/object-oriented language that
executes on the Java platform (i.e., on the Java Virtual Machine or JVM).
Scala is an eagerly evaluated language. It allows functions to be written in a
mostly pure manner, but it allows intermixing of functional, imperative, and
object-oriented features. It has a relatively complex static type system similar
to Java, but it supports type inference (although weaker than that of Haskell).
It interoperates with Java and other languages on the JVM.

We can render the exponentiation function expt3 into a functional Scala program
as shown below. This uses the Java/Scala extended integer type BigInt for the
base and return values.

def expt3(b: BigInt, n: Int): BigInt = {

def exptAux(n1: Int): BigInt = // b known from outer
n1 match {

case 0 => 1
case m if (m % 2 == 0) => // i.e. even

val exp = exptAux(m/2)
exp * exp // backward rec

case m => // i.e. odd
b * exptAux(m-1) // backward rec

}

if (n >= 0)
exptAux(n)

else
sys.error ("Cannot raise to negative power " + n )

}

The body of function expt3 uses an if-else expression to ensure that the
exponent is non-negative and then calls exptAux to do the work.

Function expt3 encloses auxiliary function exptAux. For the latter, the para-
meters of expt3 are in scope. For example, exptAux uses b from expt3 as a
constant.

Scala supports pattern matching using an explicit match operator in the form:

selector match { alternatives }

It evaluates the selector expression and then choses the first alternative pattern
that matches this value, proceedings top to botton, left to right. We write the
alternative as

case pattern => expression

or with a guard as:
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case pattern if boolean_expression => expression

The expression may be a sequence of expressions. The value returned is the
value of the last expression evaluated.

In this example, the match in exptAux could easily be replaced by an if–else if–
else expression because it does not depend upon complex pattern matching.

In Haskell, functions are automatically curried. In Scala, we could alternatively
define expt3 in curried form using two argument lists as follows:

def expt3(b: BigInt)(n: Int): BigInt = ...

Again, we can use most of the functional programming methods we learn for
Haskell in Scala. Scala has a few advantages over Haskell such as the ability to
program in a multiparadigm style and interoperate with Java. However, Scala
tends to be more complex and verbose than Haskell. Some features such as type
inference and tail recursion are limited by Scala’s need to operate on the JVM.

The Scala [12] code for this subsection is in file exptBigInt2.scala.

9.6.4 Lua

Lua [8,9] is a minimalistic, dynamically typed, imperative language designed to
be embedded as a scripting language within other programs, such as computer
games. It interoperates well with standard C and C++ programs.

We can render the exponentiation function expt3 into a functional Lua program
as shown below.

local function expt3(b,n)

local function expt_aux(n) -- b known from outer
if n == 0 then

return 1
elseif n % 2 == 0 then -- i.e. even

local exp = expt_aux(n/2)
return exp * exp -- backward recursion

else -- i.e. odd
return b * expt_aux(n-1) -- backward recursion

end
end

if type(b) == "number" and type(n) == "number" and n >= 0
and n == math.floor(n) then

return expt_aux(n,1)
else

error("Invalid arguments to expt: " ..
tostring(b) .. "ˆ" .. tostring(n))
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end
end

Like the Scala version, we define the auxiliary function expt_aux inside of
function expt3, limiting its scope to the outer function.

This function uses with Lua version 5.2. In this and earlier versions, the only
numbers are IEEE standard floating point. As in the Elixir version, we make
sure the arguments are numbers with the exponent argument being nonnegative.
Given that the numbers are floating point, the function also ensures that the
exponent is an integer.

Auxiliary function expt_aux does the computational work. It differentiates
among the three cases using an if–elseif–else structure. Lua does not have a
switch statement or pattern matching capability.

Lua is not normally considered a functional language, but it has a number of
features that support functional programming—in particular, first-class and
higher order functions and tail call optimization.

In many ways, Lua is semantically similar to Scheme, but instead of having the
Lisp-like hierarchical list as its central data structure, Lua provides an efficient,
mutable, associative data structure called a table (somewhat like a hash table
or map in other languages). Lua does not support Scheme-style macros in the
standard language.

Unlike Haskell, Elixir, and Scala, Lua does not have builtin immutable data
structures or pattern matching. Lua programs tend to be relatively verbose. So
some of the usual programming idioms from functional languages do not fit Lua
well.

The Lua [9] code for this subsection is in file expt.lua.

9.6.5 Elm

Elm [3,5] is a new functional language intended primarily for client-side Web
programming. It is currently compiled into JavaScript, so some aspects are
limited by the target execution environment. For example, Elm’s basic types
are those of JavaScript. So integers are actually implemented as floating point
numbers.

Elm has a syntax and semantics that is similar to, but simpler than, Haskell. It
has a Haskell-like let construct for local definitions but not a where construct.
It also limits pattern matching to structured types.

Below is an Elm implementation of an exponentiation function similar to the
Haskell expt3 function, except it is limited to the standard integers Int. Operator
// denotes the integer division operation and % is remainder operator.

expt3 : Int -> Int -> Int
expt3 b n =
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let
exptAux m =

if m == 0 then
1

else if m % 2 == 0 then
let

exp = exptAux (m // 2)
in

exp * exp -- backward rec
else

b * exptAux (m-1) -- backward rec
in

if n < 0 then
0 -- error?

else
exptAux n

One semantic difference between Elm and Haskell is that Elm functions must
be total—that is, return a result for every possible input. Thus, this simple
function extends the definition of expt3 to return 0 for a negative power. An
alternative would be to have expt3 return a Maybe Int type instead of Int. We
will examine this feature in Haskell later.

The Elm [3] code for this subsection is in file expt.elm.

9.7 What Next?
As we have seen in this chapter, we can develop efficient programs using functional
programming and the Haskell language. These may require use to think about
problems and programming a bit differently than we might in an imperative
or object-oriented language. However, the techniques we learn for Haskell are
usually applicable whenever we use the functional paradigm in any language.
The functional way of thinking can also improve our programming in more
traditional imperative and object-oriented languages.

In Chapter 10, we examine simple input/output concepts in Haskell. In Chapters
11 and 12, we examine software testing concepts.

In subsequent chapters, we explore the list data structure and additional pro-
gramming techniques.

9.8 Chapter Source Code
The Haskell modules for the functions in this chapter are defined in the following
source files:

• the factorial functions in Factorial.hs (from Chapter 4)
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• the other Haskell functions in RecursionStyles.hs (with a simple test
script in file TestRecursionStyles.hs){type=“text/plain”}).

9.9 Exercises
1. Show the reduction of the expression fib 4 substitution model. (This is

repeated from the previous chapter.)

2. Show the reduction of the expression expt 4 3 using the substitution
model.

3. Answer the questions (precondition, postcondition, termination, time com-
plexity, space complexity) in the subsection about expt.

4. Answer the questions in the subsection about expt.

5. Answer the questions in the subsection about expt2.

6. Answer the questions in the subsection about expt3.

7. Develop a recursive function in Java, C#, Python 3, JavaScript, or C++
that has the same functionality as expt3.

8. Develop an iterative, imperative program in Java, C#, Python 3,
JavaScript, or C++ that has the same functionality as expt3.

For each of the following exercises, develop a Haskell program. For each function,
informally argue that it terminates and give Big-O time and space complexities.
Also identify any preconditions necessary to guarantee correct operation. Take
care that special cases and error conditions are handled in a reasonable way.

7. Develop a backward recursive function sumTo such that sumTo n computes
the sum of the integers from 1 to n for n >= 0.

8. Develop a tail recursive function sumTo' such that sumTo' n computes the
sum of the integers from 1 to n for n >= 0.

9. Develop a backward recursive function sumFromTo such that sumFromTo m n
computes the sum of the integers from m to n for m <= n.

10. Develop a tail recursive function sumFromTo' such that sumFromTo' m n
computes the sum of the integers from m to n for m <= n.

11. Suppose we have functions succ (successor) and pred (predecessor) defined
as follows:

succ, pred :: Int -> Int
succ n = n + 1
pred n = n - 1

Develop a function add such that add m n computes m + n. Function add
cannot use the integer addition or subtraction operations but can use the
succ ad pred functions above.
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12. Develop a function acker to compute Ackermann’s function, which is
function A defined in Table 9.1.

Table 9.1: Ackermann’s function.

A(m, n) = n + 1, if m = 0
A(m, n) = A(m − 1, 1), if m > 0 and n = 0
A(m, n) = A(m − 1, A(m, m − 1)), if m > 0 and n > 0

13. Develop a function hailstone to implement the function shown in Table
9.2.

Table 9.2: Hailstone function.

hailstone(n) = 1, if n = 1
hailstone(n) = hailstone(n/2), if n > 1, even n
hailstone(n) = hailstone(3 ∗ n + 1), if n > 1, odd n

Note that an application of the hailstone function to the argument 3
would result in the following “sequence” of “calls” and would ultimately
return the result 1.

hailstone 3
hailstone 10

hailstone 5
hailstone 16

hailstone 8
hailstone 4

hailstone 2
hailstone 1

For further thought: What is the domain of the hailstone function?

14. Develop the exponentiation function expt4 that is similar to expt3 but is
tail recursive.

15. Develop the following group of functions.

• test such that test a b c is True if and only if a <= b and no
integer is the range from a to b inclusive is divisible by c.

• prime such that prime n is True if and only if n is a prime integer.

• nextPrime such that nextPrime n returns the next prime integer
greater than n

16. Develop function binom to compute binomial coefficients. That is,
binom n k returns

(
n
k

)
for integers n >= 0 and 0 <= k <= n.
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9.11 Terms and Concepts
Recursion styles (linear vs. nonlinear, backward vs. forward, tail, and logarithmic),
correctness (precondition, postcondition, and termination), efficiency estimation
(time and space complexity), transformations to improve efficiency (auxiliary
function, accumulator), homiconic, message-passing concurrent programming,
embedded as a scripting language, client-side Web programming.
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